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Introduction: Many lines of evidence (e.g. com-

mon geochemistry, chronology, O-isotope trends, and 

the presence of different HED rock types in polymict 

breccias) indicate that the howardite, eucrite, and diog-

enite (HED) meteorites originated from a single parent 

body.[1]  Meteorite studies show that this protoplanet 

underwent igneous differentiation to form a metallic 

core, an ultramafic mantle, and a basaltic crust.[1]  A 

spectroscopic match between the HEDs and 4 Vesta 

[2] along with a plausible mechanism for their transfer 

to Earth, perhaps as chips off V-type asteroids ejected 

from Vesta's southern impact basin, supports the con-

sensus view that many of these achondritic meteorites 

are samples of Vesta’s crust and upper mantle.[3] 

The HED-Vesta connection was put to the test by 

the NASA Dawn mission, which spent a year in close 

proximity to Vesta.[4]  Measurements by Dawn’s three 

instruments, redundant Framing Cameras (FC), a Visi-

ble-InfraRed (VIR) spectrometer, and a Gamma Ray 

and Neutron Detector (GRaND), along with radio sci-

ence have strengthened the link.  Gravity measure-

ments by Dawn are consistent with a differentiated, 

silicate body, with a dense Fe-rich core.[4] The range 

of pyroxene compositions determined by VIR overlaps 

that of the howardites.[5]  Elemental abundances de-

termined by nuclear spectroscopy are also consistent 

with HED-compositions.[6]  Observations by GRaND 

provided a new view of Vesta inaccessable by tele-

scopic observations.  Here, we summarize the results 

of Dawn’s geochemical investigation of Vesta and 

their implications. 

A GRaND View of Vesta.   Dawn’s nuclear spec-

trometer (GRaND) was originally intended to be a 

“carbon-copy” of the Lunar Prospector Gamma-Ray 

Spectrometer (LP-GRS); however, the placement of 

the instrument on the deck of the spacecraft necessitat-

ed some design changes.[7] Like LP-GRS, GRaND 

contains a large-volume bismuth-germanate (BGO) 

scintillator, which serves as the primary gamma ray 

detector; however, unlike LP-GRS, GRaND’s boron-

loaded plastic (BLP) anti-coincidence shield and neu-

tron spectrometer is segmented to enable contributions 

from Vesta (and Ceres) to be separated from spacecraft 

background.  In addition, Li-loaded glass scintillators 

and Gd metal were strategically-added to the faces of 

the downward- and upward-facing  BLP segments to 

enable separation of thermal and epithermal neutron 

components.  Finally, an array of room-temperature 

semiconductors (CdZnTe), with better gamma-ray en-

ergy-resolution than BGO, was flown as a demonstra-

tion technology.  The selected arrangement of sensors 

enables gamma ray spectroscopy up to ~10 MeV, a 

range that includes signatures for major elements such 

as Fe, Si, Mg, and O and radioelements K, Th, and U.  

GRaND’s neutron measurements are sensitive to mod-

eration by H, neutron absorption, and the average 

atomic mass of Vesta’s regolith.   

Close proximity and long integration times are re-

quired for nuclear spectroscopy.  Thus, Dawn spent ~5 

months in a low altitude circular, polar mapping orbit 

(about 1.79 body radii from center), which enabled full 

global mapping of selected elemental signatures. De-

spite similarities in spectrometer design, the sensitivity 

of these measurements was lower than that of Lunar 

Prospector, which flew much closer to the Moon (1.02 

body radii from center).   For Vesta, the intrinsic spa-

tial resolution of map products was on the order of 300 

km, somewhat smaller in scale than the Rheasilvia 

impact basin. The measurements are sensitive to rego-

lith composition to depths of several decimeters. 

The global regolith.  The Fe/O and Fe/Si mass ra-

tios for Vesta’s global regolith, determined by gamma 

ray spectroscopy (BGO), are consistent with HED 

compositions (howardite).[6]  The error ellipses ex-

clude most other achondrite compositions, all chon-

drites and stony-iron meteorites.  These observations 

indicate that Vesta’s howarditic regolith does not con-

tain significant exogenic Fe-Ni metal, beyond that ob-

served in howardite, which implies that Vesta is not 

the source of the mesosiderites.  The detection limit for 

the radioelement K (<1 mg/g),[6] abundant in glass 

spherules found in some howardites,[8] is consistent 

with the low concentrations found in HEDs,[6] ruling 

out evolved, K-rich lithologies as a major crustal com-

ponent.   

Exogenic hydrogen.  Vesta’s regolith contained 

unexpectedly high concentrations of hydrogen, as de-

termined by measurements of epithermal neutrons [6] 

and confirmed by an analysis of fast neutron counting 

data.[9]  The range of hydrogen on Vesta is about 400 

g/g, with the highest concentrations found in Vesta’s 

dark hemisphere near the equator.[6]  In these loca-

tions, water ice is not stable within the depths sensed 
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by GRaND.  Furthermore, the global maximum is 

much higher than for lunar soils, which contain solar-

wind hydrogen (typically <100 g/g H).[6]  Compara-

tive analyses of Ne isotope ratios in lunar samples and 

regolithic howardites show that hydrogen content of 

Vesta’s regolith that is derived from the solar wind 

must be much smaller than that of the Moon.[6]   Alt-

hough Vesta’s magmas incorporated some water,[10] 

the source of surficial H seen by GRaND is not likely  

endogenic as Vesta formed from volatile-poor materi-

als.[6]  Rather, the observed anticorrelation of H with 

albedo points to the infall of exogenic carbonaceous 

chondrite material as the probable source.[6]    

This hypothesis is supported by additional observa-

tions.  The distribution of H is correlated with the 2.8 

m absorption band areas mapped by VIR, which is 

sensitive to OH content.[11] Carbonaceous chondrites 

contain hydrated phyllosilicates, which could serve as 

a stable reservoir of hydrogen.  Some howardites con-

tain clasts of carbonaceous chondrite, which have not 

undergone significant dewatering by impacts.  C-type 

asteroids, some of which are located nearby, likely 

contributed hydrogen-rich material to Vesta.  Finally, 

Vesta is the only asteroid for which evidence of sur-

face alteration by volatiles has been found.[12]  Pitted 

terrain found in the floors of young impact craters such 

as Marcia may have formed in high-velocity impacts 

that released volatiles from a regolith containing ex-

ogenic, hydrated minerals.[12, 13] 

Elemental variegation.  Vesta has long been 

known as a “colorful” asteroid,[14,15] and GRaND’s 

measurements reveal broad, spatial patterns that track 

with those seen by optical spectroscopy.  A suite of 

elemental maps was recently published [6, 9, 16-18] 

and is now available from the NASA Planetary Data 

System Small Bodies Node.  The archive includes 

maps of H, Fe, the effective thermal neutron macro-

scopic absorption cross section (eff), contributions of 

fast neutrons to average atomic mass (<A>), and the 

high-energy gamma ray (HEGR) continuum.   The 

latter three quantities are weighted averages of ele-

mental abundances and are sensitive to different as-

pects of Vesta’s composition.  For example, eff is sen-

sitive to Fe, which is primarily found in pyroxene, as 

well as Ca and Al, which are components of plagio-

clase.[18]  Together, Fe and eff constrain the propor-

tion of pyroxene and plagioclase in Vesta’s surface.    

The maps can be interpreted in terms of howardite 

petrology (e.g. see Fig 1).  The Rheasilvia basin is di-

ogenite-rich; whereas, the older terrane within Vesta’s 

dark hemisphere is eucrite-rich.  A lobe of diogenite-

rich material extending northward from the Rheasilvia 

basin in the eastern hemisphere may be part of the 

ejecta blanket, perhaps diagnostic of an oblique im-

pact.  A similar lobe is seen in compositional indices 

derived from FC and VIR data.  The impact that 

formed Rheasilvia may have excavated portions of 

Vesta’s harzburgitic mantle [19]; however, an ele-

mental signature for olivine-rich lithologies within the 

basin is lacking.[18]  A region of low-Fe and interme-

diate neutron absorption has been interpreted as a pos-

sible signature for cumulate eucrites [16]; however, the 

range of compositions sensed by GRaND is consistent 

with howardite.  Vesta’s pristine, ancient crust has 

been pulverized by impacts to produce a howarditic 

regolith. 
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Fig. 1.  The percentage of eucritic material (POEM) in 

Vesta’s regolith determined by neutron spectroscopy 

[18] (color) is superimposed on shaded relief.  Red 

regions are eucrite-rich; whereas, blue regions are 

rich in diogenite.  The boundary of the Rheasilvia im-

pact basin is shown (white line).  Claudia longitudes 

[4] are shown. 
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