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1. Introduction

It is a great honor to have become the second recipient
of the Hendrik C. Van de Hulst Award presented by
Elsevier in the general category of Electromagnetic Scat-
tering. It is also a special pleasure for me to receive this
award following Prof. Joop W. Hovenier (Fig. 1) who has
always exerted strong influence on my research and had
unknowingly served as an implicit adviser during my PhD
studies and early years in science. Part of the award
ceremony was a Van de Hulst Lecture presented at the

14th Conference on Electromagnetic and Light Scattering
(ELS) on 20 June 2013. Another official part of this award is
the honor and obligation to publish in the Journal of
Quantitative Spectroscopy and Radiative Transfer (JQSRT) a
scientific Essay intended to summarize the recipient's
personal view of the state-of-the-art of one or more
disciplines related to electromagnetic scattering by parti-
cles and particulate media. Needless to say, these disci-
plines are expected to have been foci of the recipient's own
research leading to the Van de Hulst Award.

The formats and styles of the Van de Hulst Lecture and
the Van de Hulst Essay are still in a state of flux since only
two such lectures have been presented and only one such
Essay has been published [1]. On one hand, this lack of
established traditions appears to represent a challenge. Yet
on the other hand I feel that it sets me free to adopt an ad
hoc format for this Essay and essentially speak my mind
with the hope that the result will be instructive to the
JQSRT readership. Therefore, I have decided to focus on the
current state of the disciplines of directional radiometry
and radiative transfer as I understand them following
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almost 30 years of research. More specifically, this Essay
will largely be devoted to the centuries-long history of the
phenomenological stage of these disciplines which, intri-
guingly, is not over yet, followed by the history of the
uneasy process that has ultimately led both disciplines to
become full-fledged branches of physical optics.

Although Van de Hulst's classical treatises on light
scattering [2] and radiative transfer [3] have been essential
sources of my knowledge of both disciplines, I have had
the privilege of meeting him in person only twice. The first
meeting occurred in Leningrad (now St. Petersburg) in
October of 1990 during a Symposium dedicated to the
100th anniversary of the radiative transfer equation (RTE).
That Symposium was organized by Academician Viktor
Sobolev and Professor Vsevolod Ivanov and served to
assemble many members of the renowned Soviet school
of radiative transfer (Fig. 2). Professor Van de Hulst (Fig. 3)
was a special invitee and a de facto ambassador of the
western school. The majority of presentations were given
in Russian, and so during two sessions I was asked by
Vsevolod Ivanov to translate the talks into English person-
ally for Professor Van de Hulst. That task of speaking so
much English for the first time in my life turned out to be a
challenge, and by the middle of the second session my
tongue and lips started to fail. Professor Van de Hulst did
notice that and with a soft smile told me not to worry
since most formulas required no translation. I was also
asked to accompany Professor Van de Hulst on his com-
mutes between Pulkovo (the location of the famous Pulk-
ovo Astronomical Observatory) and Petrodvorets (the
location of the Astronomy Department of the Leningrad
University). One of these trips coincided with a beautiful
sunset which we could observe through the train window;
looking at splendid colors of that sunset naturally trig-
gered an instructive discussion of various atmospheric
optical phenomena.

Our second meeting occurred during the inaugural
Conference on Light Scattering by Non-Spherical particles
in May of 1995. That event was organized by Joop
Hovenier at the Free University of Amsterdam [4] and
served to initiate the prominent series of ELS conferences.

The 1998 ELS conference was convened at the NASA
Goddard Institute for Space Studies (GISS) in New York,
and Professor Van de Hulst had kindly agreed to open it
with a keynote lecture. He was very enthusiastic about the
occasion to visit the place where he spent a six-month
sabbatical in 1962, the result of which was his famous
NASA report on the adding/doubling method [5]. Unfortu-
nately, just two days before the opening of the conference
Professor Van de Hulst faxed me with an apology for being
unable to come to New York because of certain health
issues. However, he was still able to contribute the
instructive Foreword [6] to the monograph on light scat-
tering by nonspherical particles [7] which has proved to
be an important collective outcome of the New York
conference.

Since Joop Hovenier did his PhD work under the
supervision of Professor Van de Hulst and since my early
research had benefitted so much from Joop's publications
(especially the 1983 review [8] co-authored by Cornelis
van der Mee), I consider myself one of Van de Hulst's
“indirect” disciples. My direct scientific genealogy can be
traced to Academician Viktor Ambartsumian, one of the
founders of theoretical astrophysics. Indeed, I did my PhD
work under the supervision of Dr. Edgard Yanovitskij
whose PhD thesis was in turn supervised by Academician
Sobolev (Fig. 4), the prominent Soviet astrophysicist and
the best known PhD student of Academician Ambartsu-
mian (Fig. 5). My early research was also influenced by two
other members of the Ambartsumian–Sobolev school of
radiative transfer, Vsevolod Ivanov and Helmut Domke
(Fig. 6). Furthermore, Vsevolod Ivanov served as an Official
Opponent on my PhD and Habilitation thesis defenses.

As already mentioned, I owe my initial basic knowledge
of the theory of radiative transfer to Van de Hulst's mono-
graph [3], as well as to the so-called “blue Sobolev” [9].1

That nickname refers to the navy blue color of the cover in
the original Russian edition of this well-known monograph
and was used by Soviet scientists to distinguish it casually
from the “black Sobolev” [11]. As a novice in the field of
radiative transfer, I took for granted the apparent simplicity
and obviousness of the main phenomenological concepts of
this discipline and for some time had not realized that the
“traditional” radiative transfer theory (RTT) is, figuratively
speaking, a “colossus with feet of clay”. My awakening
started in 1986 when I read the Russian edition of the 1978
book by Ishimaru [12]. It was quite surprising to learn that

Fig. 1. Joop Hovenier (left) and Michael Mishchenko at ELS-XIV in Lille on
17 June 2013.

1 Another essential source was the famous review by my future
colleagues at GISS James Hansen and Larry Travis [10]. This paper was
immensely popular among my Soviet colleagues despite the fact that only
a few preprints and even fewer reprints were in circulation. I still vividly
remember how upset Edgard Yanovitskij became when he found that his
copy of the preprint had been stolen from his desk. While being
unethical, this was obviously an act of desperation on someone's part
as well as an implicit compliment to a great publication. In 1985, the first
year of my PhD studies, it took a bit of courage to send a postcard to Larry
Travis asking for a reprint. I thought that I had no chance since 11 years
after the publication of the paper all reprints were likely to be gone;
furthermore, I did not know the street address (it was not included as
part of the authors’ affiliation) and sent the postcard to NASA GISS, New
York, NY 10025, USA. To everyone's (and my own) surprise, two months
later I became a proud owner of an original reprint. Needless to say,
I never left it on my desk unattended.
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there appeared to be at least two different and completely
unrelated ways of arriving at exactly the same scalar RTE for
a turbid medium, viz., the “traditional” back-of-an-envelope
derivation allegedly based on the concept of radiance and
energy conservation considerations as well as the one
allegedly based on the scalar wave theory. As someone
with a bit of a background in mathematical logic, I thought
that if that were the case then one of the derivations must
be a direct corollary of the other because otherwise it
would be a fake derivation essentially amounting to the
postulation of the RTE based on verbal “simple physical
considerations”.

The following 25 years of study and research have
confirmed that initial suspicion. Furthermore, I believe that
this research has served to conclude the work initiated by
Rudolph Preisendorfer, Yuri Barabanenkov, Anatoli Borovoi,
Yuri Gnedin, Emil Wolf, Akira Ishimaru, Leung Tsang and

others in that it has brought the disciplines of directional
radiometry and radiative transfer into the realm of physical
optics. Therefore, what follows is a personal and, by defini-
tion, subjective account of what it has taken to finally
convert the centuries-old phenomenologies of directional
radiometry and radiative transfer, as applied to particulate
media, into first-principle theories.

2. Phenomenology

A thorough account of the early history of directional
photometry2 was provided by DiLaura in the introduction to
Ref. [13]. He attributed the culmination of medieval optics to

Fig. 2. Participants of the Leningrad Symposium dedicated to the 100th anniversary of the radiative transfer equation (October 1990). From left to right:
Roman Kostyk (1), Viktor Loskutov (2), Dmitry Nagirner (3), Kusiel Shifrin (4), Michael Mishchenko (5), Arthur Nikoghossian (6), Hendrik Van de Hulst (7),
Alexander Kokhanovsky (8), Viktor Sobolev (9), Nikoli Konovalov (10), Aavo Heinlo (11), Tamara Sushkevich (12), Tatyana Germogenova (13), Arkady Ivanov
(14), Igor Minin (15), Vsevolod Ivanov (16), Yuri Gnedin (17), Edgard Yanovitskij (18), Zhanna Dlugach (19), Nikolai Rogovtsov (20), Aleksandr Kolesov (21),
Nikolai Voshchinnikov (22), Vladimir Grinin (23), Hovannes Pikichian (24), and Tõnu Viik (25).

2 For the purposes of this Essay, the terms “photometry” and “radio-
metry” will be used interchangeably.
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Ad Vitellionem Paralipomena [14] by Johannes Kepler (1571–
1630; Fig. 7) published in 1604 and containing one of the
most fundamental elements of photometry, viz., the attenua-
tion of the intensity of light as the inverse square of distance
from a point-like source. However, establishing photometry as
a scientific discipline was the outcome of systematic studies
by the French natural scientist and engineer Pierre Bouguer
(1698–1758) followed by those of the Swiss mathematician,
natural scientist, and philosopher Johann Lambert (1728–
1777).

Bouguer's Essai d'Optique [15] was published in 1729,
while its thorough augmentation, Traité d'Optique [16]
(Fig. 8), appeared posthumously in 1760. Bouguer's
research was mostly experimental and relied on several
ingeniously designed photometric instruments. He was
the first to realize that the human eye cannot be used as
an accurate absolute meter of brightness but is quite
capable of establishing the equality of brightness of two
adjacent surfaces. In Essai d'Optique Bouguer describes the
use of Kepler's law of inverse squares and the human eye
as an equality indicator to derive the ratio of luminous
intensities of two light sources and discovers the famous
exponential attenuation law3 by studying the diminution
of light as it passes through translucent media (Fig. 9). He
also analyzed the reflection of light by rough surfaces and
proposed the idea of modeling such diffuse reflectors as
consisting of small randomly oriented mirrors whose
orientation distribution would determine the macroscopic
angular reflectance. In his Photometria [17] (Fig. 8), Lam-
bert was the first to extensively and systematically use
contemporary mathematics, including calculus, to inter-
pret experimental results and developed the mathematical
foundation of radiometry by introducing specific defini-
tions of photometric quantities and a unified set of photo-
metric principles and laws.

The impact of Bouguer's and Lambert's work was so
profound that even now much of illumination engineering
is based, directly or indirectly, on their treatises. Perhaps
the only significant augmentation dating from 1854 was
the incorporation of the solution concentration into Bou-
guer's exponential attenuation law by August Beer (1825–
1863) [18].

With the development of Maxwell's electromagnetics
in 1864 and the realization that light consists of electro-
magnetic waves, the photometry of Bouguer and Lambert

Fig. 3. Hendrik Van de Hulst (left) and Kusiel Shifrin at the Leningrad
Symposium dedicated to the 100th anniversary of the radiative transfer
equation (October 1990).

Fig. 4. From left to right: Michael Mishchenko, Zhanna Dlugach, Viktor
Sobolev, and Edgard Yanovitskij (Kyiv, June 1985).

Fig. 5. Academicians Viktor Ambartsumian (left) and Viktor Sobolev
(Leningrad, May 1980).

3 Bouguer's exponential attenuation law is often incorrectly attrib-
uted to Lambert. This is thoroughly inappropriate since Lambert had read
Bouguer's Essai d'Optique published in 1729 and frequently cited it in his
own Photometria [17] published in 1760.
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could no longer be considered a branch of physics based
on first principles and had thus become a purely phenom-
enological discipline.4 However, this profound and irrever-
sible shift in the conceptual status of the old directional
photometry has largely been ignored. All in all, phenom-
enological photometry, as summarized eloquently in 1936
by Andrei Gershun (1903–1952) in terms of the so-called
“light field” [21], has been one of the oldest surviving
paradigms5 in contemporary science despite its whopping

disconnect from the “mainland” of modern physics (in the
words of Rudolph Preisendorfer [28]).

The main contribution by the German physicist and
mathematician Eugen von Lommel (1837–1899) was to
introduce, in 1887, the notion of the amount of radiant
energy crossing an imaginary geometrical rather than an
actual physical surface element. This allowed him to
conceptualize the directional flow of radiant energy
through space and introduce the integral form of the RTE
as a way of solving the problem of diffusion of light
through a turbid medium composed of isotropically scat-
tering centers [29] (Fig. 10). Virtually identical results were
published independently by the Russian physicist Orest
Khvolson (1852–1934) two years later6 [30] (Fig. 10; see
also the instructive account of the early history of the
phenomenological RTT by Ivanov [31]).

The work by Lommel and Khvolson has remained
largely unnoticed. The first introduction of the RTE has
traditionally been attributed to Arthur Schuster (1851–
1934). In actuality, however, Schuster's paper of 1905 [32]
contains what is now known as the two-stream approx-
imation rather than the integral or integro-differential
form of the RTE. The first phenomenological derivation of
the RTE in the case of anisotropic scattering was given by
Louis Vessot King in 1913 [33]. Like Lommel and Khvol-
son, King introduced the integral form of the RTE rather
than the integro-differential equation that eventually
assumed the status of being the canonical form of the
RTE. Interestingly, the direct microphysical derivation
from the Maxwell equations yields the integral form of
the RTE, the integro-differential form being a corollary.

Fig. 6. Participants of the 2nd Conference on Polarized Radiative Transfer, Tõravere, Estonia, 17–18 October 1991. First row, from left to right: Cornelis van
der Mee, Helmut Domke, Joop Hovenier, Vsevolod Ivanov, Marianne Faurobert-Scholl, Zhanna Dlugach, Viktor Loskutov, Edgard Yanovitskij, Aavo Heinlo,
Dmitry Nagirner, Juris Freimanis, and Tõnu Viik. Second row, from left to right: Hans Scholl, Michael Mishchenko, Nikolai Konovalov, Eugene Ustinov, and
Sergei Strelkov.

4 A physical theory is called phenomenological if it expresses
mathematically the results of observed phenomena without clarifying
their fundamental origin and significance. Typically, the development of a
phenomenological theory is based on experience-based heuristic short-
cuts lacking rigorous justification. Most phenomenological theories are
short-lived and get replaced by fundamental first-principle theories.
However, as we discuss in this Essay, some phenomenologies can survive
for centuries despite their inherently limited scientific value and even-
tually become an impediment to scientific progress. The Latin term
“Phenomenologia” was introduced by the German Lutheran theologian
and theosopher Christoph Friedrich Oetinger in 1736 [19]. Subsequently,
the German term “Phänomenologie” was used by Lambert to name his
“doctrine of appearance” [20]. It should be noted that Lambert viewed his
photometry as a phenomenological discipline from the very outset.

5 The concepts of scientific paradigms and paradigm shifts emerged
in the framework of the historical approach in the philosophy of science
according to which only by studying history of science can we gain an
adequate understanding of human reason. These profound notions were
introduced and analyzed, using different terminology, by the 20th
century French philosophers Gaston Bachelard, Georges Canguilhem,
and Michel Foucault, but the roots of their work can be traced to the
older French tradition of science studies, going back to Auguste Comte
and including later thinkers such as Pierre Duhem and Henri Poincaré
(see, e.g., Refs. [22–26]). Thomas Kuhn [27] systematized and popularized
these ideas and re-instituted the use of the term “paradigm” introduced
by Plato in his dialog Timaeus to name the eternal pattern used by a
divine Craftsman (the Demiurge) to create the universe. A universally
accepted definition of a scientific paradigm hardly exists, but in general
it can be summarized as a self-contained set of concepts, values,
perceptions, and practices shared by a large scientific community; it
forms a particular vision of reality and is the basis of the way the
community organizes itself. A paradigm shift (or, in Kuhn's terminology, a
scientific revolution) occurs when a given discipline switches from one
distinct paradigm to another, often as a result of a long process.

6 The first page of Ref. [30] contains an interesting footnote by
Academician H. Wild according to which the paper was originally
submitted in the fall of 1885. It was then withdrawn by the author
who hoped to obtain a more complete solution of the main equation. The
paper was resubmitted in the fall of 1888 essentially in its original form.
It thus appears that Lommel and Khvolson introduced the RTE indepen-
dently of each other.
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The key quantity of the phenomenological photometry
and phenomenological RTT is the specific intensity (also
called radiance), which is postulated to have primor-

dial physical existence and a priori defined properties.
The standard definition of the specific intensity was given
in 1906 by Max Planck (1858–1947) in his famous Theorie

Fig. 7. Scientists who had contributed to phenomenology and mathematics of directional radiometry and radiative transfer.
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der Wärmestrahlung [34] (Fig. 11). On page 1 of the English
edition of this book [35], one can find the following
manifesto:

The state of the radiation at a given instant and at a
given point of the medium cannot be represented… by
a single vector (that is, a single directed quantity). All
heat rays which at a given instant pass through the
same point of the medium are perfectly independent of
one another, and in order to specify completely the
state of the radiation the intensity of radiation must be
known in all the directions, infinite in number, which
pass through the point in question.

Based on this premise, the monochromatic radiance eIðr; q̂Þ
is defined by stating that the amount of monochromatic
radiant energy dE transported through an arbitrarily chosen

differential element of area dS in the interior of a medium in
directions confined to a differential element of solid angle
dΩq̂, centered around the propagation direction q̂, during a
differential time interval dt is given by

dE¼eIðr; q̂Þ cos θ dS dt dΩq̂; ð1Þ

where r is the position vector of the differential surface
element and θ is the angle between q̂ and the normal n̂ to
dS (Fig. 12a). This definition was eventually adopted in the
classical works by E. Arthur Milne [36], Eberhard Hopf [37],
and Subramanyan Chandrasekhar [38] as well as in virtually
all subsequent monographs and textbooks on the RTT and
directional radiometry (see, e.g., Refs. [9,11,39–61]). Although
in his treatise Planck specifically considered black-body elec-
tromagnetic radiation, his concept of the specific intensity was
extended to encompass the scattering of light by cloudy and

Fig. 8. The title pages of Bouguer's Traité [16] (left) and Lambert's Photometria [17].

Fig. 9. Experimental setup used by Bouguer to discover the exponential attenuation law.
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other particulate media, which is the specific subject of this
Essay. The heuristic notion of the radiance was eventually
supplemented by the traditional belief that it can be directly
measured with a suitable optical device such as the so-called
Gershun tube sketched in Fig. 13 [21,47,55].

The French physicist and astronomer (as well as the
25th Prime Minister of France) Dominique François Arago
(1786–1853) was among the first to criticize phenomen-
ological radiometry for complete ignorance of polarization
state of light. This criticism was nominally addressed by
replacing the radiance eIðr; q̂Þ with the four-element spe-
cific intensity column vector Îðr; q̂Þ. In 1924, Richard Gans
(1880–1954) considered the transfer of polarized light in a
plane-parallel Rayleigh-scattering atmosphere [62], but
analyzed only the special case of perpendicularly incident
light and considered only the first two components of the
specific intensity column vector. The case of arbitrary
illumination and arbitrary polarization was addressed in
1950 by Subrahmanyan Chandrasekhar (1910–1995) [38].
In a 1955 paper never translated into English, Georgi
Rozenberg (1914–1982) introduced the most general form
of the integro-differential vector RTE applicable to sparse
scattering media composed of arbitrarily shaped and
arbitrarily oriented particles [63]. This publication (see
also Ref. [64]) had essentially concluded the conceptual
development of the phenomenological RTT. Perhaps the
only significant subsequent augmentation was the inclusion
of the thermal emission vector in the Rozenberg's vector RTE
by Leung Tsang in 1984 [65] (corrected in Ref. [66]).

The work by E. Arthur Milne (1896–1950), Eberhard
Hopf (1902–1983), Viktor Ambartsumian (1908–1996), Sub-
ramanyan Chandrasekhar, Viktor Sobolev (1915–1999), and
Hendrik van de Hulst (1918–2000), among others, had

served to establish the phenomenological RTT as a branch
of mathematical physics (see Refs. [67–75] and references
therein). Most recently, the phenomenological RTT has been
incorporated into the equally phenomenological discipline
of computer graphics studying techniques to digitally
synthesize and manipulate images (see, e.g., Refs. [76–78]
and references therein).

3. What is fundamentally wrong with the
phenomenological approach to directional radiometry
and RTT?

3.1. Polydirectional flow of radiant energy

In the introduction to the English translation of Gershun's
treatise [21], Moon and Timoshenko wrote in 1939:

Theoretical photometry constitutes a case of “arrested
development”, and has remained basically unchanged
since 1760 while the rest of physics has swept trium-
phantly ahead. In recent years, however, the increasing
needs of modern lighting technique have made the
absurdly antiquated concepts of traditional photo-
metric theory more and more untenable.

The Gershun's treatise was then presented as part of “a
vigorous attempt to bring the theory of light calculation
into conformity with the spirit of physics.” However, some
70 years after Maxwell's Dynamical Theory [79], Gershun's
way of conforming with Maxwell's electromagnetics was,
in fact, to ignore it. Instead, the centerpiece of his treatise
is the so-called “light field”, i.e., “a part of space studied
from the standpoint of transmission of radiant energy

Fig. 10. The first pages of Refs. [29] (left) and [30].
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within that space.” To justify this approach, Gershun wrote
in the introduction to his book:

A reader-physicist would naturally ask why the author
distinguishes the light field from the electromagnetic
field well studied in physics. It is true that the light field
is caused by the electromagnetic field, but qualitatively
it is quite different.7

After this programmatic statement, electromagnetics is
hardly mentioned in the rest of Ref. [21]. This manifesto,
according to which the radiance field is somehow qualita-
tively different from the electromagnetic field and thus
must be studied using different physical principles, has
been implicit in the majority of “phenomenological” pub-
lications on directional radiometry and radiative transfer.

Whether spelled out explicitly or not, the key premise
of phenomenological photometry as well as of the phe-
nomenological RTT is that matter interacts with the energy
of the electromagnetic field rather than with the electro-
magnetic field itself. This profoundly false assumption
explains the deceitful simplicity of the phenomenological
concepts as well as their ultimate failure. Indeed, the very
outset of both phenomenological disciplines is the postu-
lation of the existence of the radiance as the primordial

physical quantity describing the “instantaneous directional
distribution of the radiant energy flow” at a point in space.
This is followed by a “derivation” of the scalar RTE on the
basis of “simple energy conservation considerations” and
the postulation that it is the electromagnetic energy rather
than the electromagnetic field that gets scattered by particles
and surfaces.

However, it is imperative to recognize that according to
classical electromagnetics, the field–matter interaction is
controlled by the electric and magnetic field vectors rather
than by the energy of the electromagnetic field [80,81].
Similarly, the canonical formulation of classical electro-
dynamics is based on expressing the field–matter interac-
tion term in the Lagrangian and Hamiltonian densities in
terms of the electromagnetic 4-vector potential, which, in
turn, is again related to the electric and magnetic fields.
The canonical formulation of quantum electrodynamics
(QED) is obtained by promoting the electromagnetic
4-vector potential and the current density of matter to
field operators that satisfy specific commutation relations
[82–88]. This implies that any attempt to bypass the
explicit solution of the Maxwell equations or an explicit
QED computation in a first-principle development of the
RTT and thus build the RTT on the notion of radiant energy
rather than on the notion of the electromagnetic field (see,
e.g., Ref. [89]) is fundamentally flawed and is doomed from
the very outset.

Furthermore, the very notion of polydirectional propaga-
tion of electromagnetic energy at a point in space, as
allegedly described by the radiance, contradicts basic laws
of classical electromagnetics and does not follow from QED.
Indeed, the quantity characterizing instantaneous electro-
magnetic energy transport in classical electromagnetics is
the Poynting vector S given by the vector product of the
real-valued electric, E, and magnetic, H, field vectors:

Sðr; tÞ ¼ Eðr; tÞ �Hðr; tÞ; ð2Þ
where r is the position vector and t is time [80,81]. However,
by virtue of being a direct corollary of the Maxwell equa-
tions, the famous Poynting theorem involves the integral
of the Poynting vector over a closed surface. As such, it
quantifies the energy budget of a finite volume element
rather than the local flow of electromagnetic energy at a
point in space. Back in 1916, the Dutch physicist Hendrik
Antoon Lorentz (1853–1928) already warned against too
literal an interpretation of the Poynting vector as describing
a current of electromagnetic energy by noting that

in general it will not be possible to trace the paths of
parts or elements of energy in the same sense in which
we can follow in their course the ultimate particles of
which matter is made up. …It might even be ques-
tioned whether, in electromagnetic phenomena, the
transfer of energy really takes place in the way indi-
cated by Poynting's law

(see pages 25–26 of The Theory of Electrons [90]). Even if
the Poynting vector could be claimed to characterize the
local current of electromagnetic energy, this vector is
inherently monodirectional at any moment in time and
remains monodirectional upon averaging over any time
interval. Therefore, there is no reason whatsoever to

Fig. 11. The title page of Planck's Theorie der Wärmestrahlung [34].

7 This translation is somewhat different from that by Moon and
Timoshenko and, in my opinion, is more accurate.
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postulate that there exists a primordial physical quantity,
viz., the radiance, that characterizes the polydirectional
local flow of electromagnetic energy.

3.2. Photonic confusion

The often uncontrollable use of the word “photon” taken
out of its proper QED framework is another manifestation of

the implicit desire to bypass the complexities of dealing
with the electromagnetic field. Indeed, a popular way to
justify the primordial existence of the polydirectional
radiance is to claim that the light field is in fact a “gas” of
localized point-like particles of light called photons. Usually
this is done with reference to Albert Einstein (1879–1955)
who attempted to model the photoelectric effect heuristi-
cally by resurrecting the idea of light corpuscles advocated
by Sir Isaac Newton (1643–1727). Specifically, Einstein
suggested in 1905 that

the energy of a light ray spreading out from a point
source is not continuously distributed over an increasing
space but consists of a finite number of energy quanta
which are localized at points in space, which move
without dividing, and which can only be produced and
absorbed as complete units
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Fig. 12. (a) Definition of the phenomenological specific intensity. (b) Hypothetical radiance function meter accumulating local instantaneous Poynting
vectors with directions falling within the acceptance solid angle ΔΩq̂ . (c) The Gershun tube is a wavefront filter. (d) The Gershun tube does not respond to
the Poynting vector directed along the optical axis of the instrument. (e) Typical optical scheme of a lens-based WCR. (f) Response of a lens-based WCR to a
superposition of plane electromagnetic waves.

ΩΔ

Fig. 13. The Gershun tube is a simple optical device consisting of a long
tube with entrance and exit apertures followed by a photodetector. The
internal walls of the Gershun tube are assumed to be perfectly absorbing.
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(see Ref. [91]). Since such localized point-like photons must
exist in vast numbers, one can imagine that at any given
moment many photons can fly by a point in space in different
directions, thereby representing the sought polydirectional
localized transport of radiant energy [92–96].

The photons are not allowed to collide with each other,
but they are allowed to collide with macroscopic particles
such as cloud droplets. In the words of Kirk [46], “the
photons follow a zig-zag path as they ricochet from one
scattering particle to the next.” These “ricochets” are
random and are claimed (again, on the basis of “simple
physical considerations”) to lead to a Boltzmann type
kinetic equation, viz., the scalar RTE. Unfortunately, it has
never been explained why the kernel of this equation,
which by design describes the “ricochet” of a photon from
a macroscopic particle, is always calculated by solving the
classical macroscopic Maxwell equations (MMEs) which
involve neither photons nor “photon–particle collisions.”
Apparently, it is believed that upon approaching a droplet
the photon becomes an electromagnetic wave. This allows
the photon to “ricochet” from the droplet according to the
MMEs (e.g., according to the formulas of the Lorentz�Mie
theory) and become an outgoing spherical wave. Even-
tually, the outgoing spherical wave switches back to being
a bunch of localized point-like photons. Needless to say,
such mysterious transformations of photons into waves
and then back into photons can only happen in the
confused human mind rather than in nature. The only
outcome of such verbal speculations can be – and has been
– the notorious “photonic confusion”.

The lasting misinterpretation of the actual QED photons
as localized particles of light has been kept flourishing by
scores of incompetent popularizers of science, contributors
of amateur Wikipedia articles, and authors of many school
and college textbooks and even professional monographs.
A typical example is the textbook by Taylor et al. [97].
On p. 139, one can find the following misleading statement:
“Today all physicists accept that the photoelectric effect, the
Compton effect, and numerous other experiments demon-
strate beyond doubt the particle nature of light.” This
statement ignores the well-established fact that the alleged
particle behavior of light in phenomena such as the photo-
electric effect can be explained quantitatively in terms of
the semi-classical approach wherein the electromagnetic
field is not quantized and is described by the classical
microscopic Maxwell equations [98–100]. Furthermore,
based on the advanced QED theory of the photoelectric
effect, Kimble and Mandel [101] concluded that photode-
tectors do not count photons in any precise sense. For some
reason these facts are virtually never mentioned in school
and college textbooks. Another profoundly wrong state-
ment can be found on p. 125 of Ref. [97]: “It was found that
an electromagnetic wave consists of tiny localized bundles
of energy. These bundles, or quanta of light, have come
to be called photons”. Similarly, McCluney [47] speaks
of “photon flux”, “photon intensity”, “photon radiance”,
and “photon irradiance”, while Petty [102] characterizes
electromagnetic radiation as a “shower of particles”.
In Ref. [103] “a beam of radiation is looked upon as a
stream of particles called photons”, while photons are
looked upon “as discrete blobs of energy without phases”.

However, the obsolete heuristic8 nature of Einstein's
localized light quanta [104–106] becomes patently obvious
upon opening an advanced textbook on the QED or
quantum optics (e.g., Refs. [107–110]). Indeed, although
the term “photon” is ubiquitous in those disciplines, it is
well recognized that there is no position operator for an
actual QED photon and that it is impossible to define a
photon wave function in the coordinate representation,
which precludes photon localizability in space (e.g., Sec-
tion 2.2 of Ref. [83]). The real QED photons are quantum
excitations of the normal modes of the electromagnetic
field and as such are associated with electromagnetic
plane waves of definite wave vector and definite polariza-
tion but infinite lateral extent. These factors imply that
QED photons are not localized point-like particles of light
and as such cannot be used to justify the notion of
polydirectional local flow of radiant energy allegedly
described by the specific intensity [111].

Some 85 years since the development of QED by Paul
Adrien Maurice Dirac, Ernst Pascual Jordan, and Werner
Karl Heisenberg [112–115], the superficial use of the word
“photon” is still frequently accompanied by the mention of
the alleged “wave�particle duality” of light. It is therefore
instructive to quote from the famous 1995 Anti-Photon by
Willis Lamb Jr. [106], where he notes that talking

about the wave�particle duality in discussion of quan-
tum mechanics …may be necessary for those who are
unwilling or unable to acquire an understanding of the
theory. However, this concept is even more pointlessly
introduced in discussions of problems in the quantum
theory of radiation.

He concludes the Anti-Photon by stating that

It is high time to give up the use of the word “photon”,
and of a bad concept which will shortly be a century
old. Radiation does not consist of particles, and the
classical, i.e., non-quantum, limit of the quantum the-
ory of radiation is described by Maxwell's equations for
the electromagnetic field, which do not involve parti-
cles. Talking about radiation in terms of particles is like
using such ubiquitous phrases as “You know” or “I
mean” which are very much to be heard in some
cultures.9

In 1989, Kidd et al. [105] suggested that elementary
texts would benefit from dropping the corpuscular photon
(except, perhaps, as a historical topic) and switching to the
semi-classical treatment as the first approximation to the
modern QED approach. In 1995, Lamb Jr. [106] wrote that
“the sooner an appropriate reformulation of our educa-
tional processes can be made, the better.” However, it

8 Einstein himself recognized the phenomenological character of his
1905 paper by giving it the title “Concerning an heuristic point of view
toward the emission and transformation of light” [91].

9 I must admit my own “guilt” of misusing the word “photon” in
several early publications. A typical example is the physically mean-
ingless expression “weak localization of photons” used in lieu of the
correct (but less catchy) expression “weak localization of electromagnetic
waves”.
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appears that imaginary point-like photons continue to
proliferate, while the inability to explain the nature of
the actual QED photon is still disguised by references to
the mysterious “wave�particle duality” of light.

3.3. Preisendorfer's radiance function

The need to establish a conceptual link between the
“island” of the phenomenological RTT and the “mainland
of electromagnetic theory” was eloquently formulated in
1965 by Rudolph Preisendorfer (see Chapter XIV of Ref.
[28]). He admitted that the heuristic polydirectional radi-
ance cannot be defined as existing at a specific moment t
but rather must be the result of averaging over a suffi-
ciently long time interval. He observed that in a turbid
medium, the constituent particles are in constant motion
and can also change their sizes, shapes, and orientations,
thereby rendering the direction and magnitude of the
Poynting vector S(r,t) at an observation point r random
functions of time. At certain moments the direction of the
instantaneous Poynting vector can fall within the differ-
ential solid angle dΩq̂ in Fig. 12a. Therefore, Preisendorfer
suggested that an appropriate definition of the specific
intensity could be the time-averaged length of the Poynt-
ing vectors at r with directions falling within dΩq̂. More
specifically, Preisendorfer's radiance function is defined as
follows (see Fig. 12a):

eNðr; q̂Þ ¼ 1
cos θ

lim
ΔS-0

1
ΔS

lim
ΔΩq̂-0

1
ΔΩq̂

lim
T-1

1
T

Z
ΔS
d2r0

�
Z tþðT=2Þ

t�ðT=2Þ
dt0jSðr0; t0Þjχ ΔΩq̂; ŝðr0; t0Þ

� �
; ð3Þ

where ŝðr; t0Þ ¼ Sðr; t0Þ=jSðr; t0Þj is the unit vector in the
direction of Sðr0; t0Þ and

χ ΔΩq̂; ŝðr0; t0Þ
� �¼ 1 if ŝðr0; t0ÞAΔΩq̂

0 otherwise

(
ð4Þ

is the angular step function. Essentially the same definition
of the radiance can be found in Section 7.9 of Ref. [12].
Preisendorfer then attempted to use the Maxwell equa-
tions to demonstrate that his radiance function eNðr; q̂Þ
satisfies the scalar RTE.

However, Preisendorfer's attempt to bridge the gap
between the phenomenological RTT and Maxwell's elec-
tromagnetics failed for several reasons. First of all, we have
already mentioned that there is no fundamental reason to
believe that the Poynting vector specifies the direction and
magnitude of the instantaneous local flow of electromag-
netic energy. Secondly, the derivation of the RTE in
Ref. [28] turned out to be incorrect owing to the wrong
underlying assumption that the instantaneous electric
and magnetic field vectors at any point inside a turbid
medium are always mutually orthogonal. Thirdly, it can
be demonstrated that the radiance function eNðr; q̂Þ does
not satisfy the RTE [116]. Fourthly, even if eNðr; q̂Þ were to
satisfy the RTE, this quantity would be useless because it
cannot be measured at a point inside a volume of turbid
medium.

To illustrate the last statement, let us assume that there
exists a hypothetical instrument that reacts to the magni-
tude of the instantaneous local Poynting vector only if the
direction of Sðr0; tÞ falls within a narrow acceptance solid
angle ΔΩq̂; where r0 is a point on the sensitive surface S
and the unit vector q̂ specifies the orientation of the
optical axis of the instrument (Fig. 12b). Let us also assume
that this hypothetical instrument is placed inside a ran-
dom cloud consisting of N particles (Fig. 14). It is quite
obvious that averaging the reading of such an instrument
over a sufficiently long period of time would essentially
yield the Preisendorfer's radiance function eNðr; q̂Þ provided
that the presence of the instrument does not affect the
instantaneous Poynting vector Sðr0; tÞ for any r0AS, where r
is the position vector of the central point of the sensitive
surface.

However, it is easily seen that no matter how small the
instrument is relative to the cloud, its very presence serves
to not just affect, but completely destroy the quantity that
it is supposed to react to [117]. Indeed, let us assume for
simplicity that the cloud particles are separated widely
enough to satisfy the conditions of applicability of the far-
field Foldy equations (Section 4.5). Then the total instan-
taneous electric and magnetic fields at r0 in the absence of
the detector are superpositions of the respective incident
and N partial scattered fields:

Eðr0; tÞ ¼ Eincðr0; tÞþ ∑
N

i ¼ 1
Esca
i ðr0; tÞ; ð5Þ

Hðr0; tÞ ¼Hincðr0; tÞþ ∑
N

i ¼ 1
Hsca

i ðr0; tÞ; ð6Þ

where Esca
i ðr0; tÞ and Hsca

i ðr0; tÞ describe an outgoing spherical
wavelet centered at the origin of particle i. By definition, the
corresponding local instantaneous Poynting vector is given by
the vector product Sðr0; tÞ ¼ Eðr0; tÞ �Hðr0; tÞ. The major side
effect of the presence of the hypothetical detector is to block
the spherical wavelets generated by the N0 particles located to
the left of the plane through the sensitive surface shown
schematically by the dashed line in Fig. 14. The resulting
“truncated” electric and magnetic fields at r0 are now given by

E0ðr0; tÞ ¼ ∑
N�N0

i ¼ 1
Esca
i ðr0; tÞ; ð7Þ

H0ðr0; tÞ ¼ ∑
N�N0

i ¼ 1
Hsca

i ðr0; tÞ; ð8Þ

where the sums include only the contributions from the
N�N0 “unblocked” particles, and we assume for simplicity
that the instrument blocks the incident plane wave as well. It
is patently obvious that the corresponding “truncated” Poynt-
ing vector is not the same as the original Poynting vector:

S0ðr0; tÞ ¼ E0ðr0; tÞ �H0ðr0; tÞaSðr0; tÞ: ð9Þ
Irrespective of its potential practical utility, the direc-

tional detector of electromagnetic energy flow sketched in
Fig. 12b has never been built, and it remains unknown
whether it can be designed in principle. Obviously,
appraising the very feasibility of building a detector with
directional sensitivity to the local instantaneous Poynting
vector requires an advanced QED analysis of light–matter
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interaction. It is not inconceivable that there exists a
Heisenberg uncertainty relation fundamentally prohibiting
such a measurement.

3.4. Directional radiometers

Another profound misconception of phenomenological
radiometry is the belief that instruments like the Gershun
tube (Fig. 13) measure the directional flow of electromag-
netic energy, i.e., filter out the energy propagating within
the acceptance solid angle

ΔΩ¼ πD2
en

4L2
; ð10Þ

where Den is the diameter of the entrance aperture and L is
the length of the tube (the diameter of the exit aperture
Dex is assumed to be much smaller than Den). Instead,
an elementary physical-optics analysis shows that the
Gershun tube filters out plane or near plane electromag-
netic wavefronts with propagation directions q̂AΔΩ. Let
us consider, for example, the incident field in the form of a
superposition of three plane waves propagating in the
directions q̂1; q̂2; and q̂3, respectively, as shown sepa-
rately in the three panels of Fig. 12c. The diffraction of
the incident field on the circular entrance aperture of the
Gershun tube is linear in the field: the total field inside
the tube is the superposition of the fields resulting from
the diffraction of the three individual components of the
incident field. The standard theory of Fresenel diffraction
on a circular aperture (e.g., Ref. [118]) implies that if the
corresponding Fresnel number NF ¼D2

en=λL-1;where λ is
the wavelength, then the circular part of an incident plane
wave cut out by the entrance aperture propagates inside
the tube essentially unchanged. It is then clear that the
truncated wavefronts propagating in the directions
q̂1 and q̂2 will reach the exit aperture and contribute to
the reading of the photodetector, whereas the entirety of
the truncated wavefront propagating in the direction q̂3
will be absorbed by the black walls of the Gershun tube
and will not contribute to the photoelectric signal.

This analysis implies that the Gershun tube does not
necessarily react to the local Poynting vector at a point in
the entrance aperture even if this vector is directed along
the optical axis of the instrument. To demonstrate this, let
us consider the electromagnetic field formed by a super-
position of two plane electromagnetic waves propagating
in directions q̂1 and q̂2 such that both form a 451 angle
with the optical axis of the instrument (Fig. 12d). The
waves are linearly polarized, with their electric vectors E1

and E2 oscillating perpendicularly to the paper, and fully
coherent in that at any moment in time E1¼E2 at the
central point of the entrance aperture. Let the local
instantaneous magnetic vectors of the waves be H1 and
H2, respectively, as shown by the magenta arrows, while
the corresponding instantaneous electric vectors E1¼E2

are directed towards the reader. The cumulative local
instantaneous field is given by the vectors E¼2E1 and
H¼H1þH2, the former again being directed towards the
reader. One can see that the resulting local instantaneous
Poynting vector S¼E�H, shown by the green arrow, is
directed along the optical axis of the Gershun tube. More-
over, it is easily verified that the Poynting vector at the
central point is always directed along the optical axis of
the instrument. Yet the reading of the end photodetector is
identically equal to zero since neither truncated wavefront
can reach the exit aperture.

Thus, by its very design, the Gershun tube is a wave-
front filter with an acceptance solid angle given by
Eq. (10). If this angle is sufficiently small then the Gershun
tube can be said to be a well-collimated radiometer (WCR)
in that it filters out only those plane or near-plane
wavefronts that propagate in essentially the same direc-
tion given by the optical axis of the instrument.

In fact, the Gershun tube is a very inefficient WCR since
its energy collection efficiency is defined only by the area
of the exit aperture πD2

ex=4: This area can be increased by
increasing Dex, but then the acceptance solid angle ΔΩ also
increases and becomes partially vignetted. Most WCRs in
use today are based on a different optical design, as
illustrated schematically in Fig. 12e. Now the main func-
tional elements are the objective and relay lenses, the
diaphragm, and the end photoelectric detector. Let us
consider the response of such a lens-based instrument to
the electromagnetic field formed by superposing two
plane waves propagating in directions q̂ and q̂0, respec-
tively. The objective lens acts as a linear optical transfor-
mer in that its effect on the total field is a superposition of
its effects on each plane-wave component. Specifically, the
well-known paraxial approximation (see, e.g., Section 5.1
of Ref. [119]) implies that in the near zone of the objective
lens either plane wavefront is transformed into a conver-
ging spherical wavefront with its respective focal point
located in the plane of the diaphragm. However, the
ultimate fates of the two spherical wavefronts in Fig. 12e
are different. The pink spherical wavefront passes freely
through the pinhole, is converted back into a plane
wavefront, and is relayed onto the sensitive surface of
the photodetector, thereby contributing to the cumulative
reading of the WCR. The blue spherical wavefront gets
annihilated by the diaphragm and does not contribute to
the photoelectric signal.

q̂

Ω q̂Δ

Fig. 14. The hypothetical radiance function meter is placed inside a cloud
of randomly positioned and randomly moving particles.
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Thus the combination {objective lens, diaphragm}
serves to select only plane (or near-plane) wavefronts
propagating in directions very close to the optical axis of
the instrument and falling within its small acceptance
solid angle

ΔΩ¼ πd2

4f 2
; ð11Þ

where d is the diameter of the pinhole and f is the focal
length of the objective lens. The key advantage of this
design is that the energy-collection efficiency, defined by
the diameter of the objective lens, and the acceptance
solid angle are now independent of each other, so that the
former can be increased without degrading the latter.

Thus, contrary to a widespread belief, a WCR cannot be
said in general to measure the directional distribution of
the electromagnetic energy flow at an observation point. It
is therefore imperative to formulate precisely what a WCR
does in actuality. Let us assume that the lens-based WCR
shown in Fig. 12e is exposed to an electromagnetic field in
the form of a superposition of several plane wavefronts, as
depicted schematically in Fig. 12f. According to the above
discussion, the instrument does the following:

� selects only the wavefronts with propagation directions
falling within its small acceptance solid angle ΔΩq̂ (i.e., the
wavefronts propagating in the directions q̂3; q̂4; and q̂5;

but not in the directions q̂1; q̂2; q̂6; and q̂7);� sums up the respective instantaneous electric and
magnetic field vectors: E0 ¼E3þE4þE5 and H0 ¼H3þ
H4þH5; and finally

� integrates the modulus of the vector product E0 �H0

(which, by its very construct, is always directed along –

or very close to – the optical axis of the WCR) over the
objective lens as well as over time.

The Gershun tube does almost the same, except now
the vector product E0 �H0 is integrated over the small exit
aperture.

The reader should find it quite instructive to recognize
that despite seemingly being quite different, the one
natural and four manmade devices shown in Fig. 15 per-
form the same physical operation of filtering out electro-
magnetic wavefronts rather than electromagnetic energy
currents. Some of these devices can be equipped with two-
dimensional pixelated detectors such as a CCD or retina, in
which case each pixel has the same functionality as the
diaphragm in Fig. 12e besides being an individual photo-
detector. In the final analysis, all these devices are WCRs,
perhaps with the added panoramic capability.

It is remarkable that despite the massive practical use
of optical instruments such as those shown in Figs. 12e and
13 for many decades, the fundamental physical principle of
the corresponding measurements had not been recognized
until quite recently [117]. We will see in the following
section that once this principle had been clearly stated, it
became possible to formulate the discipline of directional
radiometry as a branch of physical optics.

4. Path to physical optics

The tenuous standing of the centuries-old phenomeno-
logical disciplines of directional radiometry and radiative
transfer with respect to fundamental physics has been
recognized for decades [12,21,28,64,109,111,121]. Over the
past 50 years many important studies have been published
with the goal of developing the requisite microphysical (i.e.,
back-traceable to the MMEs) foundation for both disciplines
(e.g., Refs. [121–139] and references therein). In most cases
the heuristic concept of the local polydirectional radiance has
been viewed as worth being preserved despite being poorly
defined. This has led to attempts to identify a quadratic form
in the electric (or electric and magnetic) field vectors that
would satisfy the RTE and thereby might be considered a
legitimate microphysical proxy for the phenomenological
specific intensity. However, those studies have not clarified
the issue of the requisite non-negativity and physical measur-
ability of such proxies as well as have not established their
relevance to the actual electromagnetic energy transport in
turbid media. Furthermore, in many cases the scalar wave
equation has been used in lieu of the Maxwell equations.
Some studies have been based on artificial mathematical
models of a random electromagnetic field wherein certain
statistical characteristics of the randomness were prescribed
a priori rather than derived from direct solutions of the
Maxwell equations for statistically random scattering media.
It was thus assumed that the regime of radiative transfer must
be attributed to a certain random behavior of the sources of
the electromagnetic field rather than to the random behavior
of the scattering medium. However, this assumption rules out
the case of illumination of a turbid medium by a monochro-
matic or quasi-monochromatic parallel beam and as such has
been shown to be generally incorrect.

As a consequence of various shortcuts, the majority of
these publications have achieved only partial success in esta-
blishing the microphysical foundation of the RTT and direc-
tional radiometry. As recently as in 1995, Leonard Mandel and
Emil Wolf remarked (see page 287 of Ref. [109]) that in spite
of the long history of radiometry and the theory of radiative
energy transfer, their foundations had not been fully clarified.

The final solution of the problem in the case of electro-
magnetic scattering by a turbid medium has become possible
only with the recent realization that one does not need to use
the specific intensity as the fundamental point of departure
and contemplate it as an actual physical quantity required to
possess certain desirable properties as well as satisfy the RTE.
Instead of declaring the overarching objective of identifying a
microphysical quantity that would allow one to derive the RTE
for its own sake, one needs to focus on addressing the
following problems that are consistent with the very structure
and range of applicability of Maxwell's electromagnetics as well
as have actual and straightforward practical importance:

1. How to evaluate theoretically the time-averaged radia-
tion-energy budget of a macroscopic volume of random
particulate medium?

2. Given thewidespread practical use ofWCRs, how tomodel
theoretically the particular measurement afforded by
a WCR and thereby clarify its ability to serve as (i) an
energy-budget instrument and/or (ii) an integral part of a
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diagnostic technique intended for optical characterization
of a particulate medium in a laboratory, in situ, or remote-
sensing arrangement?

Indeed, it is the solution of these two specific and well-
defined problems that one needs in the final analysis, the
hypothetical “angular distribution of the local electromag-
netic energy flow” being irrelevant and unnecessary in
addition to being unphysical. Both problems have been
addressed by directly and self-consistently solving the
Maxwell equations, as applied to a turbid medium, in Refs.
[116,140] (see also Refs. [117,141]).

The process of establishing the microphysical founda-
tion of the disciplines of directional radiometry and
radiative transfer has been rather long and convoluted.
In what follows, I will try to highlight the major milestones
of this endeavor. Certain key developments, such as the
discovery of the electromagnetic nature of light, have not
been rooted specifically in either discipline and have a
much broader significance. Yet they have provided the
requisite conceptual framework and as such will also be
mentioned.

4.1. Maxwell's electromagnetics

Although the pioneering research by Thomas Young
(1773–1829), Augustin Jean Fresnel (1788–1827), and Sir
George Gabriel Stokes (1819–1903; see Fig. 16) had estab-
lished the wave nature of light, it was the existence of a
specific plane-wave solution of the MMEs that had led

James Clerk Maxwell (1831–1879) to conclude that light
consists of electromagnetic waves. Although visible light
was the only part of the electromagnetic spectrum known
to Maxwell, subsequent research led to the discovery of
other parts of the spectrum which now extends from
gamma rays to radio waves.

Maxwell's electromagnetics was the first relativistic
field theory and constitutes one of the supreme intellec-
tual achievements in the history of humankind. Ludwig
Boltzmann was so enchanted by the beauty and might of
the Maxwell equations that he quoted from Johann
Goethe's Faust: “Was it a God who wrote these signs”
(see page iii of Ref. [142]). In his magnificent history of
mathematical thought from ancient to modern times,
Morris Kline wrote: “The most spectacular triumph of
the nineteenth century, with an enormous impact on
science and technology, was Maxwell's derivation in
1864 of the laws of electromagnetism” (see page 698 of
Ref. [143]).

A meticulous account of the history of classical electro-
magnetics from the time of Gilbert and Descartes to the
relativity theory of Poincaré and Lorentz was given by Sir
Edmund Taylor Whittaker [144]. Ref. [145] describes how
Maxwell's ideas, summarized in his famous Treatise [146],
were picked up, organized, and reworked mathematically
by his immediate followers, most notably by Oliver Heavi-
side (1850–1925) [147]. An important “byproduct” of
Heaviside's work on electromagnetics was the creation
(independently of J. Willard Gibbs) of vector algebra
and vector analysis. Jules Henri Poincaré (1854–1912)

Fig. 15. (a) NASA's Hubble Space Telescope. (b) NASA's 64-m Goldstone radio telescope. (c) Digital photographic camera. (d) Gershun tube [120]. (e) Human eye.
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introduced the overarching principle of relativity [148] and
derived the relativity theory as a direct corollary of the
Maxwell equations [149,150].

The famous Poynting theorem quantifying the energy
budget of a finite volume element was derived by John
Henry Poynting (1852–1914) in 1884 [151] and indepen-
dently by Heaviside in 1885 [152]. Lorentz [90] gave the
first derivation of the MMEs from classical microscopic
electromagnetics. His work was refined and generalized by
de Groot and Suttorp [153] and Robinson [154]. The direct
derivation of the MMEs from QED has turned out to be a
much more complex problem. It is especially involved if a
dielectric medium is lossy, in which case the dielectric
needs to be linked to a thermal field reservoir. Recent
progress in this direction has been substantial [155–157],
but further research is still needed [158].

Classical macroscopic electromagnetics is not the most
fundamental physical theory of light–matter interactions.
In particular, it ignores the discreteness of matter and
operates with continuous sources of fields, which implies
that its predictions can fall short in cases where quantum
effects are essential. In spite of that, the quantum theory
can often be used to determine the “bulk” electromagnetic
properties of bodies consisting of very large numbers of
atoms [158]. It has been demonstrated that this approach
works well when the external electromagnetic field is
sufficiently weak and the size of individual particles
forming a turbid medium exceeds �50 Å [159]. Obviously,
this result implies a rather wide range of practical applic-
ability of the MMEs.

A clear delineation of the type of field–matter interac-
tions captured by classical macroscopic electromagnetics
helps identify specific problems that can be addressed by
solving the MMEs. For example, let us consider a cloud of
liquid-water droplets illuminated by a parallel quasi-
monochromatic beam of light (Fig. 17) and suppose that
we need to evaluate the energy budget of a macroscopic
volume element ΔV bounded by the closed surface ΔS.
According to the Poynting theorem, the net average rate at
which electromagnetic energy enters this volume element
is given by the surface integral

〈〈WΔS〉〉¼ �
Z
ΔS
d2r〈〈Sðr; tÞ〉〉U n̂ðrÞZ0; ð12Þ

where 〈〈⋯〉〉 denotes averaging over a sufficiently long
period of time and the unit vector n̂ðrÞ is directed along
the local outward normal to the boundary. The meaning of
the Poynting theorem is straightforward if 〈〈WΔS〉〉¼ 0, in
which case the incoming energy is balanced by the out-
going energy and the particulate matter inside ΔV is not
affected by the electromagnetic radiation. However, if
〈〈WΔS〉〉40 and ΔV contains no free charges then the
Poynting theorem implies that there is a continuous
accumulation of electromagnetic energy inside ΔV, which
is physically unrealistic. This result exposes an inherent
weakness of the MMEs rooted in their inability to describe
nonlinear field–matter interactions. A conventional “patch”
used to circumvent this issue is the postulate that if
〈〈WΔS〉〉40 then the excess electromagnetic energy is trans-
formed into other forms of energy (e.g., heat) via physical

mechanisms not specifically described by classical macro-
scopic electromagnetics.

Another type of practical problems that can be addressed
in the framework of classical macroscopic electromagnetics
has to do with the fact that instruments such as WCRs are
capable of measuring various manifestations of electromag-
netic energy flow. The signal measured by these instruments
can carry imbedded information on the physical properties
of the scattering medium. To extract this information from
the signal, one must (i) have a clear understanding of the
physical nature of the measurements and (ii) be able to solve
the inverse problem of identifying the physical model of a
particulate medium that provides the best fit of theoretical
computations of electromagnetic scattering to the measure-
ment data. Of course, an integral part of solving the inverse
problem is solving the direct problem, i.e., finding an
accurate solution of the MMEs for a given model of particu-
late medium and a specific type of illumination.

4.2. Electromagnetic scattering

To evaluate theoretically the time-averaged radiation
energy budget of a macroscopic volume of particulate
medium or to model theoretically the time-averaged read-
ing of a WCR, one must be able to address the following
two problems:

� determine the instantaneous electric and magnetic
fields by solving the MMEs for a fixed multi-particle
configuration and

� average the Poynting vector and relevant optical obser-
vables over a sufficiently long period of time during
which particle positions and microphysical states are
allowed to randomly change.

The microphysical state of a particle is characterized by its
size, morphology (including the potentially inhomoge-
neous distribution of the relative refractive index), and
orientation.

To solve the first problem, it is usually assumed that the
fixed N-particle group is imbedded in a homogeneous and
nonabsorbing infinite host medium. Furthermore, it is
assumed that over time intervals much longer than 2π/ω,
the time dependence of the electric and magnetic fields
everywhere in space is harmonic and described, in the
complex-field representation, by the simple complex
exponential expð� iωtÞ; where ω is the angular frequency
and i¼ ð�1Þ1=2: In other words, it is assumed that the
complex electric and magnetic fields can be factorized aseEðr; tÞ ¼ expð� iωtÞeEðrÞ and eHðr; tÞ ¼ expð� iωtÞeHðrÞ; respec-
tively, while the actual real-valued fields are obtained by
taking the real part of the respective complex fields:
Eðr; tÞ ¼ ReeEðr; tÞ and Hðr; tÞ ¼ ReeHðr; tÞ:

The frequency-domain monochromatic Maxwell curl
equations for the time-independent electric and magnetic
field amplitudes eEðrÞ and eHðrÞ are as follows:

∇� eEðrÞ ¼ iωμ0 eHðrÞ
∇� eHðrÞ ¼ � iωε1eEðrÞ

)
rAVEXT; ð13Þ
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∇� eEðrÞ ¼ iωμ0 eHðrÞ
∇� eHðrÞ ¼ � iωε2ðr;ωÞeEðrÞ

)
rAV INT: ð14Þ

In these equations, VINT is the cumulative “interior”
volume occupied by the N particles (Fig. 18):

V INT ¼ [N
i ¼ 1

Vi; ð15Þ

where Vi is the volume occupied by the ith particle; VEXT is
the infinite exterior region such that V INT [ VEXT ¼ℜ3;

where ℜ3 denotes the entire three-dimensional space;
the host medium and the scattering object are assumed to
be nonmagnetic; μ0 is the permeability of a vacuum; ε1 is
the real-valued electric permittivity of the host medium;
and ε2(r,ω) is the (potentially coordinate-dependent) com-
plex permittivity of the N-particle object.

Fig. 16. Scientists who had contributed (directly or indirectly) to the microphysical disciplines of directional radiometry and radiative transfer.
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The corresponding boundary conditions read

n̂� ½eE1ðrÞ�eE2ðrÞ� ¼ 0

n̂� ½eH1ðrÞ� eH2ðrÞ� ¼ 0

)
rASINT; ð16Þ

where 0 is a zero vector, the subscripts 1 and 2 correspond
to the exterior and interior sides of the composite bound-
ary SINT of the N-particle object, respectively, and n̂ is the
local outward normal to SINT. In agreement with Eq. (15),
SINT is the union of the closed surfaces of the N particles

SINT ¼ [N
i ¼ 1

Si: ð17Þ

Let us assume that the total field feEðrÞ; eHðrÞg every-
where in space can be represented by a vector super-
position of a plane-wave component (traditionally called
the “incident field”; superscript “inc”) propagating in the
direction of the unit vector n̂inc and a “scattered field”
(superscript “sca”):

eEðrÞ ¼ eEinc
0 exp ik1n̂

inc Ur
� �

þeEscaðrÞ;

eHðrÞ ¼
ffiffiffiffiffi
ε1
μ0

r
n̂inc � eEinc

0 exp ik1n̂
inc Ur

� �
þ eHscaðrÞ; ð18Þ

where k1 ¼ωðε1μ0Þ1=2 is the wave number of the exterior
region. In addition, we postulate that the scattered field
satisfies the following condition at infinity:

lim
r-∞

ffiffiffiffiffi
μ0

p
r� eHscaðrÞþr

ffiffiffiffiffi
ε1

p eEscaðrÞ
n o

¼ 0; ð19Þ

where r¼ |r| is the distance from the observation point to
the fixed origin O located near the “geometrical center” of
the N-particle group (Fig. 18).

The curl Eqs. (13) and (14) supplemented by the bound-
ary conditions (16), the decomposition (18), and the asymp-
totic condition (19) constitute the standard electromagnetic
scattering problem for plane-wave illumination.

The above formulation of the standard electromagnetic
scattering problem is hardly useful unless this problem has a
solution and unless this solution is unique. To the best of my
knowledge, the existence and the uniqueness of the solution
of the standard scattering problem have been proven only in
some particular cases. However, the thorough analysis by
Claus Müller [160] demonstrates the fundamental impor-
tance of imposing both the boundary conditions and the
asymptotic condition at infinity. It is, therefore, reasonable
to assume that the standard scattering problem does have a
solution, this solution being unique.

The pioneers of the theory of electromagnetic scattering
by particles John William Strutt, Lord Rayleigh (1842–1919),
Ludvig Valentin Lorenz (1829–1891), and Gustav Mie
(1868–1957) considered it to be intuitively obvious that
the “physically relevant” solution of the MMEs must involve
the scattered field in the form of an outgoing spherical
wave. Arnold Sommerfeld (1868–1951) was the first to
realize in 1912 that the very uniqueness of the solution of
an open-space scattering problem depends on the explicit
postulation of an asymptotic condition at infinity [161].
The history of this so-called Sommerfeld radiation condition
as well as its extensions and modifications are described in
Ref. [162]. In the specific case of three-dimensional electro-
magnetic scattering by finite objects, the Sommerfeld radia-
tion condition takes the form of Eq. (19) and is traditionally
called the Silver–Müller radiation condition [160,163].

While the standard scattering problem is intentionally
formulated for the incident field in the form of a plane

ΔV

ΔS

Parallel quasi-monochromatic beam

Fig. 17. Time-averaged energy budget of a volume element ΔV of a
random particulate cloud bounded by the closed surface ΔS. The arrows
represent the distribution of 〈〈Sðr; tÞ〉〉 over the boundary ΔS.

Plane electromagnetic wave

O

Fig. 18. A fixed N-particle group illuminated by a plane electromagnetic
wave.
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electromagnetic wave, its actual range of relevance is much
wider since the MMEs, the boundary conditions, and the
radiation condition are all linear in the electric and magnetic

fields. This implies that if eE 0
; eH 0n o

and eE″; eH″
n o

are the

solutions of the standard problem corresponding to the

incident plane waves ðeEincÞ0; ðeH incÞ0
� �

and ðeE incÞ″; ðeH incÞ″
� �

;

respectively, then eE 0 þeE″; eH 0 þ eH″
n o

is the unique solution of

the boundary-value scattering problem for the incident field

given by ðeEincÞ0 þðeEincÞ″; ðeHincÞ0 þðeHincÞ″
� �

: Hence solutions

of the standard scattering problem can be used to obtain the
solution of a more general scattering problem provided that
the corresponding incident field can be expanded in plane
electromagnetic waves.

4.3. Volume integral equation and Lippmann–Schwinger
equation

Although the standard scattering problem is stated as a
boundary-value problem for the differential frequency-
domain MMEs, it is often convenient to invoke an equiva-
lent integral-equation formulation. Specifically, the so-
called volume integral equation (VIE) expresses the total
electric field everywhere in space in terms of the incident
electric field and the total electric field in the interior
volume of the N-particle group. The VIE is a straightfor-
ward consequence of Eqs. (13)–(19) and reads

eEðrÞ ¼ eE incðrÞþk21

Z
V INT

d3r0½m2ðr0Þ�1�G
2

ðr; r0ÞUeEðr0Þ; rAℜ3;

ð20Þ
where mðrÞ ¼ k2ðrÞ=k1 is the refractive index of the interior
relative to that of the exterior, k2ðrÞ ¼ω½ε2ðr;ωÞμ0�1=2 is the
wave number of the interior region,

G
2
ðr; r0Þ ¼ I

2

þ 1

k21
∇ � ∇

 !
expðik1jr�r0jÞ

4πjr�r0j ; r; r0Aℜ3 ð21Þ

is the free-space dyadic Green's function, I
2

is the identity
dyadic, and � is the dyadic product sign. A major advantage
of the VIE is that the boundary conditions (16) and the
radiation condition (19) are built into it rather than serve as
additional constraints imposed on the physically relevant
solution of the differential frequency-domain MMEs. The
electric field found by solving the VIE can be substituted in
the second formulas of Eqs. (13) and (14) in order to find the
magnetic field everywhere in space.

The dyadic Green's function was introduced in 1950 by
Harold Levine and Julian Schwinger [164]. It belongs to the
general class of functions first studied by the self-taught
English mathematician (and professional miller) George
Green (1793–1841) in his initially obscure, but now famous
Essay of 1828 privately printed at Green's own expense in
the form of a booklet [165]. Typically, a Green's function is
an integral kernel that can be used to solve an inhomoge-
neous differential equation defined on a domain, with
specified boundary conditions. The Essay was enthusiasti-
cally popularized by William Thomson, Lord Kelvin who
arranged its re-publication in Journal für die reine und

angewandte Mathematik (also known as Crelle's Journal) in
1850–1854. Green's approach was further developed into
an efficient mathematical tool by Oliver Heaviside.

Note that the majority of derivations of the VIE pub-
lished in monographs and journal papers, including the
original derivation by David Saxon (1920–2005) in 1955
[166], do not invoke explicitly the boundary conditions
(16) as the prerequisite of the uniqueness of solution of the
standard scattering problem. As such, they are applicable
only to “fuzzy” scattering objects without distinct bound-
aries. This means that the refractive index is implicitly
assumed to depend on spatial coordinates continuously
throughout the entire space rather than being discontin-
uous across particle surfaces. A complete derivation expli-
citly relying on Eq. (16) and thereby applicable to
scattering objects with distinct boundaries is given in Refs.
[140,167].

The VIE can be perceived as the very embodiment of
the concept of electromagnetic scattering. Indeed, it shows
that in the absence of the scattering object, i.e., when
m(r0)� 1, the total field is identically equal to the incident
field. The presence of the object changes the total field,
which means that the scattered field can be defined as the
difference between the total fields in the presence and in
the absence of the object. Furthermore, the VIE makes it
obvious that the incident field is not modified by the
presence of the object and, contrary to the widespread
misconception, is not “transformed into the scattered
field” [168].

It is convenient to express the scattered field mathe-
matically in terms of the incident field as follows:

eEscaðrÞ ¼
Z
V INT

d3r0G
2
ðr; r0ÞU

Z
V INT

d3r″ T
2

ðr0; r″ÞUeEincðr″Þ; rAℜ3;

ð22Þ

where T
2

is the so-called dyadic transition operator (DTO).
Substituting Eq. (22) in Eq. (20) yields the following
integral equation for T

2

:

T
2

ðr; r0Þ ¼ k21½m2ðrÞ�1�δðr�r0Þ I
2

þk21½m2ðrÞ�1�

�
Z
V INT

d3r″G
2
ðr; r″ÞU T

2

ðr″; r0Þ; r; r0AV INT: ð23Þ

Equations of this type first were introduced in 1950 by
Bernard A. Lippmann and Julian Schwinger in the quantum
theory of scattering [169] and are traditionally called
Lippmann–Schwinger equations [170,171]. The first deri-
vation of Eq. (23) in the electromagnetic-scattering case
was given by Leung Tsang and Jin Au Kong in 1980 [172]
(see also Refs. [173,174]).

A fundamental property of the DTO is that it is indepen-
dent of the incident field and is a function of the scattering
object only: it is fully defined by the distribution of the relative
refractive index throughout VINT. It is this property that has
made the concept of the DTO central to the theory of
electromagnetic scattering by multi-particle groups. In parti-
cular, as discussed in the following subsection, it was used to
derive the so-called Foldy equations (FEs) that eventually
served as a natural precursor to the microphysical theory of
radiative transfer in sparse particulate media.
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4.4. Foldy equations

If the scattering object is a multi-particle group, then it
is very convenient to formally represent the total scattered
field as a vector superposition of the “partial” fields
contributed by the individual particles. In the case of an
arbitrary N-particle group, this cannot be done easily using
the differential frequency-domain Maxwell equations, but
is quite straightforward in the framework of the VIE
formalism. Indeed, let us first re-write the VIE as follows:

eEðrÞ ¼ eEincðrÞþ
Z
ℜ3

d3r0Uðr0ÞG
2
ðr; r0ÞUeEðr0Þ; rAℜ3; ð24Þ

where the integration is performed over the entire space,
the potential function U(r) is given by

UðrÞ ¼ ∑
N

i ¼ 1
UiðrÞ; rAℜ3; ð25Þ

and Ui(r) is the potential function of the ith-particle. The
latter is given by

UiðrÞ ¼
0; r=2Vi;

k21½m2
i ðrÞ�1�; rAVi;

(
ð26Þ

where

miðrÞ ¼ k2iðrÞ=k1 ð27Þ
is the refractive index of particle i relative to that of the
host medium. All position vectors originate at the common
origin O of the laboratory coordinate system (Fig. 18). It can
then be shown that the total electric field everywhere in
space is given by the following expression:

eEðrÞ ¼ eEincðrÞþ ∑
N

i ¼ 1

Z
Vi

d3r0G
2
ðr; r0Þ

Z
Vi

d3r″T
2

iðr0; r″ÞUeE iðr″Þ;

rAℜ3; ð28Þ
where the total electric field eE iðrÞ “exciting” particle i is
given by

eE iðrÞ ¼ eE incðrÞþ ∑
N

jða iÞ ¼ 1

eEexc
ij ðrÞ; ð29Þ

the eEexc
ij ðrÞ are partial exciting fields given by

eEexc
ij ðrÞ ¼

Z
Vi

d3r0G
2
ðr; r0ÞU

Z
Vj

d3r″T
2

jðr0; r″ÞUeEjðr″Þ; rAVi;

ð30Þ
and T

2

i is the ith-particle DTO defined with respect to the
laboratory coordinate system; it satisfies the following
Lippmann–Schwinger equation:

T
2

iðr; r0Þ ¼UiðrÞδðr�r0Þ I
2

þUiðrÞ
Z
Vi

d3r″G
2
ðr; r″ÞU

T
2

iðr″; r0Þ; r; r0AVi: ð31Þ
Importantly, each T

2

i is computed individually, as if all the
other particles did not exist.

A simplified version of Eqs. (28)–(31) was proposed
heuristically in 1945 by Leslie L. Foldy (1919–2001) [175]
to describe scattering of scalar waves by a system of widely
separated isotropic point centers. Various applications of
Foldy's approach were discussed in 1951 by Melvin Lax
[176]. A rigorous derivation of the quantum-mechanical

version of the FEs from the Schrödinger equation was
given in 1953 by Kenneth M. Watson [177] (see also Section
11.3 of Ref. [170]). The case of electromagnetic scattering
by a group of widely separated electrons was considered
by Watson in 1969 [178]. The general electromagnetic FEs
in the form of Eqs. (28)–(31) were derived by Tsang and
Kong in 1980 [172] (see also Ref. [173] in which the electro-
magnetic FEs were derived using Watson's approach).

The FEs (28)–(31) (also known as Foldy–Lax equations
[136,179]) are mathematically equivalent to the VIE (20)
and hardly offer computational advantages. However,
there are two factors which make them important. First,
they allow one to introduce the Neumann expansion of the
total field playing a key role in the microphysical theory of
radiative transfer. Second, as discussed in the following
subsection, they can be used to incorporate the notion of
the single-particle far field in the computation of the near
field of a multi-particle group.

Let us first define the ith potential dyadic centered at
the origin of the laboratory reference frame according to

U
2

iðr; r0Þ ¼UiðrÞδðr�r0Þ I
2

ð32Þ
and introduce the following operator notation:

Û ¼ ∑
N

i ¼ 1
Ûi; ð33Þ

B̂E¼
Z

d3r0 B
2

ðr; r0ÞUeEðr0Þ: ð34Þ

Iterating Eqs. (29) and (30) yields

Ei ¼ Eincþ ∑
N

jða iÞ ¼ 1
ĜT̂ jE

incþ ∑
N

jða iÞ ¼ 1
∑
N

lða jÞ ¼ 1
ĜT̂ jĜT̂ lE

inc

þ ∑
N

jða iÞ ¼ 1
∑
N

lða jÞ ¼ 1
∑
N

mða lÞ ¼ 1
ĜT̂ jĜT̂ lĜT̂mE

incþ⋯; ð35Þ

whereas the substitution of Eq. (35) in Eq. (28) results in
the following expansion, traditionally called in mathe-
matics the Neumann series:

E¼ Eincþ ∑
N

i ¼ 1
ĜT̂ iE

incþ ∑
N

i ¼ 1
∑
N

jða iÞ ¼ 1
ĜT̂ iĜT̂ jE

inc

þ ∑
N

i ¼ 1
∑
N

jða iÞ ¼ 1
∑
N

lða jÞ ¼ 1
ĜT̂ iĜT̂ jĜT̂ lE

incþ⋯: ð36Þ

It is easily seen that the Neumann series is fundamen-

tally based on the fact that T
2

i for each i is an individual
property of the ith particle computed as if this particle were
alone rather than a member of the group. As a consequence,
there has been a tendency to characterize the Neumann
expansion (36) as describing “multiple scattering” by the
N-particle group. It is important to recognize, however, that
although the notion of multiple scattering, as embodied by
Eq. (36), can be a useful mathematical abstraction, it is not a
real physical phenomenon wherein the incident light is
scattered sequentially by one, two, three or more particles
before reaching the observation point [168,180]. In other
words, one can speak of multi-particle sequences contribut-
ing the various terms on the right-hand side of Eq. (36), but
not of actual “multiple-scattering paths” or “multiple-scat-
tering trajectories”.

M.I. Mishchenko / Journal of Quantitative Spectroscopy & Radiative Transfer 146 (2014) 4–33 23



The concept of the Neumann expansion (also known as
the Liouville–Neumann or Liouville–Neumann–Volterra
series) was introduced by the French mathematician
Joseph Liouville (1809–1882) in 1837 and by the German
mathematician Carl Gottfried Neumann (1832–1925)
thirty years later. The Italian mathematician Vito Volterra
(1860–1940) used this expansion in his general theory of
integral equations as a technique for solving Fredholm and
Volterra equations of the second kind, wherein the
unknown function is expanded in a power series in terms
of so-called iterated kernels. The method is applicable
whenever the series converges [181,182]. In quantum
theory of particle scattering, an expansion of the type
(36) is often called the Born series [170,171].

4.5. Far-field Foldy equations

The reader should recognize that the formulation of
electromagnetic scattering in Sections 4.1–4.4 has been
quite general. Although we chose to speak of the scattering
object in the form of a fixed group of N “distinct” non-
overlapping particles, Eqs. (13)–(36) apply to any mor-
phology of the scattering object as long as the entire object
is finite. For example, we could consider a single ellipsoid
and subdivide it into an arbitrary set of N non-overlapping
volume elements, in which case the FEs would still hold.
This demonstrates again that the concept of multiple
frequency-domain scattering, as represented by the Neu-
mann expansion (36), is nothing more than a mathema-
tical abstraction [180].

As already mentioned, the FEs offer no computational
advantages over the VIE in the case of an arbitrary fixed
scattering object. However, they become indispensable if
the scattering object is a large, sparse, random cloud of
particles, in which case the Neumann expansion (36) helps
accommodate in a very straightforward analytical fashion
two main morphological traits of the object: large particle-
to-particle distances and statistically uncorrelated particle
positions.

Specifically, let us first assume that:

� the particles forming the group are separated widely
enough that each of them is located in the far zones of
all the other particles, and

� the observation point is located in the far zone of any
particle in the group (but not necessarily in the far zone
of the entire group).

As a consequence, each partial exciting field eEexc
ij ðrÞ in

Eq. (29) becomes an outgoing spherical wavelet centered
at particle j, while the integral FEs are converted into
algebraic far-field FEs. The latter imply that the total field
at any observation point located sufficiently far from any
particle in the sparse multi-particle group is the super-
position of the incident plane wave and N partial spherical
wavelets contributed by the N particles. The observation
point is not required to be in the far zone of the entire
group. It can be anywhere in space as long as it resides in
the far zones of all the particles forming the group.

It is important to recognize that even though each
component of the cumulative scattered field given by the
far-field FEs is a transverse electromagnetic wave, the
scattered field itself is not, in general, a transverse electro-
magnetic wave. In other words, the far-field FEs describe
the near field of the multi-particle group despite the
underlying assumption that the observation point is
located in the far zone of any constituent particle. The
cumulative scattered field becomes a transverse electro-
magnetic wave only if the observation point is located in
the far zone of the entire group.

The corresponding far-field Neumann expansion of the
total electric field also becomes purely algebraic and takes
the form

eE ¼ eE incþ ∑
N

i ¼ 1
B
2

ri0 UeEinc
i þ ∑

N

i ¼ 1
∑
N

jða iÞ ¼ 1
B
2

rij U B
2

ij0 UeEinc
j

þ ∑
N

i ¼ 1
∑
N

jða iÞ ¼ 1
∑
N

lða jÞ ¼ 1
B
2

rij U B
2

ijl U B
2

jl0 UeE inc
l

þ ∑
N

i ¼ 1
∑
N

jða iÞ ¼ 1
∑
N

lða jÞ ¼ 1
∑
N

mða lÞ ¼ 1
B
2

rij U B
2

ijl U B
2

jlm U B
2

lm0 UeEinc
m þ⋯;

ð37Þ
where each dyadic B

2

ijl describes far-field scattering by the
jth particle. It is Eq. (37) that represents the starting point
in the development of the microphysical theory of radia-
tive transfer.

The far-field electromagnetic FEs were introduced
heuristically by Anatoly Borovoi for a group of identical
spherical particles in 1966 [122]. The first rigorous deriva-
tion from the general electromagnetic FEs (28)–(31)
appeared in 1984 [173] (see also Refs. [137,183]).

4.6. The Twersky approximation

The terms with j¼ i and l¼ j in the triple summation on
the right-hand side of the far-field Neumann expansion
(37) are excluded, but the terms with l¼ i are not. There-
fore, we can decompose this summation as follows:

∑
N

i ¼ 1
∑
N

j¼ 1
ja i

∑
N

l¼ 1
la j

B
2

rij U B
2

ijl U B
2

jl0 UeE inc
l

¼ ∑
N

i ¼ 1
∑
N

j¼ 1
ja i

∑
N

l¼ 1
la i
la j

B
2

rij U B
2

ijl U B
2

jl0 UeEinc
l

þ ∑
N

i ¼ 1
∑
N

j¼ 1
ja i

B
2

rij U B
2

iji U B
2

ji0 UeEinc
i : ð38Þ

Higher-order summations in Eq. (37) can be decomposed
similarly. Thus, the total field at an observation point r is
composed of the incident field, one-particle contributions,
and contributions from multi-particle sequences that can
be divided into two groups. The first one includes all
the terms contributed by self-avoiding multi-particle
sequences, whereas the second group includes all the
terms corresponding to multi-particle sequences that
involve a particle more than once. The approximation
introduced in 1964 by Victor Twersky [184] (for the case
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of scattering of scalar waves) results in a drastic simplifi-
cation by neglecting the terms belonging to the second
group and retaining only the terms from the first group:

eE 	 eE incþ ∑
N

i ¼ 1
B
2

ri0 UeE inc
i þ ∑

N

i ¼ 1
∑
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It can be shown indeed that in the limit N-1 the
Twersky approximation accounts for the overwhelming
majority of multi-particle sequences, which implies that it
can be expected to yield rather accurate results provided
that the number of particles in the group is sufficiently
large.

4.7. The Poynting–Stokes tensor and dyadic correlation
function

The Twersky expansion (39) coupled with the first
equation of Eq. (13) can be used to write an extended
expression for the time average of the complex Poynting
vector eSðrÞ ¼ 1

2
eEðrÞ � eHnðrÞ; where the asterisk denotes a

complex-conjugate value. However, doing that does not
enable one to contract the resulting infinite set of nested
summations and obtain a closed-form equation amenable
to efficient analytical or numerical solution. The ultimate
reason for that is the following inescapable fact: different
combinations of electric and magnetic field vectors can
yield the same Poynting vector. This means that forming
the vector product of the electric and magnetic field
vectors results in a quantity that does not carry unique
information about the participating fields. As a conse-
quence, the Poynting vector cannot be used to describe
the phenomenon of electromagnetic scattering by, for
example, expressing the Poynting vector of the total field
in that of the incident field.

It is also customary to describe electromagnetic scatter-
ing in the far zone of a finite object in terms of the 4�4
Stokes phase matrix using the 4-element Stokes column
vector as the primary descriptor of polarization. However,
this formalism can be applied only to transverse (e.g.,
plane or spherical) electromagnetic waves, whereas the
total electromagnetic field in the near zone of any object
(e.g., at any observation point inside a multi-particle
group) is never a transverse wave.

It was shown by the author in 2010 [116] (see also Ref.
[140]) that instead of attempting to calculate directly the
time-averaged Poynting vector or Stokes column vector,
one should first calculate the time average of the Poyt-
ning–Stokes tensor (PST) defined as the dyadic product of

the electric and magnetic field vectors:

P
2

ðrÞ ¼ 1
2
eHðrÞ � eEnðrÞ: ð40Þ

It is fundamentally important that by its very construct,
the PST is applicable to an arbitrary electromagnetic field
(including the near field) and thus can be used to find both
the Poynting vector and, whenever applicable, relevant
optical observables such as the Stokes parameters.

The PST involves both the electric and the magnetic
field at the observation point r. It is sometimes convenient
to have an alternative representation involving only the
electric field. It can be verified easily that in the case of
nonmagnetic materials, Eq. (40) everywhere in space can
be written in the form

P
2

ðrÞ ¼ 1
2iωμ0

∇r0 � C
2

ðr0; rÞ
	 
����

r0 ¼ r
; ð41Þ

where

C
2

ðr0; rÞ ¼ eEðr0Þ � eEnðrÞ ð42Þ
is the so-called dyadic correlation function involving the
electric field at two different points in space. The subscript
r0 means that the ∇ operator acts only on eEðr0Þ.

Using the Twersky expansion (39), we can formulate
the Twersky approximation for the dyadic correlation
function diagrammatically according to Fig. 19. The differ-
ent terms entering the expanded expression inside the
angular brackets on the right-hand side of this equation
can be classified using the notation introduced in Fig. 20a.
In this particular case, the upper and lower multi-particle
sequences involve different particles. However, the two
multi-particle sequences can involve one or more common
particles, as shown in Fig. 20c–f by using the dashed
connectors. Moreover, if the number of common particles
in a diagram is two or more, then they can enter the upper
and lower sequences in the same order, as in Fig. 20d, or in
the reverse order, as in Fig. 20e. Finally, Fig. 20f gives an
example of a mixed diagram wherein two common parti-
cles appear in the same order while two other common
particles appear in the reverse order.

4.8. Ergodicity

So far we have been considering electromagnetic scatter-
ing by a fixed configuration of particles. Let us now assume
that the sparse N-particle group varies in time, but does it
slowly enough that any significant (i.e., modifying the solution
of the MMEs) changes of the group occur over time intervals
Tv much longer than the period of time-harmonic oscillations
of the electromagnetic field. Then the time average of the
dyadic correlation function is formally defined by

〈〈C
2

ðr0; r; tÞ〉〉¼ 1
T

Z tþðT=2Þ

t�ðT=2Þ
dt0 C

2

ðr0; r; t0Þ; ð43Þ

where the time interval T is much longer than Tv. During this
time interval the variable N-particle group goes through an
infinite sequence of evolving discrete states governed by
relevant physical and chemical processes. Therefore, the
right-hand side of Eq. (43) must be evaluated by: (i) tracing
the temporal evolution of the physical state of the entire
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group (i.e., the complete set of particle coordinates and
microphysical states), and (ii) computing C

2

ðr0; r; t0Þ for a suffi-
ciently representative set of moments t0A ½t�T=2; tþT=2�.

Although a computer implementation of this aver-
aging procedure is not totally inconceivable, the direct
use of the definition (43) in analytical derivations – such
as the calculation of the time-averaged dyadic correlation
function for a cloud of particles – typically leads to
insurmountable technical difficulties. A much more prac-
ticable approach is based on the assumption that the N-
particle group is statistically random and sufficiently
variable in time while the time interval T is sufficiently

long that averaging C
2

ðr0; r; t0Þ over this interval is essen-

tially equivalent to averaging C
2

ðr0; r;ψÞ over an appro-
priate analytical probability distribution of the physical
state ψ of the group. In other words, it is assumed that
averaging over time for one specific realization of the
random scattering process is equivalent to ensemble
averaging. The equivalence of the time and ensemble
averages is called ergodicity.

The ergodic hypothesis was introduced by James Clerk
Maxwell and Ludwig Boltzmann (1844–1906) as a basic
underlying principle of statistical mechanics and kinetic
theory. The mathematical foundation of the ergodic theory,
its relation to the famous Poincaré recurrence theorem
[185], and applications to statistical physics are discussed
in Refs. [186–188].

4.9. Time-averaged Poynting vector

According to the preceding subsection, instead of

calculating the average 〈〈C
2

ðr0; r; tÞ〉〉; one can calculate the

average 〈C
2

ðr0; r;R; ξÞ〉R;ξ; where R denotes the complete set
of particle coordinates and ξ denotes the complete set of
particle microphysical states. Although this problem
remains very complex in general, it becomes manageable
upon further assuming that:

1. The position and microphysical state of each particle
are statistically independent of each other and of those
of all the other particles.

2. The microphysical states of all the particles have the
same statistical characteristics.

3. The spatial distribution of the particles throughout
the medium is completely random and statistically
uniform.

4. All diagrams with crossing connectors in the diagram-
matic expansion of the dyadic correlation function (cf.
Figs. 19 and 20) can be ignored. This is the essence of
the so-called ladder approximation [125].

All intermediate steps of the subsequent analytical deriva-

tion are detailed in Ref. [140]. Each B
2

-dyadic in the Twersky
expansion (39) includes a complex exponential factor of the
type expðik1RÞ; where R can be the distance between two
particles or the distance from a particle to the observation
point. Analytical averaging of these rapidly oscillating expo-
nentials over uncorrelated and random particle positions
leads to dramatic simplifications and as such is at the very
heart of the microphysical RTT. The final expression for the
time-averaged Poynting vector at an internal observation
point r is as follows:

〈〈Sðr; tÞ〉〉¼ Re〈eSðr;R; ξÞ〉R;ξ ¼ Z
4π
dq̂q̂eIðr; q̂Þ; ð44Þ

where the integration is performed over all directions

of the unit vector q̂ and eIðr; q̂Þ is the first element of the 4-
element column

eIðr; q̂Þ ¼
eIðr; q̂ÞeQ ðr; q̂ÞeU ðr; q̂ÞeV ðr; q̂Þ

2666664

3777775: ð45Þ

The latter is the solution of the following matrix integro-
differential equation:

q̂U∇eIðr; q̂Þ ¼ �n0〈Kðq̂; ξÞ〉ξeIðr; q̂Þþn0

Z
4π
dq̂0〈Zðq̂; q̂0

; ξÞ〉ξeIðr; q̂0Þ;

ð46Þ
where n0 is the average number of particles per unit volume,
〈Kðq̂; ξÞ〉ξ is the 4�4 real-valued single-particle extinction
matrix averaged over the microphysical states of all the N
particles, and 〈Zðq̂; q̂0

; ξÞ〉ξ is the 4�4 real-valued single-
particle phase matrix, also averaged over the microphysical
states of all the N particles. The elements of the matrices
Kðq̂; ξÞ and Zðq̂; q̂0

; ξÞ are expressed in the elements of the

Fig. 20. Classification of different terms entering the Twersky approx-
imation for the dyadic correlation function.

Fig. 19. The Twersky approximation for the dyadic correlation function.
An arrow denotes the corresponding local incident field, while a dot
denotes left multiplication by the corresponding B-dyadic.
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so-called 2�2 amplitude scattering matrix describing far-
field scattering of a plane electromagnetic wave by an isolated
particle with microphysical characteristics described by the
state ξ [139,140].

I provide no details of the derivation leading to Eq. (44)
because this derivation contains no new concepts and is a
straightforward, albeit nontrivial and instructive, mathe-
matical exercise. It is worth noting, however, that the

angular argument q̂ of eIðr; q̂Þ (as well as of eIðr; q̂ÞÞ at an
internal point r spans the entire range of directions, q̂A4π;
since for any q̂ there is always a contribution to

〈eSðr;R; ξÞ〉R;ξ from pairs of multi-particle sequences such
that the left-most common particle of each pair is located
in the direction � q̂ relative to r.

4.10. Time-averaged reading of a WCR

Consider now a WCR placed inside the random particu-
late medium, as shown in Fig. 21. The discussion in Section 3
implies that in the framework of the far-field Neumann
expansion (39), this instrument reacts only to partial wave-
lets generated by multi-particle sequences having their end
particles located within the conical acceptance volume ΔV q̂

defined by the WCR's small acceptance solid angle ΔΩq̂.
Thus, the reading of the instrument is defined not by the full
time-averaged PST, but rather by the corresponding partial

PST 〈 P
2

ðr;ΔV q̂Þ〉R;ξ; where the subscripts R and ξ denote
averaging over coordinates and states of all the N particles
constituting the medium and not just those located inside

ΔV q̂. 〈 P
2

ðr;ΔV q̂Þ〉R;ξ can be computed by making the stan-

dard assumptions invoked previously to calculate 〈 P
2

ðrÞ〉R;ξ;
but also requiring that the end particle of any multi-particle
sequence be located inside the acceptance volume ΔV q̂. This
lengthy yet straightforward computation [140] shows that
the reading of a WCR shown in Fig. 21 is given by

〈〈EM power ðr; q̂Þ〉〉	 So

Z
ΔΩq̂

dq̂0eIðr; q̂0Þ; ð47Þ

where the unit vector q̂ specifies the orientation of the
optical axis of the WCR and So is the surface area of the
objective lens. If the WCR can measure all four Stokes para-
meters, then its polarized reading per unit time is given by

〈〈Signalðr; q̂Þ〉〉	 So

Z
ΔΩq̂

dq̂0eIðr; q̂0Þ: ð48Þ

The fact that the signal recorded by the WCR can be
modeled theoretically by solving the RTE often makes the
{WCR, RTE} combination a useful optical-characterization
tool. Furthermore, comparison of Eqs. (44) and (47) reveals
that a WCR can be used to solve the energy-budget
problem experimentally by integrating its reading over
the entire range of WCR's orientations q̂A4π: Of course, to
make such optical-characterization and energy-budget
applications of WCRs possible, the random particulate
medium must possess the specific macro- and microphy-
sical properties discussed earlier.

4.11. Corollaries of the microphysical approach to directional
radiometry and radiative transfer

Eqs. (44)–(48) can easily be generalized to include the
case of an external observation point [140] and finalize the
solution of the two key problems formulated at the begin-
ning of Section 4. The implications of the direct derivation
of these formulas from the frequency-domain MMEs are
quite profound and can be formulated as follows [140].

1. The derivation of Eqs. (44)–(48) does not need funda-
mental physical laws other than the MMEs. In parti-
cular, the ill-defined concepts of independently
scattering particles, collective effects, elementary
volume elements, incoherent light rays, and photons
as localized particles of light have no relevance what-
soever to the transport of electromagnetic radiation
in elastically scattering particulate media. Although
Eq. (46) (traditionally called the RTE) has the formal
mathematical structure of a kinetic equation describ-
ing the transport of point-like particles [189], it follows
directly from the electromagnetic wave theory.

2. The 4-element column (45) (traditionally called the
specific intensity column vector) does not characterize
the instantaneous distribution of the radiation field
inside the particulate medium. Instead, it emerges as a
result of averaging over a sufficiently long period of
time. The minimal averaging time necessary to ensure
statistical ergodicity may vary depending on the par-
ticulate medium in question, but the following is
always true: the longer the averaging time the more
accurate the theoretical prediction based on Eqs. (44),
(47), and (48). The accumulation of a signal over an
extended time interval is often used to improve the

So

q̂

Ω q̂

Vq̂

Fig. 21. A WCR placed inside the random particulate medium.
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measurement accuracy by suppressing the effect of
random noise. However, the situation with Eqs. (44)–
(48) is fundamentally different since the very applic-
ability of these formulas relies upon averaging over a
sufficiently long period of time.

3. To ensure the applicability of Eqs. (44)–(48), the overall
size of the particulate medium must be much greater
than the wavelength, the average particle size, and the
average distance between two neighboring particles.

4. In the context of Eqs. (44)–(48), each particle with its
individual extinction and phase matrices is effectively
replaced with a virtual random particle characterized
by the extinction and phase matrices obtained by
averaging over the microphysical states of all the
particles.

5. The RTE is an inherently matrix equation involving all
four elements of the specific intensity column vector.
Its frequently used scalar version is obtained by
artificially replacing eIðr; q̂Þ with its first elementeIðr; q̂Þ (traditionally called the specific intensity or
radiance) and the extinction and phase matrices with
their respective (1,1) elements. As such, the scalar app-
roximation has no fundamental physical justification.

6. All four elements of the specific intensity column
vector are real-valued quantities. Furthermore, the
specific intensity is always nonnegative. These corol-
laries ensure that Eqs. (44), (47), and (48) are physi-
cally meaningful.

7. Eqs. (44), (47), and (48) are easily generalized to the
case of an incident field in the form of a superposition
of several polychromatic parallel beams with quasi-
monochromatic components and arbitrary propaga-
tion directions.

8. The quantity eIðr; q̂Þ is nothing but a formal solution of
the intermediate Eq. (46) and appears merely as a
byproduct of the mathematical derivation of Eqs. (44)
and (47) from the frequency-domain MMEs for a
sparse random particulate medium. As such, it cannot
be interpreted as describing the angular distribution of
electromagnetic energy flow at the point r. Funda-
mental physical significance can be ascribed only to
the integral of q̂eIðr; q̂Þ over all directions q̂, Eq. (44),
rather than to the values of eIðr; q̂Þ corresponding to
individual directions. For example, adding toeIðr; q̂Þ any
function f ðr; q̂Þ such that

Z
4π
dq̂q̂f ðr; q̂Þ ¼ 0

yields another “specific intensity” causing the same
〈〈Sðr; tÞ〉〉; a simple example being any symmetric
function such that f ðr; � q̂Þ ¼ f ðr; q̂Þ: We have seen
before that even the Poynting vector cannot be legiti-
mately claimed to specify the direction of time-
averaged electromagnetic energy flow; obviously,
there is even less rationale for attributing any “direc-
tional energy flow” content to the specific intensity.

9. If the particles forming the scattering medium are
nonabsorbing, then it follows from the RTE that the

time-averaged Poynting vector is divergence free:

∇U〈〈Sðr; tÞ〉〉¼ 0: ð49Þ
This means that the time-averaged amount of electro-
magnetic energy entering a differential volume ele-
ment per unit time is equal to the time-averaged
amount of electromagnetic energy leaving the differ-
ential volume element per unit time. Since the RTE
follows from the frequency-domain MMEs only upon
making several well-defined assumptions, including
the consideration of only the ladder diagrams, Eq. (49)
shows that these assumptions are sufficiently consis-
tent with each other in that the final result complies
with the energy conservation law. Furthermore, it
implies that the contribution of all the other types of
diagram to the time-averaged Poynting vector must
also be divergence free in the case of nonabsorbing
particles.

10. Electromagnetic scattering can be caused not only by
particles with distinct boundaries, but also by density
and anisotropy fluctuations in rarified molecular
media such as gases. Eqs. (44)–(48) remain valid in
the case of scattering by a pure gaseous medium or a
gaseous medium containing randomly distributed
particles provided that all density/anisotropy fluctua-
tions and particles are located in the far zones of
each other.

11. It is straightforward to generalize the theory of elec-
tromagnetic scattering and the microphysical deriva-
tion of Eqs. (44)–(48) in order to account for
absorption in the host medium [190–192].

12. The ladder approximation can be expected to work
well in the near zone of a sparse particulate medium.
In the far zone of the medium as a whole, the so-called
maximally crossed (or cyclical) diagrams exemplified
by Fig. 20e must be taken into account [178,193] since
they cause the effect of weak localization of electro-
magnetic waves in the backscattering direction
[127,139,193–200].

5. Concluding remarks

Fig. 22 shows a diagram summarizing Section 4 and
tracing the place of the microphysical theory of radiative
transfer in particulate media within the broader context of
classical Maxwell's electromagnetics. Although I have been
using the adjective “microphysical” to emphasize analyti-
cal back-traceability to the MMEs, it can also be said that
this theory, as well as the theory of weak localization, is
part of mesoscopic physics in that it deals with a size
regime that is intermediate between the microscopic and
macroscopic and is characteristic of a region where a large
number of particles can interact in a correlated fashion.
Direct computer solutions of the MMEs described in
Refs. [201,202] demonstrate indeed how the macro-
scopic regime of radiative transfer and weak localization
emerges from the microscopic particle-level regime
of Maxwell's electromagnetics upon averaging over ran-
dom realizations of a multi-particle group. Instructive
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discussions of mesoscopic optical phenomena can be
found in Refs. [199,200].

It is imperative to keep in mind that the formal applic-
ability of the microphysical theory of radiative transfer rests
on the specific approximations discussed in the preceding
section, including the assumption that the scattering parti-
cles are located in each-other's far zones and are uncorre-
lated. The violation of this assumption in the case of densely
packed particles can lead to significant errors in numerical
predictions based on the RTT. Therefore, it is important to
examine to what extent the RTT can be applied to densely
packed particulate media. Initial results based on numerically
exact solutions of the MMEs and controlled laboratory
experiments have been reported in Refs. [202–205].

There is no doubt that the developments summarized
in Section 4 amount to a profound paradigm shift. They
reveal the inherently tensorial nature of electromagnetic
energy transport in particulate media, clarify the
statistical-optics content of the RTT and the physical
nature of measurements with actual directional radio-
meters, and establish the microphysical disciplines of
directional radiometry and radiative transfer in particulate
media as valid and well-defined branches of physical
optics. Of course, an interesting question is why these
developments and their recognition by the scientific com-
munity have been so slow.

Part of the answer is provided by the following quote
from Born and Wolf's Principles of Optics [118]:

Fig. 22. Classification of electromagnetic scattering problems [140].

M.I. Mishchenko / Journal of Quantitative Spectroscopy & Radiative Transfer 146 (2014) 4–33 29



It seems to be a characteristic of the human mind that
familiar concepts are abandoned only with the greatest
reluctance, especially when a concrete picture of the
phenomena has to be sacrificed.

Born and Wolf refer to the long struggle that Maxwell's
electromagnetic theory had to endure before it had
become a generally accepted fundamental paradigm.10

However, the continued unwillingness to give up the
intuitively appealing yet heuristic and even unphysical
concepts discussed in Section 3 shows that the above
quote has much broader relevance.

The existence of the microphysical theory of radiative
transfer and directional radiometry in sparse particulate
media does not necessarily imply that the corresponding
phenomenological disciplines will fall out of circulation any
time soon. In 1965, Rudolph Preisendorfer predicted that
even if a bridge connecting the mainland of fundamental
physics and the island of the phenomenological RTT were
built, one should not expect to see much traffic across this
bridge [28]. To understand why this prediction has proved to
be prophetic, one can open the standard graduate-level
textbook on radiative heat transfer published in 2013 [61].
The third edition of this popular text, advertised as “a
comprehensive reference for scientists, engineers, and grad-
uate students”, was “updated to include significant advances
and the emergence of new research topics over the past
decade”. However, even though various elements of the
microphysical RTT have been known for half a century, they
are nowhere mentioned. Furthermore, this textbook has
only one chapter on the electromagnetic wave theory which,
according to the Preface, “can (and will be) skipped by most
instructors for a first course in radiative heat transfer”.

All in all, the resilience of the phenomenological para-
digms of directional radiometry and radiative transfer has
been quite enigmatic and represents an instructive proving
ground for those applying the principles summarized in
Thomas Kuhn's Structure [27] to explain the direction and
rate of scientific progress as well as illustrate concepts such
as “paradigm paralysis”. In fact, it might even be of special
interest to a new generation of philosophers who go far
beyond the scope of Ref. [27] in exploring the social character
of scientific knowledge and scientific inquiry [206].
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