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Abstract: Pasture ecosystems may be particularly vulnerable to land degradation due
to the high risk of human disturbance (e.g., overgrazing, burning, etc.), especially when
compared with natural ecosystems (non-pasture, non-cultivated) where direct human impacts
are minimal. Using maximum annual leaf area index (LAImax) as a proxy for standing
biomass and peak annual aboveground productivity, we analyze greening and browning
trends in pasture areas from 1982–2008. Inter-annual variability in pasture productivity is
strongly controlled by precipitation (positive correlation) and, to a lesser extent, temperature
(negative correlation). Linear temporal trends are significant in 23% of pasture cells,
with the vast majority of these areas showing positive LAImax trends. Spatially extensive
productivity declines are only found in a few regions, most notably central Asia, southwest
North America, and southeast Australia. Statistically removing the influence of precipitation
reduces LAImax trends by only 13%, suggesting that precipitation trends are only a minor
contributor to long-term greening and browning of pasture lands. No significant global
relationship was found between LAImax and pasture intensity, although the magnitude of
trends did vary between cells classified as natural versus pasture. In the tropics and Southern
Hemisphere, the median rate of greening in pasture cells is significantly higher than for
cells dominated by natural vegetation. In the Northern Hemisphere extra-tropics, conversely,
greening of natural areas is 2–4 times the magnitude of greening in pasture areas. This
analysis presents one of the first global assessments of greening and browning trends in
global pasture lands, including a comparison with vegetation trends in regions dominated by
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natural ecosystems. Our results suggest that degradation of pasture lands is not a globally
widespread phenomenon and, consistent with much of the terrestrial biosphere, there have
been widespread increases in pasture productivity over the last 30 years.
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1. Introduction

Pasture, defined as land cover used to support domesticated grazing livestock, represents the most
widespread anthropogenic land use today [1]. Pastures cover approximately 25% of all global land
areas [1,2], two and one half times the area cultivated for crops [3]. Over the last 300 years, the
area of pasture coverage has expanded by an order of magnitude, from 324 million ha in 1700 C.E. to
3,429 million ha by 2000 C.E. [1,2], and pastures now provide 38% of the global net primary productivity
appropriated for meat consumption and production [4]. Given their importance for both subsistence
and commercial agriculture, it is critical to understand the extent to which pastures are experiencing
long-term increasing (greening) or decreasing (browning) productivity trends and whether these changes
can be attributed to climatic, anthropogenic, or other factors.

Global assessments using remotely sensed vegetation datasets have documented widespread greening
and increased vegetation growth and productivity for many regions and ecosystems (e.g., [5–8]),
including some pasture areas [9,10]. Of particular concern, however, is land degradation, generally
defined as a sustained or persistent loss of ecological or biological productivity and ecosystem services
due to disturbances arising from climate variations or human activities [11–13]. Characteristics of
degraded ecosystems include reduced vegetation cover and productivity [12] and increased erosion [14],
factors that can act to sustain or even amplify the initial degradation through a variety of processes
(e.g., [12,15–19]). Pasture systems may be especially susceptible to land degradation due to the high risk
of over-grazing [20,21] and extreme climate variations such as droughts [22,23]. Degraded pasture lands
have been documented locally in many regions, including Africa [20], Asia [24], North America [25],
and South America [26].

Since pastures are modified by human activities and are thus potentially under increased levels
of stress due to disturbance and mismanagement, we might expect that pasture areas will be more
susceptible to land degradation than natural (non-pasture, non-cultivated) ecosystems. To date, however,
few studies have attempted a unified, global assessment of long-term greening and browning trends
in pasture lands, including how productivity trends in pasture areas compare with natural ecosystems.
Here we use a new, continuous (1981–2011) record of leaf area index (LAI), derived from satellite
observations of the Normalized Difference Vegetation Index (NDVI), to investigate productivity trends
in global pasture lands. We expand on previous work by analyzing pastures at the global scale using
this new dataset, using multiple metrics for assessment of trend robustness, and quantifying climate
contributions to trends over time. Specifically, we focus our analyses around the following research
questions: (1) How strong, widespread, and significant are greening and browning trends in global
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pasture lands? (2) What is the contribution of changes in climate (precipitation and temperature) to
these trends? (3) How do trends in pasture areas compare with regions dominated by natural vegetation?

2. Methods and Material

2.1. Remote Sensing Data (LAI3g)

As a proxy for vegetation and ecosystem productivity, we use a new LAI dataset based on
the third generation Global Inventory Modeling and Mapping Studies NDVI product (GIMMS
NDVI3g) [27–29]). The GIMMS NDVI3g dataset is derived from the Advanced Very High Resolution
Radiometer and is available at 8 km horizontal resolution every 10–15 days from 1981. GIMMS
processing includes corrections for sensor calibration, volcanic aerosols, and other sensor degradation
and contamination issues. It is the only continuous and up-to-date global NDVI dataset that is continually
assessed and validated [30]. Globally, trends in the GIMMS NDVI3g compare favorably with trends
derived from Landsat [31] and MODIS NDVI [32]. GIMMS is generally considered the best dataset to
use for the analysis of long-term trends [30,31]. The GIMMS NDVI product has been used previously
to diagnose and detect land degradation and greening trends (e.g., [11,30,33,34])

LAI is defined as the green leaf area on the ground, expressed in units of m2 leaf area per m2 of
ground. The derived LAI product [35] is generated based on a neural network algorithm that uses the
GIMMS NDVI3g and an improved version of Collection 5 Terra MODIS LAI, the MODIS BNU product
(Beijing Normal University version) [36]. This new LAI product (LAI3g) compares favorably with both
ground based measurements of LAI and independent satellite estimates from the SPOT VEGETATION
sensor [35,37], and also shows expected responses to temperature and precipitation variability [35]. For
this study, we analyze the LAI3g dataset rather than the original NDVI3g data. LAI represents a variable
that can be readily interpreted within an ecological context, while NDVI itself is a ratio of spectral
reflectances that is a proxy for vegetation activity. As noted above, this LAI product has been verified
using independent ground and satellite based LAI data. Our decision to analyze LAI instead of NDVI is
also supported by precedent in the literature, including studies analyzing satellite vegetation trends using
variables derived from NDVI, instead of NDVI directly (e.g., [38–40]).

We use maximum annual values of LAI (LAImax) as a proxy for standing biomass and peak
annual aboveground productivity. Maximum annual NDVI/LAI has been used previously to investigate
long-term greening and browning trends (e.g., [24,41,42]). Alternative approaches have used NDVI/LAI
integrated annually or over the growing season (e.g., [11]). Objectively defining the growing season
using remotely sensed vegetation products can be difficult, however, especially in areas where the timing
and length of the growing season varies significantly from year to year [41]. Additionally, neither proxy
considers belowground carbon allocation, i.e., root/shoot ratio [43].

Given that maximum and integrated values of NDVI/LAI are often strongly and positively correlated
(e.g., [41]), we believe LAImax provides the most straightforward proxy indicator of aboveground
biomass and productivity that is appropriate for our analyses. For the Northern Hemisphere, we calculate
LAImax based on the year from January to December; for the Southern Hemisphere, we use July to June.



Remote Sens. 2013, 5 2495

We calculate LAImax at each 8 km resolution grid cell, and then spatially average all LAImax cells to
create a new dataset at 0.5◦ spatial resolution, the same resolution as our climate and land cover datasets.

2.2. Land Cover Data

Three estimates of the modern and historical distribution of human land use and land cover
(including pastures) are available in the literature [44]: (1) Houghton (2008) (HH, [45]); (2) HYDE
3.1 (HYDE, [46]); and (3) an updated version of Ramankutty and Foley (1999) (RF, [47]). Land cover
datasets are from Meiyappan and Jain (2012) [44], and were obtained from [48]. For pasture land,
substantial differences can be seen in the distribution and intensity of this land use type across the
three datasets (Figure 1). The HH estimate represents the major outlier, showing significantly lower
pasture areas than both HYDE and RF. The HH calculation assumes that, outside of Latin America,
all pastures are derived from grasslands and forests are never converted to pastures, leading to a severe
underestimation of pasture land extent. Globally, pasture estimates from HYDE and RF are similar,
although significant differences are still apparent for many regions, including Africa, Australia, the
Middle East, and Asia (Figure 2). Differences between HYDE and RF are primarily due to the underlying
data used in the land cover reconstruction. RF uses a census report with significantly lower pasture areas
than the FAO estimate [49] used in HYDE, leading to much more widespread and intensive pasture
distributions in HYDE relative to RF. Since HYDE represents the most recent and up-to-date estimate of
modern and historical pasture areas, we use this dataset to discriminate between pasture and non-pasture
regions in our analysis. Specifically, we distinguish between cells that are natural (<10% pasture), low
intensity pasture (≥10%–<50% pasture), and high intensity pasture (≥50% pasture).

Figure 1. Modern day distributions of pasture areas (units of percent cover) from three
different land cover datasets: (a) HH [45]); (b) HYDE [46]; and (c) RF (updated from [47]).
Shown are the distributions from the most recent year available in each dataset, as indicated
in the title of each panel.
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Figure 1. Cont.

Figure 2. Difference in pasture area (percent of cell) between the HYDE and RF datasets
for the latest year available from both datasets (2007). Areas in orange to red are regions
where HYDE has greater pasture area than RF; purple areas are where pasture area in
RF exceeds that of HYDE. Overall, HYDE indicates more widespread pasture areas than
RF, especially in Asia, Africa, the Middle East, and central Australia. RF pasture area is
larger in more localized areas, including western North America, Europe, and far eastern
and western Australia.
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Figure 3. Latitudinal distribution of pasture areas from the HYDE3.1 dataset: (a) total
vegetated and pasture areas (km2) and (b) fraction of vegetated areas covered by low intensity
(≥10% to ≤50% percent cover) and high intensity pasture (>50% percent cover).

Globally, the most extensive pasture regions are concentrated in the subtropics of both hemispheres
and the mid-latitudes of the Northern Hemisphere (Figure 3(a)). Local minima occur in the tropics,
where the landscape is dominated by tropical forests, and around 20◦N, corresponding to the latitudinal
band containing the Sahara desert and much of monsoon Asia, where the landscape is dominated by
cultivated agriculture. Pastures represent the dominant fraction of total vegetated areas in much of the
Southern Hemisphere extra-tropics (Figure 3(b)), as well as significant fractions of the total vegetation
in the Northern Hemisphere tropics (0◦N–20◦N) and mid-latitudes.

2.3. Climate Data

For climate data, we use an updated version of the monthly climate grids (version 3.1) available from
the Climate Research Unit (CRU) at the University of East Anglia [50]. These data, representing monthly
precipitation and temperature, are available for 1901–2009, and cover all global land areas (excluding
Antarctica) at 0.5◦ horizontal resolution. Gridded values are based upon a statistical interpolation
from individual weather stations. For comparisons with LAImax, we convert the monthly data to
annual means (for temperature) and annual sums (for precipitation), using seasonal intervals consistent
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with the calculation of LAImax (January–December for the Northern Hemisphere; July–June for the
Southern Hemisphere).

2.4. Analysis

Spatially, we restrict our analysis to all latitudinal bands between 60◦S and 60◦N, within which
nearly all of the pasture areas are contained. Temporally, we restrict our analyses to the common
time periods available from all datasets (1982–2008) and use land cover from the HYDE dataset for
2008. To quantify climate controls on pasture productivity, we calculate Spearman’s rank correlation
coefficient (ρ) between the linearly detrended climate variables (annual temperature and precipitation)
and LAImax. Spearman’s ρ is defined as the Pearson correlation coefficient (r) of two ranked variables,
is bounded between −1 and +1 (same interpretation as Pearson’s r), and is less sensitive than Pearson’s r

to outliers. To investigate temporal trends in LAImax, we calculate linear trends (1982–2008) using three
methods: a best fit ordinary least squares linear regression, Spearman’s ρ, and Kendall’s τ . Kendall’s
τ is a non-parametric test (as is Spearman’s ρ) for rank correlation between two variables, calculated
as the difference between the number of concordant and discordant pairs in the ranked bivariate data
(i.e., LAImax versus time), divided by the total number of possible pair combinations of the ranked data.
As with the Pearson’s and Spearman correlation coefficients, Kendall’s τ is bounded between −1 and
+1. A value of +1 indicates perfect agreement (i.e., correlation) among the two rankings; a value of
−1 indicates perfect disagreement (i.e., anti-correlation). We consider temporal trends in LAImax to be
robust if trend estimates from all three tests pass a significance threshold of p ≤ 0.05. To minimize the
influence of cultivated crop areas, we ignore any cells containing greater than 30% crop area, using crop
fractions from the HYDE dataset. To compare trends spatially, we additionally stratify the data based on
latitudinal bands: the Southern Hemisphere extra-tropics (60◦S–20◦S), the tropics (20◦S–20◦N), and the
Northern Hemisphere extra-tropics (20◦N–60◦N).

3. Results

3.1. Correlation with Climate

Precipitation is the dominant climate control on inter-annual variability of LAImax in pasture cells,
showing widespread and significant positive correlations, especially in semi-arid regions (Figure 4(a)).
Significant correlations with temperature are less extensive and mostly negative (Figure 4(b)). Regions
exhibiting negative temperature correlations generally overlap with areas of significant positive
precipitation correlation, suggesting that warmer temperatures may cause increased moisture stress.
Additionally, the regions correlated with temperature are generally not core tropical regions where plants
are more likely near their temperature optimum, i.e., areas where we might expect a negative relationship
with temperature because of increases in respiration or photorespiration [51]. Inter-annual variability in
pasture LAImax therefore appears to be limited primarily by moisture, rather than by temperature.
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Figure 4. Correlation (Spearman’s ρ) between LAImax of pasture cells and (a) annual total
precipitation and (b) annual mean temperature for 1982–2008. Insignificant correlations
(p > 0.05) have been masked out. Correlations are based on linearly detrended time series
of LAImax, temperature, and precipitation.

3.2. Global Trends

Globally, 23.4% of cells with ≥10% pasture cover have significant temporal trends for 1982–2008,
based on our three trend test significance criteria. Similar results are found if we calculate trends on
the residuals after the influence of annual precipitation on LAImax has been removed using a simple
linear regression (21.7% of pasture cells). Removing the influence of temperature has little effect,
consistent with the generally weaker and less widespread temperature correlations (not shown). The
absolute magnitude of the trends (both negative and positive) is reduced when the precipitation signal
is statistically removed (Figure 5), implying some contributing effect of precipitation toward long-term
greening and browning in pastures. Averaged across cells, however, the trend is only slightly diminished:
+0.0162 and +0.0155 m2/m2 per year before and after removal of the precipitation signal, respectively.
For cells with significant LAImax trends, the precipitation detrending decreases the magnitude of the
LAImax trends by an average of 12.9%. Given the similarity in magnitude and direction of the LAImax
trends with and without removal of the precipitation signal, this suggests that recent precipitation trends
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are only a minor contributor to productivity trends in pasture areas over the last 30 years. Comparisons
between LAImax trends and fractional pasture coverage show no significant global relationship between
the magnitude of the LAImax trends and time averaged (1982–2008) pasture intensity. We also found no
relationship between LAImax trends and temporal changes in pasture cover intensity over this interval.

Figure 5. Comparisons of significant LAImax trends calculated for pasture cells (i.e., cells
with ≥10% pasture cover) for trends calculated before (x–axis) and after (y–axis) detrending
the influence of annual precipitation. The 1:1 line is black and dashed, representing
identical trends between the two methods. Cells for which trends became insignificant after
precipitation detrending are in grey.

Pasture and natural vegetation regions show a mixture of browning and greening trends (Figure 6, no
significance masking). For natural vegetation (Figure 6(a)), the most cohesive regions of greening are
found in tropical regions of South America and Africa, while the high northern latitudes show a mix
of greening and browning trends. For pasture areas (Figure 6(b)), general trends are towards increasing
LAImax, with localized areas of browning in southeast Australia, Mongolia and central China, western
North America, east Africa, southern Africa, and southern South America. However, much of the
browning in both the natural and pasture vegetation cells disappears when we apply our three significance
test filtering (Figure 7), and greening dominates the significant trends in both natural vegetation and
pasture systems. Strongest trends towards greening in pasture areas are found in West Africa and South
America, while productivity declines are most apparent in Australia, western North America, and central
China and Mongolia.
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Figure 6. Percent change in LAImax (1982–2008) for all (a) natural (<10% pasture cover)
and (b) pasture (≥10% pasture cover) vegetated cells, with no significance masking. Cells
with ≥30% cultivated crop fractions have been masked out.

Figure 7. Percent change in LAImax (1982–2008) for all (a) natural (<10% pasture cover)
and (b) pasture (≥10% pasture cover) vegetated cells, with insignificant regions masked
based on the three trend test criteria. Cells with ≥30% cultivated crop fractions have been
masked out.
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Figure 7. Cont.

3.3. Spatial Variability

Changes in LAImax vary across latitudinal bands and between natural vegetation, low-intensity
pasture, and high-intensity pasture areas. This can be seen in the cumulative distribution functions
(CDFs) for each latitudinal band and vegetation classification (in Figure 8). Consistent with the global
analysis, greening trends dominate among all three vegetation types and across all three latitudinal bands.
In the Southern Hemisphere extra-tropics (60◦S–20◦S), greening trends are higher in pasture cells versus

regions with natural vegetation. This may reflect a sample bias, since natural vegetation makes up a
relatively small fraction of the vegetated areas in the Southern Hemisphere extra-tropics (Figure 3(b)).
The same general pattern holds for the tropics (20◦S–20◦N), where pasture cells are greening much more
than natural vegetated areas. A look at the cdfs (Figure 8(c,d)) suggests that differences in the tropics
are driven primarily by differences among the most rapidly greening cells. The situation reverses in
the Northern Hemisphere extra-tropics (20◦N–60◦N), where cells with natural vegetation are increasing
their greenness at a much higher rate than pastures. Except for the tropics, differences in the CDFs are
generally reflected in the median trends for each vegetation type (Figure 9). Greatest differences across
vegetation types are seen in the Northern Hemisphere extra-tropics, where cells with natural vegetation
and significant trends are greening at 2–4 times the rate of pasture cells.

These differences can be confirmed quantitatively by comparing the trend distributions using a two
sample Kolmogorov–Smirnov (KS) test (a non-parametric goodness of fit test applied to the cdfs) and a
two sample Wilcoxon rank-sum (WR) test for differences in the median. For the tropics and Southern
Hemisphere extra-tropics, the KS and WR tests confirm that low and high intensity pasture areas are
greening at a greater rate than natural vegetated areas (p < 0.001). For the Northern Hemisphere
extra-tropics, the KS and WR tests indicate that natural vegetated areas are greening at a higher rate than
low or high intensity pasture areas (p < 0.001). These results and their significance levels are similar
whether these tests are applied to the cdfs with or without the three trend test significance masking.
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Figure 8. Cumulative distribution functions (CDFs) for percent changes in LAImax
(1982–2008), stratified by latitudinal band and vegetation cover (natural, low-intensity pas-
ture, and high-intensity pasture): the Southern Hemisphere extra-tropics (60◦S–20◦S; (a,b));
the tropics (20◦S–20◦N; (c,d)); and the Northern Hemisphere extra-tropics (20◦N–60◦N;
(e,f)). CDFs in the left column are for all cells of each land cover type; CDFs in the right
column include only those cells that pass the three trend test criteria.
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Figure 9. Median change in LAImax for each latitudinal band, calculated across (a) all
qualifying cells and (b) only those cells that pass the three trend test significance criteria.

4. Discussion

We focus on productivity trends in global pasture lands, the most widespread human land use type
and one that may be especially prone to land degradation and desertification because of the potential for
overexploitation [52,53]. We find that roughly one quarter of pasture cells in the GIMMS LAI3g dataset
show significant greening or browning trends in 1982–2008, with the vast majority of significantly
trending cells showing greening and increased productivity. The sign and magnitude of the productivity
trends, whether greening or browning, are unrelated to the intensity of pasture or changes in pasture area
within any given grid cell, and precipitation appears to be only a minor contributor to overall productivity
trends. Notably, our results suggest that: (1) degradation of pastures is not a globally widespread
phenomenon; (2) the occurrence and magnitude of degradation and declining productivity trends is not
significantly higher in pasture regions compared with natural ecosystems; and (3) the long-term greening
of pastures is similar to trends observed for natural vegetation, albeit with different spatial fingerprints
in different regions.

Our results are broadly consistent with previous studies that have documented widespread greening
and increased productivity in the biosphere over the last several decades (e.g., [6,7,35,54]). These
increases have largely been attributed to increased temperatures and longer growing seasons, especially
at high latitudes (e.g., [55,56]), and recovery from major disturbances, such as the Sahel drought of the
1970s [57,58]. At the local and regional scale, however, there is greater disagreement in the literature on
the magnitude and direction of vegetation trends, especially regarding land degradation and productivity
declines. In their global analysis of net primary productivity trends in 1982–2003, Bai et al. (2008) [11]
found large, widespread declines in vegetation productivity in regions that would qualify as pastures in
our analysis, including large areas in the Southern Hemisphere, Asia, and North America. While we
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find some productivity declines in these same regions (Figure 6), our analyses indicate that the areas of
significant decline are much more localized (Figure 7). Disagreement between our study and Bai et al.’s
finding may be due to significant methodological differences between the two studies [59]. For example,
Bai et al. did not filter out areas of cultivated agriculture, only analyzed trends up to 2003, and used
January–December as their calendar year for the Southern Hemisphere.

For areas where we do find significant and relatively widespread browning and productivity declines
(Asia, southwestern North America, southeast Australia), this degradation is largely corroborated by
other studies. In Mongolia and Central Asia, increased population pressure and land exploitation have
led to significant vegetation mortality and desertification in recent decades [24,60,61]. In southwestern
North America, net primary productivity has been declining [62], possibly due to recent climatic
changes. In southeastern Australia, the recent “Millennium Drought” [63] has driven significant
vegetation productivity declines [64–66]. Other areas where we do not find significant and widespread
degradation, but where degradation has been independently documented, include Africa [20] and
South America [26,67].

Furthermore, it should be noted that many studies using either ground observations or higher
resolution remote sensing data have locally documented significant pasture degradation for many
regions, including areas where our analysis indicates greening or no change (e.g., [68,69]). This suggests
that there may be some disconnection between low resolution global studies and higher resolution, more
localized analyses for documenting land degradation. For example, Miehle et al. (2010) [20] found
significant land degradation at a local, long-term field site; this degradation was not apparent from remote
sensing observations of the area. Independently, Le et al. (2012) [70] found that, for a river basin in
West Africa, CO2-enhanced vegetation productivity trends actually masked the true scale of soil loss and
degradation in the basin. This is consistent with other studies that suggest large scale or regional greening
trends may act to mask local degradation [10]. Ultimately, a comprehensive accounting of global land
degradation and productivity trends in pasture lands will require a coherent and unified assessment using
both local and regional information on productivity and pasture intensity and management.

Several hypotheses may explain why pasture areas are greening on average, despite recent climatic
shifts and increases in their exploitation intensity. Atmospheric carbon dioxide (CO2) concentrations
have increased significantly over the last 150 years, possibly driving a fertilization effect that has resulted
in increases in productivity by either directly enhancing photosynthesis or indirectly increasing water
use efficiency [71,72]. Indeed, several studies using remote sensing data have at least partially attributed
greening trends in various regions to CO2 fertilization [73,74]. However, the true magnitude of the
CO2 fertilization effect is highly uncertain, with large disagreement among experimental and modeling
studies (e.g., [75–77]). Another possibility is shrub encroachment, a widespread phenomena in both
temperature and moisture limited grasslands where native grasses are being progressively replaced by
shrub vegetation (e.g., [78]). Shrub encroachment has been documented in many regions dominated
by pasture ecosystems, including North America, Africa, Australia, and South America (see [79] for
a review). Initial research indicated that shrub encroachment caused reduced productivity and an
overall loss of ecosystem function [18,80]. More recent work, however, suggests that the functional
consequences of shrub encroachment are more mixed [81], with several studies indicating shrub
encroachment can lead to increases in productivity or even reverse land degradation processes [82–84],
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especially in more mesic grasslands [85]. Finally, because successional dynamics often operate on
time scales longer than the satellite record (i.e., decades to centuries), greening trends from satellites
may represent recovery from disturbance events. Examples of such disturbances include fire [86],
drought [57,58], and insects [62], all of which may give the appearance of longer term greening trends
if they occur near the beginning of the satellite record.

5. Conclusions

Using a new, satellite based dataset of leaf area index, we conducted one of the first global scale
analyses of long-term productivity trends in pasture lands. We found significant trends in nearly one
quarter of all pasture grid cells, with most significantly trending cells increasing their productivity in
1982–2008. Median increases across pasture grid cells were on the order of 5%–10%, and the most
spatially extensive greening was found in South America, Africa, and localized areas of Asia and
Australia. In the tropics and Southern Hemisphere, pasture areas greened faster than areas dominated
by natural vegetation, while in the Northern Hemisphere areas of natural vegetation greened at a rate of
2–4 times that of pastures. Areas of significant browning were much more isolated, occurring
predominately in China, Mongolia, and Australia, suggesting that land degradation and desertification
of pasture lands is not a globally widespread phenomenon. Trends in precipitation and temperature
explain only a minor fraction of overall pasture productivity trends, and pasture intensity was unrelated
to productivity trends. While it is difficult in this analysis to ascribe any specific causes, the available
literatures suggest that several non-climatic factors may explain some of the regional trends, including
plant successional dynamics and CO2 fertilization.

Our analysis provides a broad overview of trends and variability in pasture lands, the most widespread
human land use type, at the global scale. Reconciling these results across multiple spatial and temporal
scales (e.g., [20,87]) and disentangling the relative importance of various drivers [20,58,88,89] remains
a significant challenge. Improving our understanding of pasture productivity trends and their drivers
will require the use of expanded data sets that can provide additional information and help explain
the geographic patterns of greening. These data could include information on stocking rates, fallow
periods, burn frequency, and other management protocols that would potentially affect productivity and
vegetation cover in pasture ecosystems. These additional data, combined with a conceptual framework
for bridging coarse global analyses with detailed localized studies, will be critical for providing
additional insights on the productivity trends in global pasture lands.
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75. Hickler, T.; Smith, B.; Prentice, I.C.; Mjöfors, K.; Miller, P.; Arneth, A.; Sykes, M.T. CO2

fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob.

Chang. Biol. 2008, 14, 1531–1542.
76. Oechel, W.C.; Cowles, S.; Grulke, N.; Hastings, S.J.; Lawrence, B.; Prudhomme, T.; Riechers, G.;

Strain, B.; Tissue, D.; Vourlitis, G. Transient nature of CO2 fertilization in Arctic tundra. Nature

1994, 371, 500–503.
77. Reich, P.B.; Hobbie, S.E. Decade-long soil nitrogen constraint on the CO2 fertilization of plant

biomass. Nat. Clim. Chang. 2013, 3, 278–282.
78. Archer, S.; Schimel, D.; Holland, E. Mechanisms of shrubland expansion: Land use, climate or

CO2? Clim. Chang. 1995, 29, 91–99.
79. Naito, A.T.; Cairns, D.M. Patterns and processes of global shrub expansion. Progr. Phys. Geogr.

2011, 35, 423–442.



Remote Sens. 2013, 5 2512

80. Archer, S.; Boutton, T.W.; Hibbard, K. 1.9 - Trees in Grasslands: Biogeochemical Consequences of
Woody Plant Expansion. In Global Biogeochemical Cycles in the Climate System; Schulze, E.D.,
Heimann, M., Harrison, S., Holland, E., Lloyd, J., Prentice, I.C., Schimel, D., Eds.; Academic
Press: San Diego, CA, USA, 2001; pp. 115–137.

81. Eldridge, D.J.; Bowker, M.A.; Maestre, F.T.; Roger, E.; Reynolds, J.F.; Whitford, W.G. Impacts
of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecol.

Lett. 2011, 14, 709–722.
82. Briggs, J.M.; Knapp, A.K.; Blair, J.M.; Heisler, J.L.; Hoch, G.A.; Lett, M.S.; McCarron, J.K.

An ecosystem in transition: Causes and consequences of the conversion of mesic grassland to
shrubland. BioScience 2005, 55, 243–254.

83. Lett, M.S.; Knapp, A.K.; Briggs, J.M.; Blair, J.M. Influence of shrub encroachment on aboveground
net primary productivity and carbon and nitrogen pools in a mesic grassland. Can. J. Bot. 2004,
82, 1363–1370.

84. Maestre, F.T.; Bowker, M.A.; Puche, M.D.; Belén Hinojosa, M.; Martı́nez, I.; Garcı́a-Palacios, P.;
Castillo, A.P.; Soliveres, S.; Luzuriaga, A.L.; Sánchez, A.M.; et al. Shrub encroachment can
reverse desertification in semi-arid Mediterranean grasslands. Ecol. Lett. 2009, 12, 930–941.

85. Knapp, A.K.; Briggs, J.M.; Collins, S.L.; Archer, S.R.; Bret-Harte, M.S.; Ewers, B.E.; Peters, D.P.;
Young, D.R.; Shaver, G.R.; Pendall, E.; et al. Shrub encroachment in North American grasslands:
Shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Glob. Chang.

Biol. 2008, 14, 615–623.
86. Goetz, S.J.; Fiske, G.J.; Bunn, A.G. Using satellite time-series data sets to analyze fire disturbance

and forest recovery across Canada. Remote Sens. Environ. 2006, 101, 352–365.
87. De Jong, R.; de Bruin, S.; Schaepman, M.; Dent, D. Quantitative mapping of global land

degradation using Earth observations. Int. J. Remote Sens. 2011, 32, 6823–6853.
88. Bai, Z.; Dent, D. Recent land degradation and improvement in China. Ambio 2009, 38, 150–156.
89. Wessels, K.; Prince, S.; Malherbe, J.; Small, J.; Frost, P.; VanZyl, D. Can human-induced land

degradation be distinguished from the effects of rainfall variability? A case study in South Africa.
J. Arid Environ. 2007, 68, 271–297.

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


