Characterizing the Response of Composite Panels to a **Pyroshock Induced Environment using Design of Experiments Methodology David S. Parsons Dynamics** Analysis Thermal and Mechanical Analysis Branch/ES22 NASA: Marshall Space Flight Center November 7th, 2013 2nd, 3rd Authors: David Ordway/EV32, Kenneth Johnson/C102

NASA: MSFC

2013-11-07

Outline

NASA

- Purpose
- Test Setup and Design
 - Parameters
 - Outline
 - Article
 - Instrumentation
- Single Value Inputs
 - Shock Response Spectrum
 - Pseudovelocity
 - Temporal Moments
 - Spectral Moments
- Data Post Processing
- Results
- Preliminary Statistical Analysis
- Preliminary Conclusions
- Forward Work

The Objective of the Test:

PURPOSE

Purpose

• NASA still depends heavily on the attenuation methods of the Pyrotechnic Design Guidelines Manual for preliminary pyroshock environment estimation.

• Project Goal: Understand and quantify how various composite panel properties impact the composite panel's response to a pyroshock environment.

Figure 3.7 Attenuation for Noneycomb

Kacena, W. J., McGrath, M. B., & Rader, W. P. (1970). *Pyrotechnic Shock Design Guidelines Manual.* Denver: NAS5-15208.

Purpose Cont'd...

• Project Process: Use **design of experiments (DOE)** techniques to quantify differences in effects and variability in responses due to changes in input factors.

- Challenge:
 - Shock environments can be very difficult to quantify. The most common methods are...
 - Time history based: shock pulses (half-sine pulse, etc.), wavelet reconstruction,...
 - Response spectrums: SRS, pseudovelocity (PV)
 - Analysis methods team starting with **single value inputs**; shock tends to be characterized with a spectrum.

• Response spectrums for pyroshock tend to show similar trends (slope, frequency break point, plateau), but enveloping response spectrums can be very subjective.

Purpose Cont'd...

- •Goal 1: Eliminate human subjectivity by automating
 - Post-Processing of acceleration time history data
 - Use first 20 ms
 - Remove bit-error
 - Detrend
 - Enveloping of Shock Response Spectrum
 - Enveloping of Pseudovelocity
- Goal 2: Determine and calculate single value inputs that can characterize the shock environment
 - SRS Envelope Parameters
 - PV Envelope Parameters
 - Temporal Moments
 - Spectral Moments
- Goal 3: Analyze additional spectrums used for characterizing shock
 - Fourier spectrum
 - Energy Spectral Density
 - Time-Frequency spectrum
- Goal 4: Utilize statistical processes to evaluate the data
 - Isolate non-essential parameters
 - Develop scaling method for composite structures

NASA: MSFC

Collecting the needed data:

TEST SETUP & DESIGN

Test – Parameters

Group I – Solid Composite Panels						
Test Number	Material	Panel Thickness	Ply	Orientation	Туре	LSC Core Load
1	Composite, IM7/TC350	Thin	Fabric	0-Deg, 18 ply	Solid	10
2	Composite, IM7/TC350	Thin	Fabric	+45°/-45°, 0° (2x), +45°/-45°, 90° (2x), 18 ply	Solid	10
3	Composite, IM7/TC350	Thick	Tape	+45°/-45°, 0° (2x), +45°/-45°, 90° (2x), 54 ply	Solid	10
4	Composite, IM7/TC350	Thick	Fabric	+45°/-45°, 0° (2x), +45°/-45°, 90° (2x), 27 ply	Solid	22
5	Composite, IM7/TC350	Thin	Tape	+45°/-45°, 0° (2x), +45°/-45°, 90° (2x), 38 ply	Solid	22
	An	alyze results f	from Tests 1-5 a	and re-plan as necessary		
6	Composite, IM7/TC350	Thin	Fabric	0-Deg, 18 ply	Solid	22
7	Composite, IM7/TC350	Thin	Fabric	+45°/-45°, 0° (2x), +45°/-45°, 90°, 18 ply	Solid	22
8	Composite, IM7/TC350	Thick	Fabric	+45°/-45°, 0° (2x), +45°/-45°, 90° (2x), 27 ply	Solid	10
9	Composite, IM7/TC350	Thick	Tape	+45°/-45°, 0° (2x), +45°/-45°, 90° (2x), 54 ply	Solid	22
10	Composite, IM7/TC350	Thin	Tape	+45°/-45°, 0° (2x), +45°/-45°, 90° (2x), 38 ply	Solid	10

Test Outline Cont'd...

Group II – Sandwich Composite Panels							
Panel Number	Test Order Number	Material	Panel Thickness	Fill/Ply	Orientation	Туре	LSC Core Load
11	1	Composite, IM7/TC350	8 Ply Fill	Al Honeycomb & Tape	90°/+45°/-45°/0°/0°/ -45°/+45°/90°, 8 ply both faces	Sandwich	10
12	4	Composite, IM7/TC350	8 Ply Fill	Al Honeycomb & Tape	90°/+45°/-45°/0°/0°/ -45°/+45°/90°, 8 ply both faces	Sandwich	22
13	3	Composite, IM7/TC350	8 Ply Fill	Rohacell Foam &Tape	90°/+45°/-45°/0°/0°/ -45°/+45°/90°, 8 ply both faces	Sandwich	10
14	2	Composite, IM7/TC350	8 Ply Fill	Rohacell Foam &Tape	90°/+45°/-45°/0°/0°/ -45°/+45°/90°, 8 ply both faces	Sandwich	22
15	7	Composite, IM7/TC350	8 Ply Fill	Al Honeycomb & Tape	90°/+45°/-45°/0°/0°/ -45°/+45°/90°, 8 ply both faces	Sandwich	10
16	5	Composite, IM7/TC350	8 Ply Fill	Al Honeycomb & Tape	90°/+45°/-45°/0°/0°/ -45°/+45°/90°, 8 ply both faces	Sandwich	22
17	8	Composite, IM7/TC350	8 Ply Fill	Rohacell Foam &Tape	90°/+45°/-45°/0°/0°/ -45°/+45°/90°, 8 ply both faces	Sandwich	10
18	6	Composite, IM7/TC350	8 Ply Fill	Rohacell Foam &Tape	90°/+45°/-45°/0°/0°/ -45°/+45°/90°, 8 ply both faces	Sandwich	22
	Evaluate results from tests 11-18 and determine test panel configuration for tests 19-28						

Test Article Cont'd... Ceiling Floor

NASA: MSFC

Test Instrumentation

NASA: MSFC

Characterizing the Test Data:

SINGLE VALUE INPUTS

Single Value Inputs – Shock Response

• A shock response spectrum can often be enveloped knowing three parameters (assuming a frequency range of 100 to 10,000 Hz):

- Frequency break point (Hz)
- Max Peak Accel or plateau value (G)
- Slope (dB/oct)

Single Value Inputs - PV

• A pseudovelocity spectrum can be enveloped knowing three parameters (assuming a frequency range of 100 to 10,000 Hz):

- Mean Pseudovelocity (ips)
- Max Peak Accel or plateau value (G)
- Slope (dB/oct)

Single Value Inputs – Temporal & Spectral Moments

Single Value Inputs: Temporal and Spectral Moments				
Temporal Moment Calculated Values	Spectral Moment Calculated Values			
Temporal Energy	Spectral Energy			
Temporal Mean	One Sided Spectral Mean			
Temporal Variance	One Sided Spectral Variance			
Root-Mean-Square Duration	One Sided RMS Bandwidth			
Variance Normalization	Variance Normalization			
Temporal Skewness	One Sided Spectral Skewness			
Temporal Kurtosis	One Sided Spectral Kurtosis			
Root Energy Amplitude				

Reducing human error:

AUTOMATING THE PROCESS

SRS Enveloping - General Algorithm

NASA

• Read in SRS plot points.

• Determine a temporary frequency break point (Lowest frequency that is one standard deviation below the highest peak value).

- Calculate the slope of the data points from 100Hz to the temporary frequency break point (Least Squares Fit).
- For the plateau, calculate the mean value of the data points from the temporary frequency break point to 10,000Hz.
- Calculate where the sloped line and the plateau intersect; this is the new frequency break point.
- Create the sloped portion of the curve from 100Hz to the new frequency break point.
- Create the plateau from the new frequency break point to 10,000Hz.
- Output the frequency break point, the slope, and the plateau values.

NASA

• Read in PV plot points.

• Determine break points (lowest and highest frequencies that correspond to peaks that are two standard deviations below the highest peak.)

- Calculate the slope of the max displacement line.
- Calculate the mean of the max pseudovelocity line.
- Calculate the slope of the max acceleration line.
- Calculate the two break frequencies by calculating where the max displacement and max acceleration line intersect the max pseudovelocity line.
- Create the enveloping curves.
- Output the max displacement value, the pseudovelocity, and the max acceleration value.

Frequency, Hz

Post Processing Automation – General Algorithm

- Identify the beginning of the shock pulse in the time history.
- Remove the bit error from the time history.
- Take the first 20msec of the shock pulse.
 - Detrend (linear) the shock pulse.
- Perform calculations on post-processed data.
 - Time history plots
 - Shock Response Spectrum
 - Pseudovelocity Response Spectrum
 - Temporal Moments
 - Spectral Moments
 - Fourier Spectrum
 - Generalized Harmonic Wavelet Transform
- Print and plot results for statistical evaluation.

Searching for Trends:

PRELIMINARY STATISTICAL ANALYSIS

Max Acceleration Stats Analysis: Adequate Model Significant Factors

- Distance (top graph) has an
 overall effect of decreasing from 6 to 42 inches, then leveling out
- The attenuation appears steeper and may bottom out at a lower value for Thicker panel than for Thinner (bottom graph)

Max Acceleration Stats Analysis: Adequate Model Significant Factors

- LSC Core Load may or may not be a significant factor (top)
- Ply does not appear to be a significant driver of Maximum Acceleration, given this model (bottom)

Max Acceleration Stats Analysis: Graph of Data with Full Adequate Model

Maximum Acceleration

Temporal Energy: Visual Analysis

- In general, there appears to be a decrease in Temp Energy with Distance
- Tape may show a larger response than Fabric – or we may be seeing noise
- Top/ Bottom seem to replicate each other well
- 0 and 45/90 appear to replicate one another

Graph Builder

Temporal Energy: Visual Analysis

- Thicker panels appear to have lower Temp Energy than Thin
 - The effect is very noisy

 may be difficult to pick out in quantitative analysis OR may not exist
 - Panel 2 (Thinner Fabric 10 gpf) might have given low values – factor combination not on retest list, though Panel 2 is
- Panel 5 (Thin Tape 22 gpf) seems to be noisy close-in
 - Likely not of great concern to analysis, but could be useful to know why

07/19/2013 4:02 PM Data Table=1307051311 SBU Composite ShockProcessed Results Tests 1 - 12

Graph Builder

Graphs of Mean PV Data

- Visual analysis:
 - Usually, Core Load doesn't make a difference
 - Usually, Tape gives a higher response than Fabric
 - Usually, Panel Thickness doesn't matter
 - BUT Thin Fabric is quite sensitive to Core Load (3-way interaction)
- BUT data is equivocal

Graphs of Mean PV Data

- Mean PV by Test Number
 - Range of variability suggests measurement is noisy in particular instances

Vean PV

- What are the instances?
- In particular, Test 9 has several wild points

07/09/2013 1:45 PM Data Table=1307081346 SBU Composite ShockProcessed Results Tests 1 - 10

Max Acceleration: Bottom Lines

- Some panels showed a knee at ~18", with maximum values there for a few panels
- Little difference seen between Fabric and Tape panels
- Thin panels gave higher Max Accel responses than Thick Panels over a longer distance
 - Thick panels' Max Accel tended to fall off steeply before 18"
- 22 gpf Core Load tended to result in lower Max Accel values at 6" than 10 gpf
 - Thin panels' Max Accel values increased to a maximum at 18" Distance

Temporal Energy: Bottom Lines

- Top accelerometer TE values are considerably and fairly repeatably higher than Bottom
- TE generally decreases with decreasing Distance
 - Some panels' curves show a knee at ~30"
 Distance, with a few even showing a maximum there
- Thinner Thickness results in higher TE than Thicker
- Variability increases with increasing TE
 - Analyzed logarithm of TE analysis was of little use without this transformation

Mean PV: Bottom Lines

- There are a number of wild points that seriously inhibit quantitative analysis.
 - Recommend looking at these points in the data to see if there is something driving this.
 - Test 9 exhibits particularly high variability.
- In visual analysis, after attempting to identify and disregard these wild points, the following conclusions might be made:
 - Core load and Panel Thickness usually don't make much difference.
 - Fabric usually gives lower Mean PV than Tape.
 - BUT Fabric at Thinner Thickness and 22 gr Core Load appears to have higher Mean PV.
 - 0-degree panels may respond similarly to 45/90 panels.

Forward Work

- Evaluate noise in the data.
 - Check if algorithms are too sensitive.
 - Review time histories and any other factors that might explain noise and outliers.
 - Search for trends in data.
- Understand the physical meaning of parameters.
 - Some pseudovelocity results are counter to expectations.
- Consider retesting panels after non-destructive evaluation of panels.
- Complete all test series.
- Develop useful tool for a composite panel's response to a shock environment.
 - Identify non-significant parameters of composite panels.
 - Develop scaling methods for composite panels, if possible.

Questions?

Back up

Single Value Inputs – Temporal Moments

 $Accel \equiv AccelerationTimeHistory(\frac{in}{s^2})$

• Temporal Energy,
$$Tnrg = \sum Accel^2 * \Delta t$$

• Normalization, $Anorm = \frac{Accel^2}{Tnrg}$

• Temporal Mean,
$$Tmean = \sum t * Anorm * \Delta t$$

- Standardization, t0 = t Tmean
- Temporal Variance, $T \operatorname{var} = \sum t 0^2 * Accel^2 * \Delta t$
- RMS Duration, $D = \sqrt{T \text{ var}}$
- Variance Normalization, $t0 = \frac{t0}{D}$

• Root Energy Amplitude,
$$Trea = \sqrt{\frac{Tnrg}{D}}$$

• Temporal Skewness, $Tskew = \sum t0^3 * Accel^2 * \Delta t$

• Temporal Kurtosis,
$$Tkurt = \sum t0^4 * Accel^2 * \Delta t$$

Hacker, J. (2012, May 30). *Index of ula time-frequency matlab scripts*. Retrieved from ftp://shockwg@drop.aero.org/

Single Value Inputs – Spectral Moments

- $Accel \equiv Accelerati \ on Time Hist \ ory(\frac{in}{s^2})$
- $X(f) = fftshift (fft(Accel)) * \Delta t$
- $XX(f) = \left|X(f)\right|^2$
- Spectral Energy, $Fnrg = \sum XX(f) * \Delta f$
- Normalization, $Xnorm = \frac{XX(f)}{Fnrg}$
- One Sided Spectral Mean, $Fmean 1 = \sum (|f| * XX(f)) * \Delta f$
- Two Sided Spectral Mean, *Fmean* $2 = \sum (f * XX(f)) * \Delta f$
- Standardization, f1 = f Fmean1f2 = f
- One Sided Spectral Variance, $F \operatorname{var} 1 = \sum (f 1^2 * XX(f)) * \Delta f$
- Two Sided Spectral Variance, $F \operatorname{var} 2 = \sum (f 2^2 * XX(f)) * \Delta f$

Hacker, J. (2012, May 30). *Index of ula time-frequency matlab scripts*. Retrieved from ftp://shockwg@drop.aero.org/

Single Value Inputs – Spectral Moments Cont'd...

NASA

- One Sided RMS Bandwidth, $B1 = \sqrt{F \text{ var } 1}$
- Two Sided RMS Bandwidth, $B2 = \sqrt{F \operatorname{var} 2}$
- Variance Normalization, $f_1 = \frac{f_1}{B_1}$ $f_2 = \frac{f_2}{B_1}$
- One Sided Spectral Skewness, $Fskew1 = \sum (|f1|^3 * XX(f)) * \Delta f$
- Two Sided Spectral Skewness, $Fskew2 = \sum (f2^3 * XX(f)) * \Delta f$
- One Sided Spectral Kurtosis, $Fkurt1 = \sum (f1^4 * XX(f)) * \Delta f$
- Two Sided Spectral Kurtosis, $Fkurt2 = \sum (f2^4 * XX(f)) * \Delta f$

Hacker, J. (2012, May 30). *Index of ula time-frequency matlab scripts*. Retrieved from ftp://shockwg@drop.aero.org/

Hacker, J. (2012, May 30). *Index of ula time-frequency matlab scripts*. Retrieved from ftp://shockwg@drop.aero.org/

NASA: MSFC

SRS Enveloping - Code

Contents

- Determine the intermediate frequency break point of the slope and plateau
- Find envelope line properties
- Create envelope curve
- Plot results

function [env] = srs_envelope2(srs, varargin)

```
%srs_envelope Envelopes an SRS. Creates a plot and returns the values of
%the break point, slope, and plateau value
% SRS is a two-column matrix of frequency and G values
```

```
f=srs(:,1);
g=srs(:,2);
```

Error using srs_envelope2 (line 6) Not enough input arguments.

Determine the intermediate frequency break point of the slope and plateau

```
[pks,locs]=findpeaks(srs(:,2));
s=std(pks);
pl=zeros(length(pks),1);
jj=1;
for ii=1:length(pks)
    if pks(ii)>=(max(pks)-1*s)
        pl(jj)=locs(ii);
        jj=jj+1;
    end
end
% remove zeros from pl
pl(pl==0)=[];
% now use the first point as the initial frequency break point
fbi=pl(1);
```


SRS Enveloping - Code

Find envelope line properties

find line properties from 0Hz to the initial breakpoint

mdl=LinearModel.fit(log10(f(1:fbi)),log10(g(1:fbi)));

% y=b*x^N N=mdl.Coefficients{2,1}; %intercept b=10^mdl.Coefficients{1,1}; %slope for exponent

% Find mean value for the plateau % Note: mean was chosen rather than max because it will take into account % all of the values in the plateau range. yp=mean(g(fbi:end));

 $calculate break point fb=(yp/b)^(1/N);$

Create envelope curve

Determine counter for envelopes

ss=1;
while f(ss) <fb< th=""></fb<>
ss=ss+1;
if ss>length(f)
break
end
end
ss=ss-1;
% Sloped part of line
<pre>fslope=zeros(ss,1);</pre>
yslope=zeros(ss,1);
for gg=1:ss;
<pre>fslope(gg)=f(gg);</pre>
yslope(gg)=b*f(gg)^N;
end
% Remove excess zeros
fslope(fslope==0)=[];
yslope (yslope==0) = [];
% Calculate the slope in dB/Oct
dbOct=2*log10(20)*log10(yslope(end)/yslope(1))/log10(fslope(end)/fslope(1));
% Plateau
cc=1;
<pre>fplateau=zeros(length(f)-ss,1);</pre>
<pre>yplateau=zeros(length(f)-ss,1);</pre>
for hh=ss:length(f)
<pre>fplateau(cc)=f(hh);</pre>
<pre>yplateau(cc)=yp;</pre>
cc=cc+1;
end
% Remove excess zeros
<pre>fplateau(fplateau==0)=[];</pre>
<pre>yplateau(yplateau==0)=[];</pre>

2013-11-07

NASA: MSFC

SRS Enveloping - Code

Plot results

```
loglog(f,g,'LineWidth',2)
hold on
loglog(fslope,yslope,'r','LineWidth',2)
grid on
title([varargin,' SRS Envelope Comparison; Q=10']);
legend('Shock Response Spectrum','Constant Velocity Line','Plateau','Location','Best');
xlabel('Natural Frequency (Hz)')
ylabel('Peak Accel (g)')
hold off
% Output envelope properties
```

env=[fb,dbOct,yp];

end

SRS Enveloping Algorithm Limitations

SRS Enveloping Algorithm Limitations

PV Enveloping - Code

Contents

- Determine the frequency break points
- Create curve envelope
- Create figure
- Calculate PV parameters

function [env] = pv_envelope2(pseudo, varargin)

 $pv_envelope2$ Envelopes a pseudovelocity plot and outputs a figure of the enveloped curve and the primary properties of the curve.

Determine the frequency break points

[pks,locs]=findpeaks(pseudo(:,2)); s=std(pks); pl=zeros(length(pks),1); jj=1; for ii=1:length(pks) if pks(ii) >= (max(pks) - 2*s)pl(jj)=locs(ii); jj=jj+1; end end % Remove zeros from pl pl(pl==0)=[]; % Now use the first and last points for your bounds k=[1,pl(1),pl(end),length(pseudo(:,1))]; % Find max displacement line properties mdl_1=LinearModel.fit(log10(pseudo(k(1):k(2),1)),log10(pseudo(k(1):k(2),2))); % y=b*x^N N_1=mdl_1.Coefficients{2,1}; %intercept b_1=10^mdl_1.Coefficients{1,1}; %slope for exponent % Find mean value max pseudovelocity plateau % Note: mean was chosen rather than max because it will take into account % all of the values in the plateau range. yp=mean(pseudo(k(2):k(3),2)); % Calculate first break point $fb_1=(yp/b_1)^{(1/N_1)};$ % Find max acceleration line properties mdl_2=LinearModel.fit(log10(pseudo(k(3):k(4),1)),log10(pseudo(k(3):k(4),2))); % y=b*x^N N_2=mdl_2.Coefficients{2,1}; %intercept b_2=10^mdl_2.Coefficients{1,1}; %slope for exponent % Calculate second break point $fb_2=(yp/b_2)^{(1/N_2)};$

2013-11-07

NASA: MSFC

PV Enveloping - Code

Create curve envelope

Determine counters for envelopes

```
ss 1=1;
while pseudo(ss 1,1)<fb 1
   ss_1=ss_1+1;
   if ss_1>length(pseudo(:,1))
       break
   end
end
ss_1=ss_1-1;
ss_2=1;
while pseudo(ss_2,1)<fb_2
   ss 2=ss 2+1;
   if ss_2>length(pseudo(:,1))
       break
   end
end
ss_2=ss_2-1;
% Sloped part of max displacement line
mdispl=zeros(ss_1,2);
for gg_1=1:ss_1;
   mdispl(gg_1,1)=pseudo(gg_1,1);%frequency
   mdispl(gg_1,2)=b_1*pseudo(gg_1,1)^N_1;%pseudovelocity
end
% Pseudovelocity plateau
cc=1;
pvplateau=zeros(ss_2-ss_2,2);
for hh=ss 1:ss 2
   pvplateau(cc,1)=pseudo(hh,1); %frequency
   pvplateau(cc,2)=yp; %pseudovelocity
   cc=cc+1;
end
% Sloped part of max acceleration line
maccel=zeros(length(pseudo(:,1))-ss_2,2);
for gg_2=ss_2:length(pseudo(:,1));
   maccel(gg_2,1)=pseudo(gg_2,1); %frequency
   maccel(gg_2,2)=b_2*pseudo(gg_2,1)^N_2; %pseudovelocity
end
```


PV Enveloping - Code

Create figure

```
loglog(pseudo(:,1),pseudo(:,2),'b','LineWidth',2)
hold on
loglog(mdispl(:,1),mdispl(:,2),'m','LineWidth',2)
loglog(pvplateau(:,1),pvplateau(:,2),'g','LineWidth',2)
loglog(maccel(:,1),maccel(:,2),'r','LineWidth',2)
loglog(pseudo(k,1),pseudo(k,2),'k*','LineWidth',2)
hold on
FourcpDP
hold off
title([varargin,' Pseudovelocity Envelope; Q=10'])
legend('Pseudovelocity','Max Displacement Line','Mean PV','Max Accel Line','Border Points','Location','Best');
```

Calculate PV parameters

Max value of max displacement line

```
maxdisp=max(mdispl(:,2)./(2*pi()*mdispl(:,1)));
% Max value of max acceleration line
maxg=max(maccel(:,2).*maccel(:,1)*2*pi()/386.1);
```

```
env=[maxdisp,yp,maxg];
```

end

Post Processing Automation

% Choose a name that the data and outputs will be saved under. test_set='Group-1_Test-2';

Prepare Accel Time Data for Post Processing or load existing processed data

First, check to see if the data has already been saved in a .mat file of the name test_set.

```
check=dir([test set,'.mat']);
if isempty(check) ==1
   check=([]);
   check.name='false';
end
if strcmpi(check.name, [test set, '.mat']) ==1
   load(check.name)
else % If data has not already been saved, import the data
   % Import .csv file information
   info=dir('*.csv');
   test=struct([]);
   for ff=1:length(info)
        test(ff).name=regexprep(info(ff,1).name, ' - Time Data.csv', '');
       test(ff).data=csvread(info(ff,1).name,5,0);
   end
   clear info ff
   % Find where shock pulse begins by locating the first data point that is
   % Greater than the bit error (assume first 10,000 data points).
   counter=ones(1,length(test));
   if length(test(1,1).data(:,1))>=100000;
        for ff=1:length(test)
            for jj=1:length(test(1,ff).data(:,1))
                biterror=max(abs(test(1, ff).data(1:10000,2)));
                if test(1,ff).data(jj,2)<=biterror</pre>
                    counter(ff)=counter(ff)+1;
                else
                    break
                end
            end
            if counter(ff)>=100000
                counter(ff)=60000;
            end
        end
       % Remove bit error from data then take detrended 20ms after pulse
        for ff=1:length(test)
            test (1, ff).data=[test (1, ff).data(:,1),test (1, ff).data(:,2)-mean(test (1, ff).data(1:counter(ff),2))];
            test(1, ff).data=[test(1, ff).data(counter(ff):counter(ff)+20000,1),detrend(test(1, ff).data(counter(ff):counter(ff)+20000,2))];
            % Shift time so that it starts at zero
            dt=test(1,ff).data(2,1)-test(1,ff).data(1,1);
            N=length(test(1,ff).data(:,1));
            test(1,ff).data=[(0:N-1)'*dt,test(1,ff).data(:,2)];
```

end

NASA: MSFC

Post Processing Automation Cont'd.

Data is now ready to be post processed.

Save figure of time histories (accel, veloc, disp)

```
for ff=1:length(test)
    timehistplot(test(1,ff).data,test(1,ff).name);
    set(gcf, 'Units', 'normalized', 'OuterPosition', [0 0 1 1]);
    saveas(gcf,[test(1,ff).name,' time'],'jpeg');
    close;
end
clear ff
clf
% Calculate SRS and SRS envelop and save figures
for ff=1:length(test)
    test(ff).srs=srsfunc(test(1,ff).data);
    test(ff).srs env prop=srs envelope2(test(1,ff).srs,test(1,ff).name);
    set(gcf,'Units','normalized','OuterPosition',[0 0 1 1]);
    saveas(gcf,[test(1,ff).name,'_srs_envelop'],'jpeg');
    close
end
clear ff
clf
close
% Calculate PV
for ff=1:length(test)
    test(ff).pv=pvssmax(test(1,ff).data);
    test(ff).pv env prop=pv envelope2(test(1,ff).pv,test(1,ff).name);
    set(gcf, 'Units', 'normalized', 'OuterPosition', [0 0 1 1]);
    saveas(gcf,[test(1,ff).name,' PV'],'jpeg');
    close
end
clf
close
```

Post Processing Automation Cont'd.

% Calculate fourier spectrum

```
for ff=1:length(test)
    test(ff).fr=fouriergab(test(1,ff).data);
    semilogy(test(1, ff).fr(:, 1), test(1, ff).fr(:, 2), 'LineWidth', 2);
    grid on
    title([test(1,ff).name,' Fourier Spectrum']);
    xlabel('Frequency [Hz]')
    ylabel('Accel [in/sec^2]')
    set(gcf, 'Units', 'normalized', 'OuterPosition', [0 0 1 1]);
    saveas(gcf,[test(1,ff).name,' Fourier'],'jpeg');
    close
end
clf
close
% Calculate Temporal Moments
for ff=1:length(test)
    test(ff).tm=tmoment DP(test(1,ff).data(:,1),test(1,ff).data(:,2));
end
% Calculate Spectral Moments
for ff=1:length(test)
    test(ff).sm=smoment DP(test(1,ff).data(:,1),test(1,ff).data(:,2));
end
% Calculate Generalized Harmonic wavelet transform
for ff=1:length(test)
    [test(ff).S,test(ff).F,test(ff).H]=qhwt DP(test(1,ff).data,test(1,ff).name);
    set(gcf, 'Units', 'normalized', 'OuterPosition', [0 0 1 1]);
    saveas(gcf,[test(1,ff).name,' ghwt'],'jpeg');
    close
end
clf
close
```

Post Processing Automation Cont'd.

Write parameters to a text file.

fid=fopen([test set,' Parameters.txt'],'w'); fprintf(fid,'%s\n',test set); fprintf(fid, 'Shock Response Spectrum Parameters\n'); fprintf(fid, 'Output Name\t\t\t\t\t\t\t\t\t\t\t\t\tFrequency Break Point-(Hz)\t\tSlope-(dB/Oct)\t\tPeak-(g)\n'); for ff=1:length(test) end fprintf(fid, '\nPseudovelocity Spectrum Parameters\n'); for ff=1:length(test) end fprintf(fid, '\nTemporal Moments\n'); for ff=1:length(test) end fprintf(fid, '\nSpectral Moments\n'); for ff=1:length(test) end fclose(fid); save(test set, 'test'); clearvars -except test

Analysis Procedure

- Procedure
 - Look for potential model(s) using ANOVA on columnized dataset.
 - Examine model using repeated measures analysis.
 - Obtain model parameters.
 - Reanalyze using ANOVA on columnized dataset with model parameters from repeated measures analysis.

Max Accel: Visual Analysis

- Graph of 45/90 data
 - By input factor combination
 - Distance indicated by color
 - Log-scaled Max Accel
- There appears to be decrease in Max Accel with increase in Panel Thickness
 - Decrease may be more pronounced with Tape than Fabric, but Tape may have a larger Max Accel at 0.2 Panel Thickness than Fabric
- There *appears* to be greater variability:
 - Closer-in Distances
 - 10 gpf Core load

Where(4 rows excluded)

Max Accel: Visual Analysis

- Similar to previous graph, but showing individual points
- Variability in Tape 22 gpf now seems especially small compared to other factor settings
- 0 degree appears to track 45/90 degree data

Where(24 rows excluded)

07/15/2013 4:22 PM

Data Table=130715 1607 Tests 1 - 12

Stats Analysis, Temporal Energy: Unconstrained Model

- Model with main effects and a number of interactions is adequate fit to data
 - Log TE modeled: says variability increases with increasing TE
- Significant, persistent difference between Top (darker lines) and Bottom (lighter)
- In general, Thinner thick panels give higher TE response than Thicker

Temporal Energy

- Panel 5 (green crosses, 0.2, Tape, 22) shows odd low values at close distance(s)
 - Max at 30" also seen in Panel 9 (violet X's), possibly 2 (red triangles) and 7 (blue asterisks)

Temporal Energy: Data and Modeled Expected Values by Distance

•

Stats Analysis, Temporal Energy: Reduced Model

- Constraining the model results in some ill fits, but on the whole it is probably still useful
 - Knee at 30" may not represent some panels' data – see Panels 4 (yellow dashes) and 8 (indigo diamonds)

emporal Energy

 Largest responses now clearly result from Thinner Thickness

Temporal Energy: Data and Modeled Expected Values by Distance

Graphs of Mean PV Data

Data Table=1307081346 SBU Composite ShockProcessed

07/09/2013 1:45 PM

- Colored by Distance
 - Distance
 appears to
 have little
 effect in this
 measure

