

Low Profile Tunable Dipole Antennas Using BST Varactors for Biomedical Applications

David Cure and Thomas Weller University of South Florida Tony Price - INTEL Corporation Félix A. Miranda - NASA Glenn Research Center

Outline

- Motivation
- Background
- Previous Related Work
- I-D Varactor based Tunable Antenna
- Summary
- Acknowledgement
- References

Low Profile Tunable Dipole Antennas Using BST Varactors for Biomedical Applications

MOTIVATION

Motivation

- Design a low profile, conformal, tunable antenna for biomedical applications
- Portable radiometer applications:
 - Health monitoring sensor astronauts, sports medicine, etc.
 - Remote Underground Thermal Detection

Motivation(Cont.)

- Antenna Requirements for wearable radiometer:
 - Minimize back-side radiation
 - Large bandwidth (~100 MHz)
 - Low profile and conformal (flexible)
 - Low weight, low cost & low complexity

27 mm height ~λ/8 at 1.4 GHz

Cavity-Backed Slot Antenna (CBSA)* Cons: Bulky, heavy.

[*] Q. Bonds, T. Weller, B. Roeder and P. Herzig, "A tunable Cavity Backed Slot Antenna (CBSA) for close proximity biomedical sensing applications," in IEEE Microwaves, Communications, Antennas and Electronics Systems, 2009

Low Profile Tunable Dipole Antennas Using BST Varactors for Biomedical Applications

PREVIOUS WORKS

Antenna Structure

Dipole

- End-Loaded Planar Open-Sleeve (ELPOSD)
- Broadband or dual response
- Tunable: Several parameters
- Lp affects the upper resonance frequency
- L affects the Lower resonance frequency

1-D Varactor based Tunable Antenna

- Height ~λ/45 at 2.4
 GHz
- Bias and fabrication simplicity
- Minimize the use of vias (potentially conformal nature)
- High front-to-back
 radiation pattern ratio
 v₃
- Ability to dynamically adjust the center frequency

Common bias applied

Non-uniform bias voltages

Config	<i>V</i> ₁ , <i>V</i> ₂	V_3	V ₄ , V ₅	V_6	V ₇ , V ₈
А	30 V	30 V	30 V	30 V	30 V
В	70 V	70 V	30 V	70 V	70 V

10

Operation using non-uniform bias voltages with Human Core Model (HCM)

Config.	V ₁ , V ₂	V ₃	V ₄ ,V ₅	V_6	V ₇ , V ₈
D (No HCM)	30 V	30 V	30 V	30 V	30 V
E (w/ HCM)	30 V	30 V	30 V	30 V	30 V
F (w/ HCM)	10 V	30 V	30 V	30 V	20 V
G (w/ HCM)	50 V	30 V	30 V	30 V	50 V
H (w/ HCM)	100 V	100 V	100 V	100 V	100 V

Low Profile Tunable Dipole Antennas Using BST Varactors for Biomedical Applications

1-D BST VARACTOR BASED ANTENNA

BST Varactor Based antenna

- Height ~λ/45 at 2.4
 GHz
- Bias and fabrication simplicity
- Take advantage of the C-V symmetry curve
- Avoid the use of vias (potentially conformal nature)
- High front-to-back radiation pattern ratio
- Ability to dynamically adjust the center frequency

FSS Layer Using Barium Strontium Titanate (BST) Varactors

84 mm

Operation using non-uniform bias voltages with Human Core Model (HCM)

Impedance match adjustment in:

 Close proximity to a HMC

 At contact with HMC

GaAs vs. BST antenna

Antenna	Mass (gms)	Total devices	Cost per device	Cost	Area (mm²)	Eff. (%)	Tunable BW (MHz)
GaAs	188	56	50 US\$	High	15600	50-80	520
BST	87	56	0.1 US\$	Low	7900	30-60	425

GaAs vs BST varactor based antenna

- Both low profile
- Both Easily tunable
- BST Reduced planar size and mass compared to GaAs
- BST- Cost effective
- BST Compact and robust

Summary

- A low profile, tunable dipole antenna using BST varactors has been demonstrated
- The total antenna thickness is ~λ/45 when using 1-D varactor-loading
- A tunable frequency response from 2.2 to 2.55 GHz
- Cost effective, compact, robust, easily tunable and low profile antenna
- BST varactor antenna enables:

□Small bias Network voltages

Potential use of flexible substrates

Acknowledgment

This work was supported by:

- NASA Glenn Research Center (Grant # NNX10AL41H) -Graduate Student Researcher Program
- The National Science Foundation (grant #ECS-0901779).
- Sloan Foundation
- The authors thank Rogers Corporation for donating the substrates used in this work.
- Wireless And Microwave Information System (WAMI) Center At University of South Florida

References

- [1] D. Cure, T. Weller and F.A. Miranda "Study on a Low Profile 2.4 GHz Planar Dipole Antenna Using a 1-D Varactor-Tuned High Impedance Surface," Antennas and Propagation, IEEE Transactions on, vol.61, no.2, pp.1, February 2013.
- [2] Q. Bonds, J. Gerig, T. Weller, and B. Roeder, "Towards Core Body Temperature Measurement via Close Proximity Radiometric Sensing," IEEE Sensors Journal, Special Issue on Non-Invasive Physiological Monitoring, vol. 12, no. 3, pp. 519–526, March 12. 2012.
- [3] K.D. Stephan, and J.A. Pearce, "Antennas and reflectors for near-field radiometric remote sensing of temperature in industrial applications," IEEE Antennas and Propagation Society International Symposium, vol. 4, pp. 302 – 305, August 2002.
- [4] S. Jacobsen, and P. Stauffer, "Performance Evaluation of Various Antenna Configurations for Microwave Thermography During Superficial Hyperthermia," Journal of Electromagnetism Waves and Applications, vol. 15, no. 1, pp. 111-134, 2001
- [5] F. Yang, Y. Rahmat-Samii "Electromagnetic Band Gap (EBG) structures in Antenna Engineering" The Cambridge RF and Microwave Engineering. 2008

References

- [6] D. Sievenpiper, "High-impedance electromagnetic surfaces," Ph.D. dissertation, Dept. Elect. Eng., Univ. California at Los Angeles, Los Angeles, CA, 1999
- [7] Werner D.H and Spence T.G "A Novel Miniature Broadband/Multiband Antenna Based on an End Loaded Planar Open-Sleeve Dipole" IEEE Trans. Antennas Propag., vol. 54, no. 12, pp.3014–3020, Dec. 2006. M.
- [11] M. Hosseini and M. Hakkak, "Characteristic estimation for Jerusalem Cross Based artificial magnetic conductors," IEEE Antennas and Wireless Propag. Letter s, Vol. 7, 2008.
- [12] C.R. Simovski, P. de Maagt, S.A. Tetryakov, M. Paquay, and A. A. Sochava, "Angular stabilization of resonant frequency of artificial magnetic conductors for TE-incidence," Electron. Lett., vol.40, no. 2, pp. 92-93, 2004.

0.5

Frequency (GHz)

Add. 2

$$C_{end} = 4ns(2 + \pi)\epsilon_{end}\epsilon_0 \frac{K(\kappa_{0end})}{K(\kappa'_{0end})}$$
 54% error

$$C_{end} = 2ns\left(2 + \frac{\pi}{2}\right)\epsilon_{end}\epsilon_0 \frac{K(\kappa_{0end})}{K(\kappa'_{0end})} \qquad \begin{array}{c} 6\%\\ \text{error} \end{array}$$

_ _

Number of Fingers	Measured Effective Capacitance at 0 volts	Measured Effective Capacitance at 90 volts	Permittivity extracted at 0V and 90 V (HFSS)	Permittivity extracted at 0V and 90 (Eq. 4.09)	Permittivity extracted at 0V and 90V (Eq. 4.10)
3	1.17 pF	0.88 pF	800-500	400-250	750-510
5	2.1 pF	1.5 pF	750-500	450-270	770-500
7	3.2 pF	2.2 pF	750-500	470-270	800-520

Number of Fingers	Measured Effective Capacitance at 0 volts	Measured Effective Capacitance at 90 volts	Permittivity extracted at 0V and 90 V (HFSS)	Permittivity extracted at 0V and 90 (Eq.4.09)	Permittivity extracted at 0V and 90V (Eq.410)
3	0.75 pF	.5 pF	350-230	160-70	350-200
5	1.4 pF	0.98 pF	350-230	180-90	360-210
7	2.1 pF	1.45 pF	350-230	200-100	370-220

(4.9)

(4.10)