

Qian Gong, David Content, Jeffrey Kruk, Bert Pasquale, Thomas Wallace, and Walter Smith NASA Goddard Space Flight Center

WFIRST-AFTA: A Unique Probe of Cosmic Structure Formation History

Using Observations from the High Latitude Survey and GO Programs

WFIST/AFTA & GRISM ASSEMBLY

- Wide-Field Infra-Red Survey Telescope (WFIRST) is designed to perform wide-field imaging and slitless spectroscopic survey of the sky.
- A compound grism assembly is selected as its slitless dispersing element.
- The challenge of this grism is the wider Field Of View (FOV), larger dispersion, and smaller f/#.
- The challenge is overcome by the innovative design of using two diffractive surfaces.

GRISM Comparison: WFIRST versus HST

- Grisms have been used in a number of Hubble Space Telescope (HST) instruments: Wide Field Camera 3 (WFC3), Near Infrared Camera and Multi-Object Spectrometer (NICMOS), Advanced Camera for Surveys (ACS), etc.
- There are 3 differences that makes WFIRST grism much more challenge than HST's:

	WFIRST	HST WFC3
FOV	0.28 degree ²	0.0012 degree ²
Spectral resolution	R = 700	R = 130
f/#	8	11

WFIRST GRISM SPECIFICATION

Wavelength range (µm)	1.35 – 1.95
FOV (°)	0.788 x 0.516
Beam diameter at grism (mm)	120
Beam f/-ratio at grism (mm)	~f/8
Wavefront error	Diffraction limited at 1.65µm
Spectral resolving power (per 2 pixels)	645 – 900 (461×λ)
Compactness	70mm total thickness for a fixed diameter ~120mm

DESIGN CONSIDERATION

- The main challenge of the grism design is how to correct the grating introduced aberration in noncollimated space? Besides, it needs to be compact enough to fit into a filter wheel slot. It also needs to be designed parforcal to other filters.
- The aberration is huge at large incident angles (±12.5°) and the amount of aberration is proportional to wavelength.
- The wavelength dependent aberration is very difficult to correct using non-diffractive lenses, even with many freeform surfaces.
- The key is to find a right compensator: another diffractive surface "diffractive lens"

GRISM OPTICAL DESIGN

Element 1:

Substrate: fused silica

Function: bandpass filter and aberration corrector

S1 is sphere, and S2 is diffractive lens on flat

Element 2:

Substrate: fused silica

Function: prism to make grism zero deviation

Both S1 and S2 are spheres

Element 3:

Substrate: fused silica

Function: grating to provide required dispersion

S1 is sphere, and S2 is grating on flat

GRISM IN WFIRST ELEMENT WHEEL

- WFIRST/AFTA has a number of subassemblies, the element wheel is one of the major assemblies.
- Grism assembly is one element in the element wheel.
- Grism has to be compact enough in thickness to avoid conflict with the beams and other subassemblies.

GRISM MATERIAL SELECTION

- Fused silica is selected for all grism elements. Its property is well know and well characterized.
- The diffractive patterns will be ion etched into the lens substrate. The fused silica is one of the best choices for reactive ion etching.
- Because of the more reproducible and small temperature derivative of refractive index of the fused silica, the fabrication and alignment tolerance are greatly relaxed.
- Fused silica has been well characterized at WFIRST operation temperature 170°K.

DIFFRACTION LIMITED PERFORMANCE

SPECTRAL RESOLVING POWER MEETS SPECS.

REMOVE UNWANTED GRATING ORDERS TO BACKGROUND

Spot diagram for different diffractive lens orders

1st order: fabricated to include >90% energy

PATTERNS OF TWO DIFFRACTIVE SURFACES

Grating contour. There are 165 lines between the two plotted lines.

Diffractive lens contour. There are ~ 10 lines between the two plotted lines.

- Titanium is selected as element mount material to minimize the wavefront distortion at 170°K.
- A ring structure tested in similar environment for another project is used to further control CTE mismatch introduced wavefront degradation.
- 5 degrees of freedom are designed into two of the three elements to provide desired adjustment.

DIFFRACTION EFFICIENCY OF SAMPLES

- Four diffractive samples have been made in one fused silica wafer.
- The samples were designed for HeNe wavelength at 632.8nm in order to simplify the measurement.
- There are two diffractive lenses and two grating patterns on the wafer.
- The measured results show the diffraction efficiency is over 90%.

- Ambient test will be performed using interferometer.
- Even though the grism is designed for NIR wavelength, it can be tested in visible at 632.8nm with the help of a specially designed Computer Generated Interferogram (CGH).

GRISM TEST CONFIGURATION (cryogenic)

- Phase retrieval will be used for final assembly test at cryogenic temperature at 170°K.
- A few IR wavelengths between 1.35µm and 1.95µm will be used during the test.

CONCLUSION

- The analysis shows that the grism with two diffractive surfaces solves the previous problem: grism is limited to small FOV, small spectral dispersion, and in non-collimated space.
- All three lens substrates have been made. We are working with vendors (RPC Photonics and JenOptik) to etch the diffraction patterns into the two flat surfaces.