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Demonstation of Design Factor for k= 4 W/m-K

2. Convection Ends: e il AL

Objective:

Optimal design of thermoelectric couples is investigated analytically for a range of
cases using less severe assumptions then the classic solution. Employed in the
solution sets are a range of powerful methodologies including asymptotic expansions
and Green’s Function solutions. Obtained are new dimensionless parameters which

* Demonstrates the critical importance of
neat exchanger design.

* Design Factor stands as a dimensionless
parameter to characterize device design in
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Design Factor

—Convection Coefficient h=500 W/m?2-K
should be considered in material selection and device design. addition to classic Figure of Metrit. ool " Qomeaton Coeflcent 5,000 Wit K
* Efficiency approaches the classic solution ~Convestion Coeffcient h=500,000 Wim?-K
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as DeSign Factor approaches unity. b 0005 001 0015 o.bfegfé?;é?h(m%bs 0035 004 0045 005

Methodology:
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Conversion Efficiency: 1=y
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Typlcal Temperature Profiles for X=1, Y=1, h=500 [VV/m -K]

3. Convection Sides: 1200—— e
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Roct lar Coordinat Ty, O * Demonstrates some of the effectsof | Tl TTembsSTIMK
ecianguiadr coordaindtes. : : 1000} !
YT . — thermal insulation. - N
Slenderness ratios: y — Zbla x I + e ? * Accounts for lateral heat transfer in orout ¢ I
A, L, L, X Ay, 0, of a leg and places a scale of importance 5
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* o g ks tp on the result of this often neglected heat. 5 U O N
: : : R 777777707 ¢ * Leg temperature profiles can be seento | 7
Dimensionless resistance: Y —= : : 0 01 02z 03 04 05 06 07 08 09 1
Lb I La A, FESIde Nnear the amb|ent temperature fOr . . " Dimensionless Distance . .
o, 4, 0,4, ¢ : the majority of the leg, shown right. X
T, MWN— . . . .
¢ Plas . * Analytic solution provides a useful design . C a7 PhL
- . . . Design Guideline: <1
guideline to achieve maximum conversion kA
- Wy efficiency.
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Cylindrical Coordinates:
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. ks , » Solution is obtained through straight I
— 'E" 'E Dﬂ ° .
X = r i forward asymptotic expansion. o 025 6.3
w.. In O;b/ A, . . . =
a 1; * \Varying properties create non-linear E 6.2
governing equations making exact g
P : S solutions unreasonable. 0.25
Y — * A range of conversion efficiencies exist for |
T T . . . . -05 -0. 0] 0.25
In ( O’b/r-) In ( O'a/r-) a fixed Figure of Merit, shown right. N-Type o, [1/K]
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5. Transient Green’s Function: o
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Convection Coefficient Approximation:

. Effective convection coefficient * Method solves partial differential system

using Green’s Function solutions.

* Temperature and voltage profiles are
determined as integrals of Green’s
Functions along with arbitrary initial and
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accounts for convection, 1 _ 3—1 j o 1

- - hefr =" + | Y
radiation, and conduction effects ki eo(Ts + To, )(TS + T5)
between the thermal reservoir /
and legs lumped into a single
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- Dimensionless Time=0.001
- Dimensionless Time=0.01
- Dimensionless Time=0.1
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Dimensionless Temperature
—

t bOundary COnditionS. - Dimensionless Time=1.0

pParameter. % 0.2 0.4 0.6 0.8 :
Dimensionless Distance

Case Assumbptions: Green’s Function: G, 1;x,t) = —-2H(t — 1) z e (T=t) sin(nmx) sin(nmé)

Solution Scheme:

Case Boundary Leg Sides Material Time Temperature
Condition Properties Dependence [K]

T, p(x,t) = Initial + Boundary Conditions + Joule Heating

Fixed Insulated Constant Steady Si/Ge RT 1123/573
2 Convection Insulated Constant Steady Si/Ge RTG  1123/573
3 -ixec Convection Constant Steady Si/Ge RTG  1123/573 Summary:
4 Fixec Insulated Variable Steady  Si/Ge RTG  1123/573 A set of analytic solutions, well suited for design optimization, have been generated
5 Fixec Insulated Constant Transient Si/Ge RTG 1123/573 and can serve as both learning tools and numerical benchmark solutions. The cases

demonstrate the importance of new design considerations in addition to Figure of
Merit.

1. Classic Solution:
| | Conversion Efficiency [%] Case | B.C. Convection | Leg Side Convection | Max Efficiency Yopt | Max Power
* The location of the maximum on the 4 ' ' ' ' ' ' ' 6 [W/mZK] [W/mZK] [%] Density [W/m?]
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conversion efficiency contour plot 6.15 1.09 1.22 17,733
coincides with the classic solution. 6.05 1.09 1.22 17,118
* Presentation of the device design space in 5 96 109 1.23 12,780
this fashion allows for a better
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understanding of device design. | Bl < oc E S
* Solution stands for both rectangular and — - - - :

cylindrical geometries when the e o 50 5.33 1.20 1.19 17,733
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6.01 1.16 1.15 17,333

appropriate X and Y values are used.



