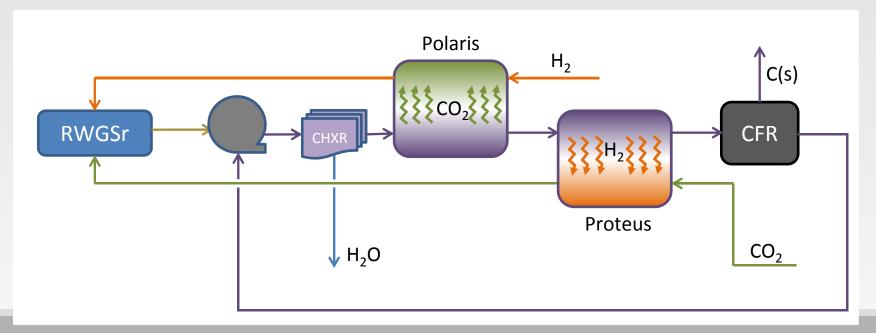


Series-Bosch Technology For Oxygen Recovery During Lunar or Martian Surface Missions

Morgan B. Abney, J. Matthew Mansell, Ellen Rabenberg, Christine M. Stanley, Jennifer Edmunson, James E. Alleman, Kevin Chen, Sam Dumez


Marriott University Park, Tucson, AZ

July 13-17, 2014

Series-Bosch Technology

Bosch Process	$CO_2 + 2H_2 \leftrightarrow 2H_2O + C(s)$
CO Hydrogenation Boudouard	$CO + H_2 \leftrightarrow H_2O + C(s)$ $2CO \leftrightarrow CO_2 + C(s)$
Reverse Water-Gas Shift (RWGS)	$CO_2 + H_2 \leftrightarrow H_2O + CO$

Hardware Description

S-Bosch Test Stand

RWGS Reactor (with band heaters and thermocouples, no insulation)

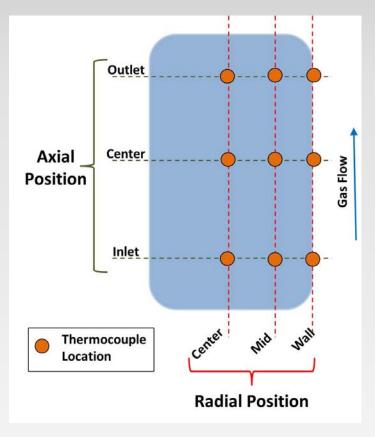
Hardware Description

Proteus Membrane Sub-Assembly (H₂ Separation)

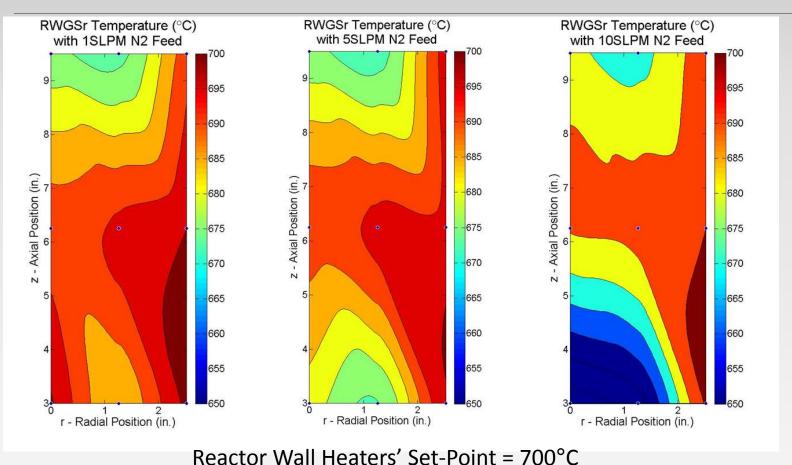
Polaris Membrane Sub-Assembly (CO₂ Separation)

Development Path

1. RWGS Reactor Thermal Profile Testing

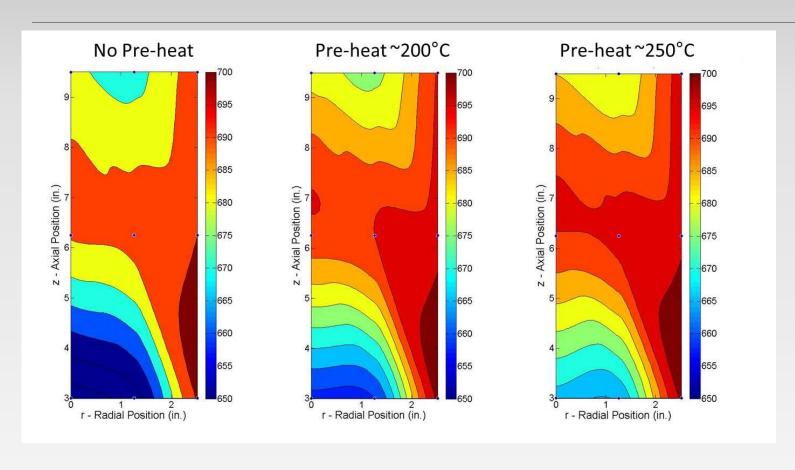

2. Regolith-based CFR Concept Development

3. Regolith + Carbon Brick Testing


RWGS Reactor Thermal Testing

- Purpose: To observe the thermal profile of the reactor at various wall temperature setpoints both with and without a pre-heater
- Test Parameters
 - Nitrogen flow = 1, 5, or 10 SLPM
 - Wall Temp = 25-800°C
 - Pre-Heater Temp = 25-250°C
 - Pressure = 8 psia
- Thermocouples used to measure temperature at various locations in the reactor

RWGS Reactor Thermal Results



Reactor Wall Heaters' Set-Point = 700°C

No Gas Pre-Heating

RWGS Reactor Thermal Results

Reactor Wall Heaters' Set-Point = 700°C

CFR Concept Development

Considerations:

- Regolith Specifications Martian Regolith
 - Iron in all mapped Martian soil = 10-20 wt%
 - Majority of Lunar soil contains <5 wt% Fe (although some areas ~20 wt%)
 - Mars a targeted destination for manned space exploration
 - CO₂ in Martian atmosphere could be used to obtain O₂ because no H₂ is consumed in the Bosch process (when water electrolysis is used to recovery H₂)
- Gravity Dependence
 - Regolith-based reactor requires gravity
 - Mars transit version of the reactor would be operable in microgravity
- Reactor Approach Radial Flow Moving Bed Reactor
- Heating Method Core Heater
 - Core heating allows a temperature gradient to occur which pushes equilibrium toward solid carbon
 - Minimal insulation is needed due to the insulating properties of the regolith material

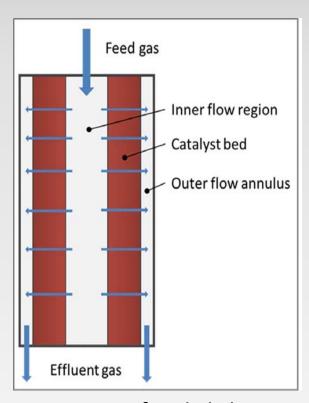


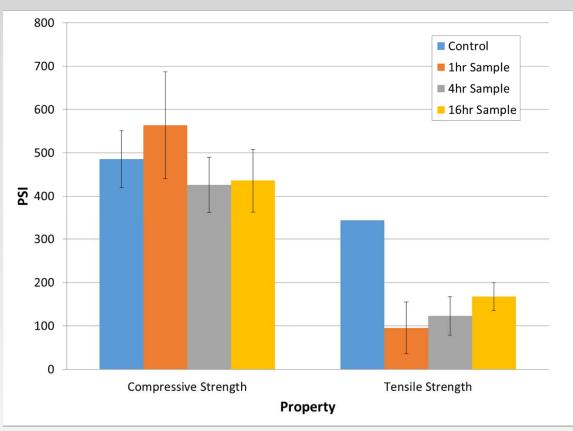
Diagram of Radial Flow Moving Bed Reactor

Regolith Brick Testing

- Purpose: To determine the best method of producing bricks from regolith containing carbon and to determine the effect of carbon on the brick mechanical properties
- Brick Production Methods
 - Sintering (2 hrs @ 500°C, 2 hrs @ 1100°C)
 - Sulfur-Binding (80 vol% Simulant + Carbon, 20 vol% Sulfur, 30 min @ 160°C)
 - Polyethylene-Binding (70 vol% Simulant + Carbon, 30 vol% Polyethylene, 4 hrs @ 150°C)
- Mechanical Properties Testing
 - Compressive Strenth
 - Tensile Strength
 - Modulus of Elasticity (3-point bending test)
 - Freeze-Thaw Cycling

Regolith Brick Testing Results

Sintered bricks – repeatability concerns (outer bricks not heated enough, center bricks heated too much within the same furnace)


Sulfur-Bound bricks – Sublimation of sulfur resulted in insufficient content in bricks, bricks highly brittle

Polyethylene-Bound bricks – Repeatable method, uniform bricks, not entirely homogenous

Regolith Brick Testing Results

No measureable reduction in Compressive Strength compared to pure polyethylene, other results inconclusive

Future Work

- Carbon Formation Reactor Development
 - Microgravity design
 - Martian gravity design
- Carbon Handling Development
- Membrane Testing
- Repeated Mechanical Testing

Acknowledgements

- NASA MSFC ECLSS Technical Support
- NASA former Chief Engineer Mr. Mike Ryschkewitsch
- Presidential Early Career Award Science & Engineering
- NASA MSFC Technical Innovation Program
- NASA STMD Next Generation Life Support
- NASA MSFC Project Management

Section 302A - AIChE/ASME/INT: Physio-chemical Life Support- Air Revitalization Systems - Technology and Process Development

ICES-2014-175