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The accretion of ice in the compression system of commercial gas turbine engines 

operating in high ice water content conditions is a safety issue being studied by the aviation 

community. While most of the research focuses on the underlying physics of ice accretion 

and the meteorological conditions in which accretion can occur, a systems-level perspective 

on the topic lends itself to potential near-term operational improvements. Here a detection 

algorithm is developed which has the capability to detect the impact of ice accretion in the 

Low Pressure Compressor of an aircraft engine during steady flight as well as during 

changes in altitude. Unfortunately, the algorithm as implemented was not able to distinguish 

throttle changes from ice accretion and thus more work remains to be done. 

Nomenclature 

C-MAPSS40k  = the Commercial Modular Aero-Propulsion System Simulation 40,000lbf 

EPR    = Engine Pressure Ratio (P50/P2) 

H    = fault influence coefficient matrix 

HIWC    = High Ice Water Content 

K    = input influence coefficient matrix 

LPC    = Low Pressure Compressor 

LPC%    = LPC efficiency (%) 

LPCeff    = LPC efficiency health parameter 

LPCflow    = LPC flow capacity health parameter 

LPCw    = LPC mass flow rate (lbm/s) 

LPCnom    = nominal LPC characteristic 

m    = vector of input shifts 

Nc    =  Core shaft speed (rpm) 

Nf    =  Fan shaft speed (rpm) 

Px    = Pressure at station x (psia) 

PLA    = Power Lever Angle (deg) 

R    = sensor noise covariance matrix 

Tx    = Temperature at station x (degree Rankine) 

w    = vector of sensor measurement noise 

x    = vector of health parameter shifts 

 ̂    = estimated vector of health parameter shifts 

Xc2    = Sensor value X corrected to inlet conditions 

y    = vector of corrected sensor residuals 

∆X    = Shift in parameter X (difference between long and short window average values) 
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I. Introduction 

VER the past twenty years, there have been over 100 reported cases of aircraft engine power loss due to the 

accretion of ice crystal particles in the compression system of commercial turbofan engines.
1
 The majority of 

the work in this area has focused on understanding the mechanism by which particles in high ice-water content 

(HIWC) conditions can accrete on compressor stator blades and understanding the environmental conditions in 

which accretion can occur. While avoidance of HIWC conditions and compressor redesigns are the ideal long-term 

solutions, a systems level analysis highlights some near-term capabilities. 

From a propulsion system perspective, the accreted ice can be treated as a change in the effected compressor’s 

map
2
 as shown in Figure 1. In previous work, low pressure compressor (LPC) maps were generated with various 

levels of ice blockage using a mean-line compressor design code.
3
 By moving between these maps the impact of ice 

blockage growth can be simulated.  

 

 
Figure 1. LPC maps used to simulate the impact of ice blockage in the second row stators. Reproduced from 

Ref. 6 based on data from Ref. 2. Surge lines (dashed) and speed lines (solid) are shown. 

  

 Previously, the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k), a generic 

commercial turbofan engine simulation,
4
 was shown to be capable of simulating engine rollback (loss of thrust) 

when a very simple ice blockage model was used.
5
 The engine simulation’s capabilities were upgraded by installing 

the stacked maps of Figure 1 and allowing the user to input a desired ice blockage level. Desired levels between the 

discrete levels for which there are maps are found by linear interpolation. Due to the fact that no experimental data 

exists, this model is unable to be validated at the present time. However, system-level changes should be realistic in 

direction as well as approximate magnitude. Using this updated simulation, a detection approach was developed that 

was found to be capable of detecting the effect of ice particle blockage on the LPC performance during steady-state 

flight (constant altitude, speed, and throttle).
6
 This detection technique uses the two shaft speed sensors as input to a 

linear estimator in order to estimate the change in LPC performance parameters. The approach is robust enough to 

handle engines with different levels of deterioration, existing faults, as well as the typical engine-to-engine variation. 

Importantly, the algorithm is computationally simple enough to allow it to be integrated into a typical engine 

controller. Unfortunately, approximately half of all icing related power loss events occur during aircraft descent
7
 and 

thus a detection strategy that does not rely on the steady-state assumption is necessary. 

 The work in this paper seeks to develop a detection technique that is capable of detecting the change in LPC 

performance due to ice crystal blockage during both descent and cruise flight conditions. Again, it is critical that the 

detection algorithm is computationally simple and has low memory requirements so that it can be integrated into 

modern engine controllers. The approach investigated in this work is an extension of the previous algorithm. Section 

II describes the new algorithm; while Section III details its application to the C-MAPSS40k engine simulation with 

embedded LPC maps for modeling ice accretion. Conclusions and future work are discussed in Section IV. 
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II. Detection Algorithm 

Since the accretion of ice in the LPC manifests as a shift in the compressor map, these changes are captured in 

the LPC health parameters. Health parameters are a common metric used in gas path diagnostic work in order to 

capture the shift in component performance. For the LPC, the health parameters of interest are efficiency and flow 

capacity; these parameters (LPCeff and LPCflow) are defined as: 

 

            (         ) (1) 

            (        ) (2) 

 

Here, the w subscript refers to mass flow rate, % is the component efficiency, and nom is the nominal value of the 

associated parameter. By knowing the current value of the LPC mass flow rate and what the value “should” be for 

the given operating point, the flow capacity health parameter can be computed. 

 The approach of the detection algorithm is to estimate the values of the LPC health parameters based on engine 

sensor data. When these health parameters exceed a specified threshold, an icing event will be declared. One 

approach to estimating the health parameters given dynamic measurement data is to use a self-tuning, model-based 

algorithm like the Kalman filter.
8
 Unfortunately, these techniques are both computationally and memory intensive. 

In order to implement the detection algorithm on the fleet of existing engines, a simpler approach is necessary. 

 To this end, a linear estimator was previously developed that relied on an assumption that the engine inlet 

conditions (altitude and Mach number) and throttle are quasi-steady.
6
 As shown in Eq. (3), the vector of corrected 

sensor residuals (y) are expressed as a linear function of the LPC health parameters (x). The matrix H is called the 

fault-influence coefficient matrix and w is a vector of sensor measurement noise with zero-mean and a covariance 

matrix of R. 

 

       (3) 

 

In a model-based approach, the vector of corrected sensor residuals is usually the difference between the expected 

value of the sensor and the current (or lightly filtered) measurement. This expected value is based on the current 

operating condition, the current state of the engine, the engine age, and typical engine-to-engine variation. To 

simplify this, the vector of sensor residuals is defined here as the difference between a long windowed average of 

the sensor value and a short windowed average. By using a window that is longer than the period over which ice 

accretion occurs, a “nominal” value of the sensor is obtained that includes the effects of engine health, operating 

point, and state without needing to know these explicitly. The purpose of the short window average is to lightly filter 

the data prior to using it for estimation. 

 The reason that this approach requires the engine to be in steady-state is that any change in the sensor residuals 

are assumed to be due to a change in the LPC health parameters. To relax this assumption, we can modify the 

expression for y to include these engine inputs: 

 

          (4) 

 

The new term is the product of the vector of known engine input shifts, m, and the input-influence coefficient 

matrix, K. The premise of this modification is to note that changes in the sensor residuals can be due to changes in 

the engine operating point. Thus, if there is a small change in the engine operating conditions, there will be a linearly 

related change in the sensor residuals. When there is no change in the sensor residuals, that implies that either both x 

and m are zero, or Hx and Km are equal and opposite in magnitude. To enable this, m is then defined as the change 

in inputs from nominal. Therefore m will be computed in the same manner as y: the difference between long window 

time-averaged inputs and short window time-averaged inputs. 

 From Eq. (4), the shift in the LPC health parameters can be estimated. Here a simple weighted least squares 

estimation technique
9
 can be used to arrive at: 

 

 ̂  (      )   (     (    )) (5) 

 

To compute this estimate, values of R, H, and K must be known. The sensor noise covariance matrix can be 

computed analytically if the noise is easily quantifiable or numerically based on historical engine data. Because the 

sensor noise changes based on operating condition, R will change as the operating point changes. The values of H 
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and K will also change based on operating condition due to engine nonlinearities. For a gas turbine engine, the 

vector of corrected sensor residuals is more accurately described by the nonlinear relationship: 

 

   (   )    (6) 

 

The two coefficient matrices are the linearized derivatives of f with respect to their associated arguments. These 

matrices can be computed numerically using high-fidelity, non-linear engine simulations or actual engine data if 

available.  

 The complete procedure for the icing detection algorithm is shown in Figure 2. This process repeats every 

controller time step. Once the filtered sensor values and inputs are computed, the sensor residuals and input changes 

are computed. Based on the current operating point and engine state, the two influence coefficient matrices can be 

computed. With this information, an estimate of the LPC health parameters can be computed. Detection logic is then 

applied to the estimated health parameters to arrive at a “true” or “false” value. The number of consecutive “true” 

results is counted, and when they exceed a predefined persistence threshold then an icing event is declared. This 

threshold is found by running a Monte Carlo study and varying the threshold until the necessary false-positive rate is 

obtained. 
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Figure 2. Flow of the ice accretion detection algorithm used in this paper. This process is conducted every 

controller time step. 

 

In the previous research effort,
6
 two detection logics were applied: 

 

                (7) 

       
        

          (8) 

 

However, the results indicated that the metric of Eq. (7) was significantly better at detecting the impact of ice 

accretion and detecting events earlier than the sum of squares approach shown in Eq. (8). Thus only Eq. (7) is used 

in this work. 
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III. Example Application 

For the purpose of developing and testing this detection algorithm, the Commercial Modular Aero-Propulsion 

System Simulation (C-MAPSS40k v2.3.5) software package is used. C-MAPSS40k is a high-fidelity, publicly-

available simulation of a generic 40,000lbf thrust class high-bypass turbofan engine (schematic shown in Figure 3). 

One key feature is that it has a realistic engine controller, thus the control system will respond to changes in engine 

operation in a reasonable manner. Further, C-MAPSS40k has modular components that are easily modified, making 

it easy to change the default LPC to use the compressor maps shown in Figure 1 to simulate the effect of ice 

blockage. 

P25

T25

P2

Ps3

T30

P50

T50

Fuel 

Flow rate

High 

Pressure 

Compressor

High 

Pressure 

Turbine

Nc
Low 

Pressure 

Turbine
LPC

Nf

 
Figure 3. Schematic of the typical twin-spool, high-bypass commercial aircraft engine modeled in 

C-MAPSS40k. Reproduced from Ref. 3. 

 

The first decision to make when applying this algorithm is to choose the sensors and inputs that will be used. For 

selecting the sensors, the two primary considerations are: 1) the controlled engine variable and 2) the available 

sensors. Because the C-MAPSS40k engine is controlled to operate at constant engine pressure ratio (EPR, P50/P2), 

the two shaft speeds will change based on operating condition. In particular, when the LPC performance changes (as 

it does during ice accretion) this will manifest as a discrepancy between the fan and core shaft speeds. If the engine 

is fan speed controlled or core speed controlled (the other common configurations), then it does not make sense to 

use these values in the detection algorithm. In those cases, EPR may be a suitable replacement.  

The second consideration is sensor availability. Due to cost and weight constraints, the number of sensors 

included in the engine is kept to a minimum. To determine which sensors are most sensitive to changes in LPC 

performance due to ice blockage, a simulation is conducted at various levels of ice blockage and the magnitude of 

the change in the sensor output is recorded as shown in Figure 4. While this plot is only for one flight condition, 

many others were simulated and the resulting order of sensor sensitivity is relatively consistent. Unsurprisingly, the 

most impact is seen in the P25 sensor located at the LPC exit. More interesting is the fact that the exhaust gas 

temperature (T50) is the second most sensitive of these sensors. 
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Figure 4. Magnitude of the change in sensor output for all sensors in the C-MAPSS40k engine as the size of 

the ice blockage in the LPC increases. This data is collected at 10,000ft, Mach 0.6, and a PLA of 68 degrees. 

 

 

In an effort to make the results from this analysis as generic as possible, the sensors selected to make up the y 

vector are corrected fan shaft speed (Nfc2), corrected core shaft speed (Ncc2), and corrected exhaust gas temperature 

(T50c2). These sensors are available in every high-bypass turbofan engine (unlike the P25 sensor, which is less 

common). In adapting this algorithm to a specific engine, the designer should take advantage of any sensor that 

produces insight into the impact of the ice blockage. 

To choose the inputs comprising the m vector, the designer needs to select inputs such that 
  (   )

  
 is as linear as 

possible and such that m is not a function of x. Stated another way, it is important that the input vector, m¸ not 

change as the size of the ice blockage changes. If it does, then that will reduce the detection capability of the 

algorithm as shifts in the sensor values will not be “assigned” to x. For the purposes of this work, the pilot’s throttle 

command (power lever angle, PLA) is selected as the sole element of m. It was anticipated that it would be 

important to also use inlet pressure (P2), however as the sensor residuals used in the calculations are corrected to 

sea-level static, standard day conditions, this turns out to not be necessary. Changes in altitude, speed, ambient 

temperature will lead to very small changes in the elements of y which will translate into very small changes in the 

LPC health parameters as will be shown later in this paper. 

With these initial design decisions completed, work turns to developing the H and K matrices. To determine the 

value of the elements of H (here a 3x2 matrix), the nonlinear engine simulation is utilized. A series of tests is 

conducted at operating points throughout the expected icing envelope (10,000ft through 30,000ft) and at each point 

the two health parameters are individually perturbed and the resulting sensor changes recorded. For example, the 

(1,1) element of H is the linear impact of a change in LPC efficiency on the corrected fan speed residual, computed 

as the change in corrected fan speed divided by the size of the perturbation in LPC efficiency. The resulting data is 

then plotted in Figure 5 as a function of the controlled variable, EPR. The data is then fit with the piece-wise linear 

curve shown in black. 
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Figure 5. The values of the fault influence coefficient matrix, H, for the C MAPSS40k application at various 

altitude, Mach number, and engine power settings as a function of the engine pressure ratio. The black line 

represents the piecewise-linear curve fit to the data. 

 

 The same process is repeated to determine the input influence coefficient matrix, K, as shown in Figure 6. Here, 

a throttle perturbation of one degree is used to generate the influence matrix. A piece-wise curve is then fit to the 

data. As with the previous results, the fit is good at mid-range EPR values, however it is particularly poor at high 

and low EPR values. These piece-wise curves (each comprised of eight points) are then stored in a look-up-table 

based on EPR. This allows the influence coefficient matrices to be determined quickly with a small memory 

footprint.  
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Figure 6. The values of the input influence coefficient matrix, K, for the C MAPSS40k application at various 

altitude, Mach number, and engine power settings as a function of the engine pressure ratio. The black line 

represents the piecewise-linear curve fit to the data. 

 

 In order to test the validity of this approach, three test cases are studied: steady flight, decreasing altitude, and a 

throttle change. All of these test cases start at a low cruise condition: 10,000ft altitude, Mach 0.6, and a throttle of 68 

degrees (nominal EPR of 1.456) and do not include sensor noise. This case was chosen as it is representative of a 

point that would be traveled through during descent. For each of the test conditions, one test will have no ice 

accretion, the other will have a five minute accretion from 0% blockage to 27% blockage of the LPC. Figure 7 

shows the estimation algorithm’s results for the case of steady flight. When no ice accretion is present there is no 

shift in the sensor outputs or in the inputs, thus the estimated health parameter shifts are zero. When ice accretion 

occurs, there is a shift in the sensor residuals and because there is no change in the inputs, all of the change in 

residuals is associated with a shift in the health parameters.  
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Figure 7. Estimation algorithm output during steady-state test condition with no ice accretion (solid lines) and 

ice accretion starting at 300 seconds (dotted lines).  

 

 The second test case is steady-state operation until 300 seconds at which point the altitude decreases from 

10,000ft to 8,000ft over five minutes. The estimator outputs are shown in Figure 8. Due to the fact that the sensor 

residuals are corrected to sea level conditions, there is only a small shift in the y vector during the non-iced test case 

which can be seen in Figure 9. Thus, the results are nearly identical to the steady-state test case.  

 
Figure 8. Estimation algorithm outputs during a decrease in altitude starting at 300 seconds. Cases with no 

ice accretion (solid lines) and ice accretion starting at 300 seconds (dotted lines) are shown. 
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Figure 9. A tighter view of the input and output of the estimation algorithm during a decrease in altitude 

starting at 300 seconds. Cases with no ice accretion (solid lines) and ice accretion starting at 300 seconds 

(dotted lines) are shown. 

 

 The final test case is at level flight, but at 300 seconds the throttle is ramped down from 68 degrees to 60 degrees 

over 100 seconds. As shown in Figure 10, the throttle change causes a large shift in corrected sensor residuals. Once 

the impact of the throttle change is removed, the remainder of the sensor residuals (y-Km) is an order of magnitude 

smaller. If the influence matrix was exactly correct, the resulting values would be zero for the non-iced case. 

However, the approximation necessary to determine K is not exact, thus there is a change in the estimates of the 

LPC health parameters, even for the non-iced case. Here the flow capacity is estimated to increase and the efficiency 

decreases during the throttle change and as the ice blockage becomes larger, its effect can be seen more clearly. 

Eventually the erroneous health parameters return to zero while those computed during ice accretion continue to 

diverge.  
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Figure 10. Estimation algorithm outputs during a decrease in throttle starting at 300 seconds until 400 

seconds. Cases with no ice accretion (solid lines) and ice accretion starting at 300 seconds (dotted lines) are 

shown. 

 

 Based on these results, it is anticipated that some flight conditions may result in a decrease in the estimated 

LPCflow during non-iced conditions. This presents a problem as this decrease in flow capacity is the detection metric 

we are using to trigger the declaration of an icing event as shown in Eq. (7). Thus in order to prevent false-positives, 

the threshold must be set to a more negative value. To determine if this does occur, it is necessary to run the 

estimation against “realistic” data to determine the appropriate threshold value. To this end, sample flight data 

(altitude, Mach number, throttle, ambient temperature) from 74 regional jet flights
§
 was used as inputs to 

C-MAPSS40k. The software would then simulate the performance of the engines in these conditions (including 

realistic simulated sensor noise).
8
 The resulting sensor data is run through the detection algorithm using different 

threshold values in order to determine the detection threshold that produces zero false-positives. The minimum 

estimated value of the LPCflow health parameter during cruise and descent is shown in Figure 11. For the 74 cases 

analyzed, the minimum estimated value of LPCflow is -1.00. The desired false positive rate for a system like this is 

very low (less than 0.01% of flights). Because we do not have enough data, the best we can do is to estimate the 

maximum false positive rate to be 1/75 ≈ 1.3% when the detection threshold is set to be less than -1.00. With the 

threshold set this low, none of the previously shown test cases would have resulted in detection. The result of 

previous work
6
 indicated that a detection threshold of -0.006 was required to achieve a 100% true-positive detection 

rate. Thus, the implementation presented here will not adequately detect ice accretion in the low pressure 

compressor due to inaccuracies in the input influence coefficient matrix, K. 

                                                           
§
 https://c3.nasa.gov/dashlink/projects/85/ 
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Figure 11. Histogram of the minimum estimated LPCflow health parameter during cruise and descent for 74 

sample data flights. 

IV. Conclusion 

A simple, linear detection algorithm has been developed with the goal of detecting the impact of ice accreting in 

the low pressure compressor of a high-bypass turbofan engine during operational transients. The algorithm was 

applied to the C-MAPSS40k engine simulation and three proof-of-concept tests were conducted showing that for a 

single operating point it is possible to distinguish the impact of ice accretion from the change in engine performance 

due to changes in altitude and throttle. Unfortunately, when a study of real flight data was conducted, it was found 

that the approximate models used in the detection algorithm are not sufficiently precise to achieve the required false-

positive rate. 

The approach is promising, however a more precise methodology to compute the input influence coefficient 

matrix, K, is required. Kalman filter-based approaches would likely be successful at the cost of increased processor 

and memory utilization. Also, it is possible that increasing the dimensionality of K beyond solely EPR, would prove 

useful. These issues should be considered in any related future work. Additionally, work is on-going to migrate this 

detection algorithm to an aircraft engine for which experimental data does exist. 
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