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Abstract

We consider control design for positive compartmental systems in which each compartment’s outflow rate is described by a
concave function of the amount of material in the compartment. We address the problem of determining the routing of material
between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination
over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy
which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection
while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions
are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to
generate a solution to the finite horizon routing problem. Results are given for the application of this control design method
to an example problem.
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1 Introduction

Positive compartmental systems are popular models for
describing interconnections of reservoirs whose dynam-
ics are governed by conservation laws and natural pos-
itivity and capacity constraints. Examples include au-
tomobile or air traffic flows, job-balancing in computer
clusters [4], or irrigation networks [3], to name just a few.

A specific class of such compartmental systems, known
as Eulerian models, has been used extensively in the air
traffic management (ATM) literature [1, 2, 6, 7, 9, 10,
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12, 13]. In an Eulerian model, the aggregate dynamics
of groups of aircraft are modeled instead of the dynam-
ics of each individual aircraft. As a result, the order of
an Eulerian model depends only on the number of com-
partments or sections used to describe the network of
interest, but not on the total number of vehicles, which
greatly reduces complexity in many cases. For more de-
tails on Eulerian models and their comparison to La-
grangian models, the reader is referred to [13].

Previous work in this area [1, 9, 10, 12, 13] has focused
primarily on the use of linear models to describe the
outflow of each compartment, or section, of the network.
Such models describe the outflow rate of a section as
depending linearly on the amount of material in that
section.

Here, we focus on concave outflow rate functions. Ex-
amples motivating the use of this type of outflow model
come from road traffic [8] and air traffic management
research. The authors of [7] point out that, although
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the outflow of a section of airspace will increase as the
density of traffic increases, there is an upper bound on
the outflow rate. At low density, flights are allowed to
traverse a given section of airspace at their nominal
speed and thus more aircraft in a given section results
in a greater outflow rate from that section. At low traf-
fic density, it is reasonable to assume a linear relation-
ship between the number of aircraft in the section and
the outflow rate of that section. However, aircraft must
maintain a minimum separation for safety considera-
tions, and thus, as traffic density increases, separation
requirements cause the outflow rate to saturate. A non-
linear, saturating outflow model is proposed in [7] and is
shown to more accurately capture this saturating effect
in dense traffic problems. In that work, the authors gen-
erate an increasing, saturating outflow rate curve empir-
ically through a discrete-event simulation which includes
separation requirements.

Our previous work [1, 2] has focused on variations of
the problem of routing design for positive compartmen-
tal systems to satisfy time-varying capacity constraints.
The need to satisfy capacity constraints arises naturally
in air traffic flow management problems. Airspace sec-
tor capacity specifies the maximum number of aircraft
that a trained human air traffic controller can safely
route through the sector. Sector capacity depends on
controller workload associated with traffic flow patterns
in the sector. Additionally, the number of aircraft that
can safely be routed through a sector of airspace at a
given time can depend on the weather conditions in the
sector at that time. Work has been done to estimate and
predict sector capacities [11] in the presence of severe
weather conditions.

In [1], we presented a solution to this problem for single
destination networks with linear section outflow rates.
The extension of this control design technique to the
multiple destination problem is straightforward. Given
linear outflow rates, a separate, decoupled network can
be created for each destination. Routing solutions can
be found individually for each sub-network using the
technique presented in [1].

We focused on single destination networks with nonlin-
ear section outflow rates in [2]. In contrast to the lin-
ear outflow problem of [1], extending this technique to
the multiple destination problem is not straightforward
because, with nonlinear outflow rates, sub-networks for
each destination exhibit nonlinear coupling. This non-
linear coupling makes the derivation of routing solutions
more challenging.

Here, we extend our former work and present a solution
to the problem for a multiple destination network with
nonlinear outflow rates. Rather than formulating con-
straints, and subsequently a linear programming (LP)
problem, to solve this problem directly, we make use of
the solution for the multiple destination network with

linear outflow rates. Additional constraints are imposed
on the routing solution for the latter so that the result-
ing closed-loop linear system behaves like the system
with nonlinear section outflow rates. These constraints
are nonlinear in control design variables and thus can-
not be incorporated into the LP problem. To address
this issue, we treat these constraint values as fixed and
iteratively solve instances of the LP problem, adjusting
the fixed values at each iteration.

Themultiple destination network with nonlinear outflow
rates, control design objectives which ensure that basic
network properties hold, and the formal problem state-
ment are presented in Section 2. The derivation of the
control design technique is presented in several stages in
Section 3. First, the extension of the control design tech-
nique of [1] for the multiple destination network with lin-
ear section outflow rates, formulated as an LP problem,
is described in Section 3.1. Control design for the multi-
ple destination network with nonlinear outflow rates is
then developed in Section 3.2. Constraints on the control
input which force the multiple destination linear system
to behave like the multiple destination nonlinear system
are developed and incorporated as additional constraints
in the LP problem of Section 3.1. A method to recover
a routing strategy for the nonlinear system from a so-
lution to this modified LP problem is given. Finally, an
algorithm is presented to iteratively solve instances of
this modified LP problem. In Section 4, an application
example is given to demonstrate the proposed solution
method.

Notation: We are often concerned with vectors, scalars
and elements of matrices which are indexed over some
range. Therefore, for every positive integer N , we de-
fine [N ] = {1, 2, . . . , N}. The cone of entry-wise non-
negative vectors of dimension N is denoted by R

N
+ . We

write x ≥ 0 to mean that x ∈ R
N
+ , and x > 0 if it is in its

interior. For all i ∈ [N ], ei represents the ith canonical
basis vector of RN .

2 Problem Description

2.1 Model

We consider positive conservative systems, which can be
used to describe the flow of material through a network
of interconnected reservoirs, or sections.

In contrast with the models analyzed in [1, 9], we allow
the outflow rate of each section to be a nonlinear func-
tion of its state, which represents the amount of mate-
rial present in the section. Nonlinear outflow rates are of
particular interest in air traffic management problems.
As discussed in [7], although the outflow of a section of
airspace will increase as the density of traffic increases,
there is a limit on the maximum outflow rate due to min-
imum separation requirements between flights. Thus, we
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are motivated by networks of air traffic which exhibit
increasing, concave, saturating outflow rate functions.
However, the control design technique presented here is
applicable for concave outflow rate functions.

The systems of interest describe the flow of material
between interconnected “sections.” Sections may repre-
sent, for example, reservoirs in an irrigation network, sec-
tions of road in a traffic model, or volumes of air space in
an air traffic flow management problem. Material flows
between these sections making its way from one of sev-
eral sources to a particular sink. A time-varying routing
strategy is utilized to satisfy a particular performance
objective. The performance objective of interest is pre-
sented in Section 2.3. A control design technique is pre-
sented in Section 3 which provides a method for gener-
ating a routing strategy to satisfy this performance ob-
jective.

We begin by describing the dynamics of an N -section
network with R distinct destinations or sinks. In addi-
tion to satisfying any performance objective, the routing
solution must also ensure that all material reaches its in-
tended destination. We aggregate material within each
section of the network based on final destination. That
is, assuming that there are R distinct destinations, we
create R coupled sub-networks. Each sub-network de-
scribes the flow of traffic through the N -section network
for a particular destination r ∈ [R]. The state of section i
of sub-network r at time t, which represents the amount
of material in section i bound for destination r at time
t, is denoted by xr

i (t). The total amount of material in
section i at time t, denoted xi(t) ∈ R+, is the sum of the
states of section i for each destination, that is,

xi(t) =

R∑
r=1

xr
i (t).

We define the state vector of each sub-network r ∈ [R] as

xr(t) = (xr
1(t), x

r
2(t), . . . , x

r
N (t))

T ∈ R
N
+ .

The state vector for the full network is

x(t) =
R∑

r=1

xr(t)

= (x1(t), x2(t), . . . , xN (t))
T ∈ R

N
+ .

Motivated by our previous discussion, we restrict our-
selves to outflow functions μi : R+ → R+ which satisfy
the following assumptions

μi(0) = 0, (1a)

μi is differentiable at 0, (1b)

μi is concave, (1c)

for all i ∈ [N ]. Note that, although physically relevant for
some applications, the assumption that μi is saturating,
that is

lim
a→+∞μi(a) < ∞

for all i ∈ [N ], is not required for the application of the
method and is thus not included in the above assump-
tions.

Assuming uniform distribution of material bound for
each destination throughout each section, the portion of
the outflow of section i bound for destination r is given
by

xr
i (t)

xi(t)
μi(xi(t)). (2)

Given the assumption that μi is differentiable at 0, and
that μi(0) = 0,

lim
xi(t)→0

μi(xi(t))

xi(t)
=

dμi

dxi
(0)

and thus the outflow rate given in (2) remains finite even
as xi(t) approaches 0.

The fraction of the outflow of section i bound for desti-
nation r routed to some subsequent section j at time t
is specified by routing parameter βr

ij(t). To simplify no-
tation, the set of routing parameters for sub-network r,
namely

{
βr
ij(t)

}
i,j
, and the set of routing parameters for

the full network
{
βr
ij(t)

}
i,j,r

, will be referred to as βr(t)

and β(t), respectively.

Some of the sections, referred to as “final sections,” are
sinks through which material exits the network. The set
of final sections for each destination r will be denoted by
Sr
F . It is assumed that the network consists of at least one

sink for each destination, that is Sr
F �= ∅ for all r ∈ [R].

Network connectivity is specified for each destination.
The subset of sections into which material in section i
bound for destination r can flow is denoted by Or

i . Since
it may not be possible for material to reach a specific
destination from any section in the network, we specify
the set N r ⊆ [N ] for all r ∈ [R] as the set of sections
i ∈ [N ] such that there exists at least one path from
section i to a section in Sr

F . That is, there exist sections
i = i1, i2, . . . , ip such that il+1 ∈ Or

il
for l = 1, 2, . . . , p−

1, il ∈ N r\Sr
F for all l < p, and ip ∈ Sr

F . We assume
that the connectivity of all networks of interest satisfy
Or

i ⊆ N r for all i ∈ [N ], which ensures that material
bound for destination r is routed into sections which
are connected to destination r. Networks satisfying this
property are said to be outflow connected.

Material can always flow back into the section that it has
just exited, therefore i ∈ Or

i for all i ∈ N r and r ∈ [R].
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(a) Full network.
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(b) Sub-network for destination 1.
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(c) Sub-network for destination 2.
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(d) Sub-network for destination 3.

Fig. 1. Figures 1(a), 1(b), 1(c), and 1(d) depict the connec-
tivity of the full network and sub-networks associated with
destination 1, 2 and 3, respectively. The number in each box
indicates the index of that section. Arrows indicate allow-
able flow between sections of the network or sub-network.
Recirculation is allowed for all sections.

Physically, such recirculation corresponds to holding or
slowing down the material moving through the section.

Material is injected into the network by S sources, each
one with flow rate drs(t) for all s ∈ [S], r ∈ [R], and t ≥ 0.
The fraction of drs(t) routed into section i is denoted by
brsi, with 0 ≤ brsi ≤ 1 for all i ∈ N r, brsi = 0 for all

i ∈ [N ]\N r, and
∑N

i=1 b
r
si = 1 for all s ∈ [S], r ∈ [R].

The inflow rate vector is defined as

dr(t) = (dr1(t), d
r
2(t), . . . , d

r
S(t))

T ∈ R
S ,

for each destination r ∈ [R]. Inflow rates must satisfy
drs(t) ≥ 0 for all s ∈ [S] and r ∈ [R].

An example network consisting of 21 sections, three dis-
tinct sinks and three sources is shown in Figure 1(a).
Arrows indicate allowable flow between sources, sections
and sinks. Recirculation is allowed in all sections. Fi-
nal sections are 19, 20 and 21. The outflow of section
19 flows into sink 1, the outflow of section 20 flows into
sink 2 and the outflow of section 21 flows into sink 3 and
thus S1

F = {19}, S2
F = {20}, and S3

F = {21}. Given that
there are three distinct sinks in this problem, the full net-
work is divided into three sub-networks. Sub-networks
for destinations 1, 2 and 3 are given in Figures 1(b), 1(c)
and 1(d), respectively. Notice that each sub-network has
fewer than 21 sections. This is due to the fact that spe-
cific destinations are unreachable from certain sections
in the full network. For instance, in the sub-network as-
sociated with destination 1, shown in Figure 1(b), it is
not possible to travel from sections 18, 20 and 21 to sink
1 given the section interconnection of the full network.

These sections belong to the set [N ]\N 1 and are omitted
from the destination 1 sub-network.

The dynamics of material in section i ∈ N r can be writ-
ten as

ẋr
i (t) = D(xr,x,β, μ, i) (3)

for all r ∈ [R] with initial state values

xr(0) = xr
0,

where xr
0 =

(
xr
1,0, x

r
2,0, . . . , x

r
N,0

)
and

D(xr,x,β, μ, i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−xr
i (t)

xi(t)
μi(xi(t))

+
∑

j:i∈Or
j
βr
ji(t)

xr
j (t)

xj(t)
μj(xj(t))

+
∑S

s=1 b
r
sid

r
s(t), if i ∈ N r,

0, otherwise.

The initial state must satisfy (xr
0)i ≥ 0 for all i ∈ N r

and (xr
0)i = 0 for all i ∈ [N ]\N r.

We denote the solution to (3) with initial state xr(0) =
xr
0 for all r ∈ [R] and inflow rates drs(t) for all s ∈ [S] and

r ∈ [R], under the particular choice of routing strategy
β(t), as xβ(t).

2.2 Basic Control Design Objectives

The model introduced in Section 2.1 describes the flow
of material through a network of sections. In order to
be physically meaningful, this model must satisfy the
following constraints:

Positivity: Given initial state xr
0 ≥ 0 for all r ∈ [R]

and inflow rate dr(t) ≥ 0 for all r ∈ [R] and t ≥ 0, the
resulting state vector satisfies

xr(t) ≥ 0

for all r ∈ [R] and t ≥ 0.

Conservation: Constraints C(βr(t)) are defined for all
r ∈ [R], t ≥ 0 by

βr
ij(t) ≥ 0, ∀i, j,∈ N r (4)

βr
ij(t) = 0, ∀j ∈ N r\Or

i , ∀i ∈ N r (5)∑
j∈Or

i

βr
ij(t) = 1, ∀i ∈ N r\Sr

F (6)

∑
j∈Or

i

βr
ij(t) ≤ 1, ∀i ∈ Sr

F . (7)
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Note that constraints C(βr(t)) do not include terms
βr
ij(t) for i /∈ N r or j /∈ N r. It is not necessary to en-

force constraints on these terms as they do not appear
in the dynamic model (3). When required, individual
constraints included in the set C(βr(t)) will be referred
to using subscripts. For example, constraint (4) will be
referred to by C1(βr(t)).

Positivity ensures that the state of each section of ev-
ery sub-network, which represents a physical quantity,
remains non-negative at all times. Physically, the Con-
servation requirement ensures that material leaving a
given non-final section enters another section in the net-
work and is thus conserved. When designing the control
input, care must be taken to ensure that the system sat-
isfies these two conditions.

Conservation is satisfied when C(βr(t)) hold for all
r ∈ [R]. Given non-negative routing parameters, that
is, routing parameters satisfying C1(βr(t)), constraints
C3(βr(t)), ensure that material exiting a non-final sec-
tion is routed to a subsequent section in the network.
Note that constraints C4(βr(t)), defined for final sec-
tions only, allows material to exit the network.

Again, given non-negative routing parameters, the Pos-
itivity constraint is satisfied when the section outflow,
μi for all i, satisfies certain conditions, detailed in the
following claim.

Claim 1 Let initial condition xr
0 ≥ 0 for all r ∈ [R],

inflow rates drs(t) ≥ 0 for all s ∈ [S], r ∈ [R], t ≥ 0,
and routing parameters βr

ij(t) ≥ 0 be given for all i, j ∈
N r, r ∈ [R], t ≥ 0. Then, if each outflow rate function μi

satisfies assumptions (1a) and (1b) and

μi(a) ≥ 0 for all a ≥ 0,

for all i ∈ [N ], the solution of system (3) satisfies xr(t) ≥
0 for all r ∈ [R] and t ≥ 0 thus Positivity holds, and
consequently x(t) ≥ 0 for all t ≥ 0.

PROOF. Given that xr
0 ≥ 0 for all r ∈ [R], in order

to show that xr(t) remains positive for all r ∈ [R] and
t ≥ 0, it is sufficient to show that for any i ∈ N p and
p ∈ [R]

xp
i (t) = 0

xr(t) ≥ 0, ∀r ∈ [R]

}
⇒ ẋp

i (t) ≥ 0.

With ẋp
i (t) given by (3) and assuming that xr

j(t) ≥ 0
for all j ∈ N r and r ∈ [R], and, in turn, xl(t) ≥ 0 for
all l ∈ [N ], it is clear that the only potentially negative

component of ẋp
i (t) is −xp

i
(t)

xi(t)
μi(xi(t)). However, when

xp
i (t) = 0,

xp
i
(t)

xi(t)
μi(xi(t)) = 0, since μi(xi(t))

xi(t)
is finite, even

when xi(t) = 0 given assumptions (1a) and (1b). Thus
ẋp
i (t) ≥ 0 whenever xp

i (t) = 0 and we can conclude that
xr(t) ≥ 0 for all r ∈ [R] and t ≥ 0 and consequently
x(t) ≥ 0 for all t ≥ 0. �

2.3 Performance Control Design Objective

The objective is to design routing parameters β(t) to en-
sure that system (3) is Positive and Conservative, and
the solution xβ(t) satisfies the specified capacity con-
straints. We assume that section capacity updates would
be issued at regular intervals. Thus, we assume a piece-
wise constant capacity constraint, as proposed, for ex-
ample, in [5].

Given initial conditions and capacity constraints, a rout-
ing solution may not exist or, it may not be possible
to find a feasible routing solution using the proposed
control design technique. If this is the case, rather than
not return a solution, we would like to return a solution
which minimizes, according to some metric, the viola-
tion of the given constraint.

The problem of interest can formally be stated as follows:

Problem 1 Given a piecewise constant vector-valued
capacity constraint profile c̄(t) on a finite time horizon
[0, H], find an adjusted capacity constraint ĉ(t) ≥ c̄(t)
and routing strategy β(t) ensuring that system (3) sat-
isfies Positivity and Conservation and the capacity
constraint condition xβ(t) ≤ ĉ(t), is satisfied for all

t ∈ [0, H] while minimizing
∫H

0
(ĉ(t)− c̄(t)) dt.

Here, we assume that network inflow rates and inflow
routing are fixed. These values could be incorporated as
control design variables, in which case additional con-
straints and objective terms would be required to force
material through the network.

3 Control Design

Our previous work [1] focused on the solution of this
problem for a single destination network in which the
outflow rate of each section depends linearly on the
amount of material in that section. This solution method
can easily be extended for application to networks with
multiple destinations and linear outflow rates. The con-
trol design technique presented here is based on this
solution to the multiple destination, linear outflow rate
problem. The significant advancement of this technique
is the derivation of additional constraints and a method
for generating state-dependent routing parameters for
the nonlinear system based on the routing solution for
the linear system. Together, these constraints and the
routing parameter generation method ensure that the
resulting routing parameters satisfy the Conservation
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constraints and that the state of the closed-loop nonlin-
ear system satisfies the capacity constraints.

In Section 3.1, the control design method of [1] is ex-
tended to the multiple destination problem with linear
outflow rates. This is a relatively simple and straightfor-
ward extension, and is presented only as an intermediate
step in the solution to the multiple destination nonlin-
ear problem. The proposed solution to Problem 1 is then
presented in Section 3.2.

To begin, we construct a continuous capacity bound c(t)
in a piecewise manner using a subdivision of the time
horizon of interest, [0, H], into K intervals of size Δt
(chosen to be a divisor of H), where K = H

Δt . It is as-
sumed that the capacity constraints c̄(t) are constant
over intervals of length Δt. The control design prob-
lem then becomes one of finding a routing strategy β(t)
which ensures that xβ(t) ≤ c(t) where c(t) ≤ c̄(t), when
possible. If this is not possible, we would like to choose an
adjusted capacity constraint ĉ(t) such that c(t) ≤ ĉ(t),

ĉ(t) ≥ c̄(t) and
∫H

0
(ĉ(t)− c̄(t)) dt is minimized.

We will be dealing with discontinuous functions, there-
fore for any function g we define

g(t+k ) = lim
t → tk
t ≥ tk

g(t) and g(t−k ) = lim
t → tk
t ≤ tk

g(t).

Constraints will be given to ensure that conditions re-
quired for Positivity, Conservation, and capacity con-
straint satisfaction are satisfied at the end points of each
interval of length Δt, i.e. at tk = kΔt, k = 0, ...,K. We
then give a method of generating continuous time rout-
ing parameters which ensure that these conditions hold
throughout the intervals.

Throughout the development of this solutionmethod, we
assume that the inflow rates drs(t) are piecewise constant
over the intervals of length Δt for all r ∈ [R] and s ∈ [S].
Inflow rates which conform to this assumption may be
conservatively generated from more general inflow rates
by taking drs(t) as the maximum of the true inflow rate
over the interval [tk, tk+1] where k = � t

Δt.

3.1 Multiple Destination Linear Outflow Model

3.1.1 Model

Here, we extend the solution to Problem 1 presented
in [1] to address the multiple destination problem with
linear outflow rates. To clearly distinguish the linear and
nonlinear models, which will be used in conjunction to
prove results in subsequent sections, we will introduce
new notation to describe the linear system. Sub-network
state vectors yr, full network state vector y, and routing

parameters η are analogous to xr, x, and β, defined in
Section 2.1.

The outflow rate of section i is fi(yi(t)) = yi(t)
τi

where
constant τi > 0 is the average traversal time of section
i. The dynamics of section i with destination r is

ẏri (t) = D(yr,y,η, f, i). (8)

Assuming a uniform distribution of material bound for
each destination throughout the section, the portion of
this outflow rate bound for destination r is given by

yri (t)

τi
.

Note that the outflow rate given above depends only on
the state of section i of the sub-network associated with
destination r, yri (t). As a result, the dynamics for each
destination are decoupled from all other destinations,
which allows for a relatively straightforward extension
of the solution of the single destination problem to the
multiple destination problem. This is in contrast with
the nonlinear outflow model, given in (2), which addi-
tionally depends on the full state of section i, xi(t).

The dynamics of the sub-network associated with desti-
nation r can be written as

ẏr(t) = Ar (ηr(t))yr(t) +BrTdr(t),

yr(0) = yr
0,

(9)

where

Ar(ηr(t)) = A0 +
∑
i∈N r

∑
j∈Or

i

ηrij(t)

τi(t)
ejei

T , (10)

and A0 = diag
(
− 1

τ1
, . . . ,− 1

τn

)
and

Br(t) =

⎡
⎢⎢⎢⎣
br11(t) . . . br1n(t)

...
...

brS1(t) . . . brSn(t)

⎤
⎥⎥⎥⎦ . (11)

We denote the solution to (9) with initial state yr(0) =
yr
0 for all r ∈ [R] and inflow rates drs(t) for all s ∈ [S] and

r ∈ [R], under the particular choice of routing strategy
η(t), as yη(t).

3.1.2 Basic Control Design Objectives

Positivity of the newly constructed linear system (9) is
defined in the same way as it is for the general nonlinear
system (3) in Section 2.2. Note that linear system (9)
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can be generated from the more general system (3) with
η replacing β and outflow rate

μi(yi(t)) =
yi(t)

τi
,

which clearly satisfies the assumptions of Claim 1. Thus,
we can conclude that Positivity and Conservation hold
for system (9) if C(ηr(t)) hold for all r ∈ [R].

3.1.3 Control Design

We now give sufficient conditions which can be used to
generate a time-varying routing strategy η(t) ensuring
that the solution to system (9) remains below a contin-
uous capacity bound c(t), that is yη(t) ≤ c(t). We focus
on each sub-network separately, giving sufficient condi-
tions to generate routing strategy ηr(t) ensuring that
the state of sub-network r remains below a continuous
capacity bound cr(t), that is yr(t) ≤ cr(t). We then de-
fine the capacity bound for the full network as

c(t) =
R∑

r=1

cr(t).

These conditions are stated in the following proposition.

Proposition 2 Given a fixed value of r ∈ [R], let ηr(t)
be given such that ηrij(t) ≥ 0 for all i, j ∈ N r and t ≥ 0
and let t �→ cr(t) be a differentiable vector-valued map
such that cr(t) > 0 for all t ≥ 0. Then, if yr

0 ≤ cr(0) and

Ar (ηr(t)) cr(t) +BrTdr(t) ≤ ċr(t)

for all t ≥ 0 the solution of system (9) satisfies yr(t) ≤
cr(t) for all t ≥ 0.

PROOF. Let ξ(t) = cr(t) − yr(t). We show that, for
all i ∈ N r

ξi(t) = 0

ξ(t) ≥ 0

}
⇒ ξ̇i(t) ≥ 0,

which, since ξ(0) ≥ 0, implies that ξ(t) ≥ 0 for all t ≥ 0.
By definition of ξ

ξ̇i(t) = ċri (t)− ẏri (t)

≥ − cri (t)

τi
+
∑

j:i∈Or
j

ηrji(t)
crj(t)

τj
+

S∑
s=1

brsid
r
s(t)

+
yri (t)

τi
−
∑

j:i∈Or
j

ηrji(t)
yrj (t)

τj
−

S∑
s=1

brsid
r
s(t)

= − ξi(t)

τi
+
∑

j:i∈Or
j

ηrji(t)
crj(t)− yrj (t)

τj

≥ 0

since ξi(t) = 0 and ξj(t) ≥ 0 implies that crj(t)− yrj (t) ≥
0. Thus, ξ(t) ≥ 0 for all t ≥ 0, and consequently yr(t) ≤
cr(t) for all t ≥ 0. �

Next, we derive constraints which can be imposed at the
end points of each interval and a method of interpolation
of η(t) between these end points which ensure that the
conditions needed to apply Proposition 2 hold through-
out the interval.

We make the choice to use a piecewise linear capacity
bound, cr(t), for each destination r ∈ [R]. We parame-
terize this function as

cr(t) =

⎧⎪⎪⎨
⎪⎪⎩

cr0, t = t0,

cr(tk−1) + Δtmr(t+k−1), t = tk > t0,

cr(tk) + (t− tk)m
r(t+k ), t �= tk,

(12)

where k = � t
Δt and mr(t) ∈ R

N is constant over the
intervals (tk, tk+1).

The choice of a piecewise linear capacity bound cr(t) al-
lows for a straightforward interpolation of η(t) between
the endpoints of time intervals, while preserving the
properties needed to ensure that Positivity and Conser-
vation hold and the performance objective is satisfied.
The method of interpolation is given in the following
theorem.

Theorem 3 Given a fixed value of r ∈ [R], let the capac-
ity bound vector cr(t) be given as in (12) for all t ∈ [0, H],
and yr

0 ≤ cr0. For each k ∈ {0, . . . ,K − 1}, if there exist
ηr(tk) and ηr(tk+1) such that constraints C(ηr(tk)) and
C(ηr(tk+1)) are satisfied and

Ar (ηr(tk)) c
r(tk) +BrTdr(tk) ≤ mr(t+k )

Ar (ηr(tk+1)) c
r(tk+1) +BrTdr(tk+1) ≤ mr(t+k )

(13)

for all i ∈ N r, then the parameters ηr(t) defined by

ηrij(t) =(
1− t−tk

Δt

)
ηrij(tk)c

r
i (tk) +

t−tk
Δt ηrij(tk+1)c

r
i (tk+1)(

1− t−tk
Δt

)
cri (tk) +

t−tk
Δt cri (tk+1)

(14)

for all i, j ∈ N r and t ∈ [0, H] where k = � t
Δt, sat-

isfy constraints C(ηr(t)) thus ensuring that System (9) is
Positive and Conservative for all t ∈ [0, H]. In addition,
the resulting solution yr(t) satisfies yr(t) ≤ cr(t) for all
t ∈ [0, H].

The proof of Theorem 3 is given in [1]. The proof relies
on the fact that ηrij(t) is a convex combination of ηrij(tk)
and ηrij(tk+1) and ηrij(t)c

r
i (t) is a convex combination of

ηrij(tk)c
r
i (tk) and ηrij(tk+1)c

r
i (tk+1), and thus constraints
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C(ηr(t)) which are linear in ηrij(t), and constraints (13)
which are linear in ηrij(t)c

r
i (t), are satisfied for all t ∈

[0, H] whenever they are satisfied at the end points, tk,
for k = 0, . . . ,K.

Constraints (13) can be transformed into linear con-
straints by introducing variable zrij(t) to substitute for
the nonlinear terms, ηrij(t)c

r
i (t), for all i, j ∈ N r and all

r ∈ [R]. These constraints are given below, denoted by
Φr:

cr(t0) ≥ yr
0

for all k ∈ {0, . . . ,K}
cr(tk) ≥ 0,

zrij(tk) ≥ 0, ∀ i, j ∈ N r,

zrij(tk) ≤ cri (tk), ∀ i, j ∈ N r,

zrij(tk) = 0, ∀ j ∈ N r\Or
i , ∀ i ∈ N r,∑n

j=1 z
r
ij(tk) = cri (tk), ∀ i ∈ N r\Sr

F ,

− cri (tk)
τi

+
∑

j:i∈Or
j

zr
ji(tk)

τj
+
∑S

s=1 b
r
sid

r
s(t

+
k ) ≤ mr

i (t
+
k ),

for all k ∈ {0, . . . ,K − 1}
cr(tk+1) = cr(tk) + Δtmr(t+k ),

− cri (tk+1)
τi

+
∑

j:i∈Or
j

zr
ji(tk+1)

τj
+
∑S

s=1 b
r
sid

r
s(t

−
k+1) ≤ mr

i (t
+
k ).

For each r ∈ [R], the values of ηr at the end points of
the intervals can be recovered as

ηrij(tk) =
zrij(tk)

cri (tk)
(15)

for all i, j ∈ N r, k = {0, . . . ,K}. These values can then
be interpolated between endpoints according to (14).

A solution to Problem 1 can be generated by finding a
feasible point of the linear constraints Φr for all r ∈ [R]
which also satisfies c(t) ≤ c̄(t). If this problem is not fea-
sible, we would like to give a recommendation on how to
adjust capacity constraints c̄(t) in order to find a rout-
ing solution satisfying these adjusted constraints which
are, in some sense, close to the original desired con-
straints. For this reason, we introduce piecewise constant
adjusted constraint ĉ(t). We then propose a solution to
Problem 1 as finding a feasible point of Φr for all r ∈ [R]
which also satisfies c(t) ≤ ĉ(t) with the additional con-
straint ĉ(t) ≥ c̄(t) while minimizing the integral of the
difference between ĉ(t) and c̄(t). When ĉ(t) = c̄(t) the
given capacity constraints are satisfied.

The problem of finding capacity constraints ĉ and ca-
pacity bound c can then be written as the following LP

problem:

min
cr,mr,ĉ,z

K−1∑
k=0

N∑
i=1

(
ĉi(t

+
k )− c̄i(t

+
k )
)
Δt

subject to Φr, ∀ r ∈ [R]

for all k ∈ {0, . . . ,K}
R∑

r=1

cr(tk) ≤ min{ĉ(t−k ), ĉ(t+k )},

ĉ(t+k ) ≥ c̄(t+k ).

(16)

As defined earlier, the resulting capacity bound on the
total amount of material in each section is

c(t) =
R∑

r=1

cr(t).

Given that, under the routing strategy generated from
a feasible solution of LP problem (16), the solution to
system (9) satisfies yr(t) ≤ cr(t) for all t ∈ [0, H], it
follows that y(t) ≤ c(t) ≤ ĉ(t) for all t ∈ [0, H].

Note that the objective function of LP problem (16) can
be any convex function of the control design variables.
For instance, a different positive weight could be used
for each i to indicate that going over capacity in certain
sections is worse than going over capacity in others. Al-
ternatively, including the term

R∑
r=1

cr(tK)

in the objective function would provide an incentive for
clearing material out of the network by the final time
step.

3.2 Multiple Destination Nonlinear Outflow Model

3.2.1 Control Design

Here, we leverage the control design method developed
in Section 3.1.3 to solve Problem 1 with general nonlin-
ear outflow rates. The decoupled dynamics of the linear
system allowed us to treat each sub-network separately.
However, in the nonlinear system, outflow rates of each
section of a given sub-network depend not only on the
associated state of the sub-network, but also on the full
state of that section. Specifically, if we were to formu-
late a proposition for the nonlinear system which paral-
lels Proposition 2 for the linear system, the proof would
require us to lower bound the term

crj(t)

cj(t)
μj(cj(t))−

xr
j(t)

xj(t)
μj(xj(t)).
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Unfortunately, we have no way to bound this termwithin
the given framework.

Rather than solving the nonlinear outflow rate problem
directly, we take the solution method for the linear out-
flow problem and add additional constraints on the rout-
ing parameters which force recirculation within each sec-
tion of the network. This recirculation effectively slows
down the linear system so that the controlled outflow
rate of each section of the linear system is at or below
the corresponding uncontrolled nonlinear outflow rate.
These conditions are formally stated in Theorem 4 be-
low.

Theorem 4 Let cr(t) be defined as in (12) with mr(t+k )
for k = 0, . . . ,K and cr0 ≥ xr

0 given for all r ∈ [R]. Let an
outflow function μ satisfying assumptions (1) be given.

Define τi =
(

dμi

dxi
(0)
)−1

for all i ∈ [N ]. If, for all r ∈ [R],

there exist ηr(tk) for k = 0, . . . ,K, such that constraints
C(ηr(tk)) are satisfied and the following constraints hold
for k = 0, . . .K − 1

Ar(ηr(tk))c
r(tk) +BrTdr(t+k ) ≤ mr(t+k ),

Ar(ηr(tk+1))c
r(tk+1) +BrTdr(t+k ) ≤ mr(t+k ),

(17)

ηrii(tk) ≥ η
i
(k), ∀ i ∈ N r,

ηrii(tk+1) ≥ η
i
(k), ∀ i ∈ N r,

(18)

whereAr(ηr(tk)) is defined as in (10),Br is defined as in
(11), and the fixed scalar value η

i
(k) is chosen such that

η
i
(k) ≥ max

tk≤t≤tk+1

(
1− τiμi(ci(t))

ci(t)

)
,

for each i ∈ N and k ∈ [0, . . . ,K−1], then the closed-loop
system (3) under the decentralized time-varying state
feedback control policy

βr
ii(t) = 1− (1− ηrii(t))

xi(t)

τiμi(xi(t))
, ∀ i ∈ N r (19)

βr
ij(t) = ηrij(t)

xi(t)

τiμi(xi(t))
, ∀ i, j ∈ N r, i �= j (20)

with ηr(t) interpolated as in (14), has the following prop-
erties

(i) The solution xβ(t) of system (3) is identical to the
solution yη(t) of system (9) with routing parameters
η(t),

(ii) Positivity holds for system (3),
(iii) Conservation holds for system (3),
(iv) The solution xβ(t) of system (3), satisfies xβ(t) ≤

c(t) for t ∈ [0, H].

PROOF. We first note that the feedback control pol-
icy defined by (19) and (20) was chosen so that the non-

linear system (3) in closed-loop is identical to the linear
system (9) with routing parameters η(t). To see this, we
substitute the expressions for β(t) given in (19) and (20)
into (3), which describes the dynamics of each section
i ∈ N r of the sub-network associated with destination
r ∈ [R],

ẋr
i (t) =− xr

i (t)

xi(t)
μi(xi(t))

+

[
1− (1− ηrii(t))

xi(t)

τiμi(xi(t))

]
xr
i (t)

xi(t)
μi(xi(t))

+
∑

j:i∈Or
j

j �=i

(
ηrji(t)

xj(t)

τjμj(xj(t))

)
xr
j(t)

xj(t)
μj(xj(t))

+
S∑

s=1

brsid
r
s(t),

=− xr
i (t)

xi(t)
μi(xi(t))

+

[
xr
i (t)

xi(t)
μi(xi(t))− (1− ηrii(t))

xr
i (t)

τi

]

+
∑

j:i∈Or
j

j �=i

ηrji(t)
xr
j(t)

τj
+

S∑
s=1

brsid
r
s(t)

=− xr
i (t)

τi
+
∑

j:i∈Or
j

ηrji(t)
xr
j(t)

τj
+

S∑
s=1

brsid
r
s(t)

which is the same as the description of the dynamics
of each section i ∈ N r of sub-network r ∈ [R] given
in (8). Thus, if yr(0) = xr(0) = xr

0 for all r ∈ [R]
then xr(t) = yr(t) and (i) holds. Additionally, since
inequalities (17) are the same as those in (13), and ηr(t)
is interpolated between the endpoints tk of each interval
by (14), for k = 0, . . .K, Theorem 3 can be applied to
conclude that Positivity holds for system (9), that is
yr(t) ≥ 0, for all r ∈ [R], and y(t) ≤ c(t), for t ∈ [0, H].
Given (i), these properties also hold for system (3), thus
(ii) and (iv) hold.

Finally, we will show that Conservation holds by verify-
ing that C(βr(t)) hold for all r ∈ [R]. From Theorem 3,
we know that constraints C(ηr(t)) hold for all r ∈ [R].
It is easily seen that C2(βr(t)) holds whenever C2(ηr(t))
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holds. To check C3(βr(t)) and C4(βr(t)) we compute∑
j∈Or

i

βr
ij(t) =

∑
j∈Or

i ,
j �=i

βr
ij(t) + βr

ii(t)

=
∑

j∈Or
i ,

j �=i

ηrij(t)
xi(t)

τiμi(xi(t))
+ 1

− (1− ηrii(t))
xi(t)

τiμi(xi(t))

=
∑
j∈Or

i

ηrij(t)
xi(t)

τiμi(xi(t))
+ 1− xi(t)

τiμi(xi(t))

=
xi(t)

τiμi(xi(t))

⎛
⎝∑

j∈Or
i

ηrij(t)− 1

⎞
⎠+ 1.

(21)

Given that constraints C3(ηr(t)) are satisfied, that is∑
j∈Or

i

ηrij(t) = 1, ∀i ∈ N r\Sr
F ,

we can conclude from (21) that constraints C3(βr(t))
hold, that is ∑

j∈Or
i

βr
ij(t) = 1, ∀i ∈ N r\Sr

F .

And given that constraints C4(ηr(t)) are satisfied, that
is ∑

j∈Or
i

ηrij(t) ≤ 1, ∀i ∈ Sr
F ,

we can conclude from (21) that constraints C4(βr(t))
hold, that is ∑

j∈Or
i

βr
ij(t) ≤ 1, ∀i ∈ Sr

F .

Clearly constraint C1(βr(t)) holds when i �= j for all
r ∈ [R]. In order to show that C1(βr(t)) holds when
i = j, we must show that

ηrii(t) ≥ 1− τiμi(xi(t))

xi(t)
, (22)

for all i ∈ N r, r ∈ [R], t ∈ [0, H]. First, we show that

μi(xi(t))

xi(t)
≥ μi(ci(t))

ci(t)
(23)

whenever xi(t) ≤ ci(t) and thus

ηrii(t) ≥ 1− τiμi(ci(t))

ci(t)
, (24)

for all i ∈ N r, r ∈ [R], t ∈ [0, H] implies that (22) holds.
In order to show (23) we use the facts that μi is concave,
μi(0) = 0, 0 ≤ xi(t) ≤ ci(t) which follows from (ii) and

(iv), and xi(t) =
xi(t)
ci(t)

ci(t) +
(
1− xi(t)

ci(t)

)
× 0, therefore

μi(xi(t)) ≥ xi(t)

ci(t)
μi(ci(t)) +

(
1− xi(t)

ci(t)

)
μi(0)

μi(xi(t)) ≥ xi(t)

ci(t)
μi(ci(t))

μi(xi(t))

xi(t)
≥ μi(ci(t))

ci(t)
.

From (14) and the fact that cri (t) is piecewise linear, we
have

ηrii(t)c
r
i (t) =

(
1− t− tk

Δt

)
ηrii(tk)c

r
i (tk)

+
t− tk
Δt

ηrii(tk+1)c
r
i (tk+1)

≥ cri (t)ηi(k)

where the inequality follows from constraints (18). Thus,
ηrii(t) ≥ η

i
(k) where k = � t

Δt. Given the definition of

η
i
(k), it follows that (24) and thus (22) hold and conse-

quently that (4) holds for βr
ii(t) defined as in (19).

Since constraints C(βr(t)) hold for all r ∈ [R], we can
conclude that Conservation holds for system (3) in
closed-loop, thus (iii) holds. �

The idea motivating the development of Theorem 4 is
that the outflow rates of each section of linear system (9)

with τi =
(

dμi

dxi
(0)
)−1

for all i ∈ [N ] can be restricted

through constraints on recirculation so that the linear
system has controlled outflow rate less than the corre-
sponding uncontrolled nonlinear outflow rate, that is

R∑
r=1

(1− ηrii(t))
yri (t)

τi
≤ μi(yi(t)) (25)

where the left hand side is the total controlled outflow
rate of section i of the linear system. Constraints (18)
ensure that (25) is satisfied. Given that η

i
(k) is chosen

based on the upper bound ci(t) of the state yi(t) itself,
these constraints are conservative. Recirculation beyond
that required to satisfy constraints (18) may be used to
satisfy the control design objective. Additional recircu-
lation in the linear system beyond that required to sat-
isfy (25) with equality is translated into recirculation in
the controlled nonlinear system.

We would like to write an LP problem, similar to LP
problem (16), which can be used to generate parameters
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which satisfy the assumptions of Theorem 4. Constraints
(17) and C(ηr(tk)) for k = 0, . . . ,K − 1 are ensured by
constraints Φr. The constraints

zrii(tk) ≥ η
i
(k)cri (tk)

zrii(tk+1) ≥ η
i
(k)cri (tk+1)

will ensure that constraints (18) hold.

What remains is to find an appropriate choice of η
i
(k)

for all i ∈ [N ] and k = 0, . . . ,K. If a piecewise linear
upper bound c̃(t) on c(t) were known, we could define the
desired lower bound on recirculation parameter ηrii(t) as

η
i
(k) = max

tk≤s≤tk+1

(
1− τi

μi(c̃i(s))

c̃i(s)

)
(26)

where k = � t
Δt. Given the fact that c̃i(t) is defined to

be linear between tk and tk+1 for k ∈ [0, . . . ,K−1], and
thus

c̃i(t) ≤ max
s∈{tk,tk+1}

c̃i(s),

we could then proceed as in (23) to conclude that the
expression in the right hand side of (26) achieves its
maximum value at an end point of the interval. Since c is
a design variable, we do not have an a priori upper bound
available. Instead, we explicitly introduce c̃, use it to
define η and add constraints to ensure that c(t) ≤ c̃(t).

The problem of finding capacity constraints ĉ and ca-
pacity bound c can then be written as the following LP
problem:

min
c,z,m

K−1∑
k=0

N∑
i=1

(
ĉi(t

+
k )− c̄i(t

+
k )
)
Δt (27a)

subject to Φr

for all k ∈ {0, . . . ,K}
c(tk) ≤ min{ĉ(t−k ), ĉ(t+k )}, (27b)

ĉ(t+k ) ≥ c̄(t+k ), (27c)
R∑

r=1

cr(tk) = c(tk), (27d)

c(tk) ≤ c̃(tk), (27e)

zrii(tk) ≥ η
i
(k)cri (tk), ∀ i ∈ N r, ∀ r ∈ [R]. (27f)

The specific choice of c̃(t) is important. If c̃(t) is chosen
too high, then ηrii(t) is forced to be high, resulting in a
solution requiring more recirculation than necessary. If
c̃(t) is too low, LP problem (27) may be infeasible. In
Section 3.2.2 an algorithm is presented in which c̃(t) is
adjusted iteratively allowing an arbitrarily tight upper
bound on c(t) to be converged upon.

3.2.2 Iterative Solution Method

Here, we present an iterative algorithm which can be
used to solve Problem 1 by successively solving instances
of LP problem (27). At the beginning of the algorithm,
the upper bound c̃(t) on the capacity bound c(t) is set
infinitely high, which forces full recirculation, that is
ηri (tk) = 1 for all i ∈ [N ], r ∈ [R] and k ∈ [0, . . . ,K−1].
After LP problem (27) is solved, an appropriate finite
value of c̃(t) can be chosen. At each subsequent itera-
tion, c̃(t) is decreased and, correspondingly, required re-
circulation is also decreased.

The algorithm terminates when the maximum difference
between c̃(t) and c(t) falls below some specified thresh-
old. This termination condition ensures that the imposed
recirculation constraints are reasonable with respect to
the recirculation constraints required based on the re-
sulting capacity bound c(t).

Algorithm 1 Iterative refinement
1: p = 0
2: c̃i(tk) = ∞, for i ∈ [N ], k = 0, . . . ,K
3: η

i
(k) = 1, for i ∈ [N ], k = 0, . . . ,K

4: Solve LP problem (27)

5: c(p)(tk) = c(tk), for k = 0, . . . ,K

6: c̃
(p)
i (tk) = max

(
ymax, c

(p)
i (tk)

)
, for i ∈ [N ],

k = 0, . . . ,K

7: η(p)

i
(k) = maxt∈{tk,tk+1}

(
1− τi

μi(c̃i(t))
c̃i(t)

)
,

for i = 1, . . . , N, k = 0, . . . ,K
8: repeat
9: p = p+ 1

10: c̃
(p)
i (tk) = c̃

(p−1)
i (tk)− γ

(
c̃
(p−1)
i (tk)− c

(p−1)
i (tk)

)
,

for i = 1, . . . , N, k = 0, . . . ,K

11: η(p)

i
(k) = maxt∈{tk,tk+1}

(
1− τi

μi(c̃i(t))
c̃i(t)

)
,

for i = 1, . . . , N, k = 0, . . . ,K
12: c̃(tk) = c̃(p)(tk), for k = 0, . . . ,K

13: η(k) = η(p)(k), for k = 0, . . . ,K

14: Solve LP problem (27)

15: c(p)(tk) = c(tk), for k = 0, . . . ,K

16: until maxi,k

{
c̃
(p)
i (tk)− c

(p)
i (tk)

}
≤ ε

User defined values ε > 0 and 0 < γ < 1 affect the
termination and speed of convergence of the algorithm,
respectively. We define ymax as the greatest amount of
material that could occupy any section in the network by

ymax =

R∑
r=1

1Tyr
0 +

R∑
r=1

S∑
s=1

K−1∑
k=0

drs(t
+
k )Δt.

In the following proposition, we show that Algorithm
1 is an effective method, that is, it terminates and is
consistent.
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Proposition 5 Given a network described as in (3) with
section outflow rates μ satisfying assumptions (1) and
a piecewise constant desired capacity constraint c̄(t) for
t ∈ [0, H], ε > 0 and 0 < γ < 1, the following properties
hold

(i) LP problem (27) is feasible when solved at Step 4 of
Algorithm 1,

(ii) LP problem (27) is feasible when solved at Step 14
of Algorithm 1,

(iii) Algorithm 1 terminates.

PROOF. First, we show that LP problem (27) is fea-
sible in Step 4. At the first iteration η

i
(k) = 1 for all

i ∈ [N ] and k ∈ [0, . . . ,K − 1]. This implies recircula-
tion of all of the outflow of each section of the network.
To construct a feasible solution, make the choice of:

zrij(tk) =

{
cri (tk), i = j,

0, j �= i,

mr
i (t

+
k ) = max

(
S∑

s=1

brsid
r
s(t

+
k ),

S∑
s=1

brsid
r
s(t

−
k+1)

)

for all i, j ∈ N r, r ∈ [R], and k ∈ [0, . . . ,K − 1]. Choose
cr(t0) ≥ xr

0 for each r ∈ [R] and feasible values for cr(tk)
for all r ∈ [R] and k ∈ [0, . . . ,K − 1] can be generated
using (12) given mr(tk). It is then straightforward to
verify that constraints Φr are satisfied for all r ∈ [R].
Given that initially, c̃(tk) = ∞ for all k ∈ [0, . . . ,K − 1]
it is easily seen that constraints (27b) through (27f) also
hold, and thus (i) holds.

Given a feasible solution to LP problem (27) at iteration
p−1 for p > 0, we show that this solution is also feasible
at iteration p. At each iteration of Algorithm 1, c̃ and η
are the only constraint parameters of LP problem (27)
which change. In order to show that LP problem (27) is
feasible at each iteration, we show that the updated val-
ues of c̃ and η lead to a relaxation of constraints in the
LP problem compared to the previous iteration. Param-
eters c̃ and η appear in only one constraint each, that
is, constraint (27e) and constraint (27f), respectively.

We begin by focusing on constraint (27e) and parameter
c̃. For all i ∈ [N ] and p > 0, we have

c
(p−1)
i (tk) = c̃

(p−1)
i (tk)−

(
c̃
(p−1)
i (tk)− c

(p−1)
i (tk)

)
≤ c̃

(p−1)
i (tk)− γ

(
c̃
(p−1)
i (tk)− c

(p−1)
i (tk)

)
= c̃

(p)
i (tk).

The inequality follows from the fact that c
(p−1)
i (tk) ≤

c̃
(p−1)
i (tk) given that c

(p−1)
i is feasible for LP problem

(27) at iteration p − 1 and γ < 1. Thus, any ci feasible
at iteration p− 1 satisfies (27e) at iteration p.

We now focus on constraint (27f) and parameter η.
Note that, for any feasible solution of LP problem (27),

c
(p−1)
i (tk) ≤ c̃

(p−1)
i (tk). Given 0 < γ < 1, it follows from

the definition of c̃(p−1) given in step 10 of Algorithm

1 that c̃
(p)
i (tk) ≤ c̃

(p−1)
i (tk). Also note that constraints

Φr ensure that c(tk) =
∑R

r=1 c
r(tk) ≥ 0, and constraint

(27e) ensures that c̃(tk) ≥ c(tk), thus c̃
(p)
i (tk) ≥ 0.

Given this, the fact that μi is concave, μi(0) = 0 and
that

μi(c̃
(p)
i (tk))

c̃
(p)
i (tk)

≥ μi(c̃
(p−1)
i (tk))

c̃
(p−1)
i (tk)

whenever c̃
(p)
i (tk) ≤ c̃

(p−1)
i (tk), as shown in the proof of

Theorem 4, we have,

η(p)
i

(k) = 1− τiμi(c̃
(p)
i (tk))

c̃
(p)
i (tk)

≤ 1− τiμi(c̃
(p−1)
i (tk))

c̃
(p−1)
i (tk)

= η(p−1)
i

(k).

It follows that constraint (27f) can be satisfied at itera-
tion p by z and c which are feasible at iteration p − 1,
recognizing that any feasible z and c are non-negative.
Thus, we can conclude that any feasible solution of LP
problem (27) at iteration p − 1, p > 0, is also a feasi-
ble solution of the LP problem at iteration p and conse-
quently (ii) holds.

We now show that Algorithm 1 is guaranteed to termi-
nate. We focus on section i, time step tk. From a re-
arrangement of the assignment of c̃(p)(tk) in step 10, we
have

c̃
(p−1)
i (tk)− c̃

(p)
i (tk) = γ

(
c̃
(p−1)
i (tk)− c

(p−1)
i (tk)

)
.

(28)

Constraints Φr ensure that c
(p−1)
i (tk) ≤ c̃

(p−1)
i (tk), thus

the right hand side of the expression above is nonneg-

ative and the sequence
(
c̃
(p)
i (tk)

)
p∈N

is non-increasing.

This sequence is bounded below since constraints Φr en-

sure that c(tk) =
∑R

r=1 c
r(tk) ≥ 0, and constraint (27e)

ensures that c̃(tk) ≥ c(tk). Since sequence
(
c̃
(p)
i (tk)

)
p∈N

is monotone and bounded, it converges. Any convergent
sequence is a Cauchy sequence and there thus exists an
integer Pik such that for p ≥ Pik

|c̃(p−1)
i (tk)− c̃

(p)
i (tk)| < γε.

Substituting the expression for c̃
(p−1)
i (tk)−c̃

(p)
i (tk) given
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in (28) we have

|c̃(p−1)
i (tk)− c

(p−1)
i (tk)| < ε.

It follows that for large enough values of p (i.e. p ≥
maxi,k Pik), the stopping criterion of step 16 will be sat-
isfied and Algorithm 1 will terminate. �

Note that at each iteration of Algorithm 1, constraints
are relaxed compared to the previous iteration. Thus, the
cost of LP problem (27) decreases or remains constant
from one iteration to the next. Physically, this means
that the capacity constraint violation of the resulting
closed-loop system decreases or remains constant at each
iteration.

Upon termination of Algorithm 1 (and, in fact, at any
iteration of the algorithm), routing parameters η(tk)
and η(t) can be recovered from (15) and (14), respec-
tively. Under the decentralized time-varying state feed-
back control policy defined by (19) and (20), system
(3) satisfies the Positivity andConservation constraints,
and the solution xβ(t) to system (3) satisfies xβ(t) ≤
c(t) ≤ ĉ(t) for all t ∈ [0, H].

4 Application

In order to illustrate the control design technique pre-
sented in Section 3, this technique was applied to an air
traffic control example problem. The network used in
this problem is shown in Figure 1 presented in Section
2.1. Network connectivity for the full network and sub-
networks associated with destinations 1, 2 and 3 can be
inferred from Figures 1(a), 1(b), 1(c), and 1(d), respec-
tively. Note that, although not explicitly depicted, recir-
culation is allowed in all sections of the network.

Initial conditions and inflow rates are depicted graphi-
cally in Figure 2. Inflow rates are constant for the dura-
tion of the planning horizon of 3 hours. Flow rates and
initial states are broken down by destination in Figures
2(b), 2(c) and 2(d). That is, in Figure 2(b), the inflow
rates specified are the inflow rates of flights with desti-
nation 1, that is, b1sid

1
s(t) for each source, s = 1, 2, 3 and

each section accepting inflow, i = 1, 2, 3. The values in
the boxes in figure Figure 2(b) indicate the initial num-
ber of aircraft in each section with destination 1, that is,
mathematically, x1

i (0) for all i ∈ N 1.

The outflow rate, μi, as a function of the number of
aircraft in the section is given in Figure 3. This outflow
rate function is used for all sections of the network. For
each section i ∈ [N ],

τi =

(
dμi

dxi
(0)

)−1

= 0.4 hours.
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(a) Full network.
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(b) Sub-network for destination 1.
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(c) Sub-network for destination 2.
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(d) Sub-network for destination 3.

Fig. 2. Figures 2(a), 2(b), 2(c), and 2(d) indicate inflow rates
and section initial conditions for all flights in the network
and flights with destination 1, 2 and 3, respectively. The
inflow at sources is indicated in the ovals on the left of each
diagram. The value in each box represents the initial number
of aircraft in that section.
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Fig. 3. Section outflow rate as a function of the total number
of aircraft in the section. The same outflow rate function is
used for each section of the network.

Each section, except for section 14, has a constant ca-
pacity constraint of 15 aircraft, that is, c̄i(t) = 15 air-
craft for all i ∈ [N ]\ {14} and all t ≥ 0. Section 14 has
the piecewise constant capacity constraint profile c̄14(t)
pictured in Figure 4(a).

Given these initial conditions and capacity constraints,
Algorithm 1 was used to generate time-varying routing
parameters to solve Problem 1. For this example, γ = 0.7
and ε = 0.5. With these values, the stopping criterion
was met after 16 iterations. At the final iteration, the
cost associated with LP problem (27) was zero aircraft
× hour, indicating that the given capacity constraint is
not violated under the resulting routing solution.

The given capacity constraint, and resulting capacity
bounds and simulated state for section 14 are shown in
Figure 4. The capacity constraint, c̄14(t), capacity bound
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(a) Full state results for section 14.
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(b) Section 14 destination 1.
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(c) Section 14 destination 2.
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(d) Section 14 destination 3.

Fig. 4. Figure 4(a) shows the capacity constraint c̄14(t), ca-
pacity bound c14(t) and state x14(t) of section for 14 for the
full network. Figures 4(b), 4(c), and 4(d) show the capacity
bound cr14(t) and state xr

14(t) of section for 14 for the sub-net-
works associated with destinations r = 1, 2, 3, respectively.
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Fig. 5. Capacity constraint c̄14, adjusted capacity constraint
ĉ14, capacity bound c14 and state x14 of section 14. Note that
ĉ14 is only plotted over intervals in which it differs from c̄14.

c14(t) =
∑R

r=1 c
r
14(t) and full state, x14(t), of section 14

are shown in Figure 4(a). Capacity bounds cr14(t) and
state xr

14(t) are also given for r = 1, 2, 3 in Figures 4(b),
4(c), and 4(d), respectively.

In a second example problem, capacity constraints for
section 14 were lowered in order to illustrate the capa-
bility of adjusting the capacity constraints if the given
capacity constraints cannot be satisfied. All other con-
straints and parameters are identical to the above exam-
ple. The given capacity constraint, and resulting capac-
ity bounds and simulated state for section 14 are shown
in Figure 5.

Given these initial conditions and capacity constraints,
Algorithm 1 was used to generate time-varying routing
parameters to solve Problem 1. With these values, the
stopping criterion was met after 15 iterations. At the fi-
nal iteration, the integral of the difference between ad-
justed constraint ĉ(t) and given constraint c̄(t), calcu-
lated as the cost of LP problem (27), is 1.28 aircraft ×
hour. Physically, this means that using this solution, the
actual section count may exceed the constraint c̄(t) by
no more than an average of 1.28 aircraft over a one hour
time period.

5 Conclusions and Future Work

We addressed the problem of routing design for posi-
tive compartmental systems with concave section out-
flow rates to satisfy time-varying state constraints. The
control design technique was presented as an algorithm
which can be used to iteratively solve instances of an LP
problem, successively tightening bounds on the closed-
loop system state thus improving the quality of the so-
lution. The resulting routing strategy is a time-varying
state-feedback control strategy which guarantees that
the state of the closed-loop system remains below the
given capacity constraint, or an adjusted capacity con-
straint if a solution to the given problem cannot be
found.
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Future work in this area involves the incorporation of
uncertain capacity constraints. Such constraints arise in
air traffic management problems in which section ca-
pacity constraints may depend on weather conditions,
which are not deterministic. A control technique which
is robust to such uncertainty or reactive in real time to
changing constraints would be advantageous for appli-
cation in this field.
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