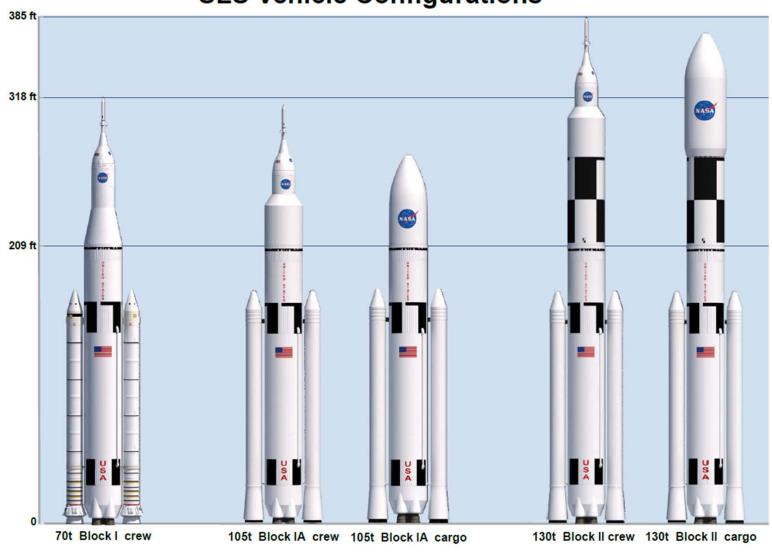


Support for Space Launch System Core Stage Testing

Summer Internship: Stennis Space Center

Benton Patterson
NASA Intern – Summer 2014
Engineering and Test Directorate (EA33)
Mentor: Dr. Harry Ryan


What is the Space Launch System?

- The Space Launch System (SLS) is NASA's new heavy launch vehicle initiative.
- It is designed to be capable of carrying a wide range of payloads in support of the ISS, the new Orion spacecraft, and eventually a series of Beyond Earth Orbit (BEO) missions.
 - The BEO missions could include a variety of objectives including the moon, a near earth asteroid, or Mars.
 - The SLS will have a variable payload capacity due to a modular design that will allow its functionality to be tailored to the mission.

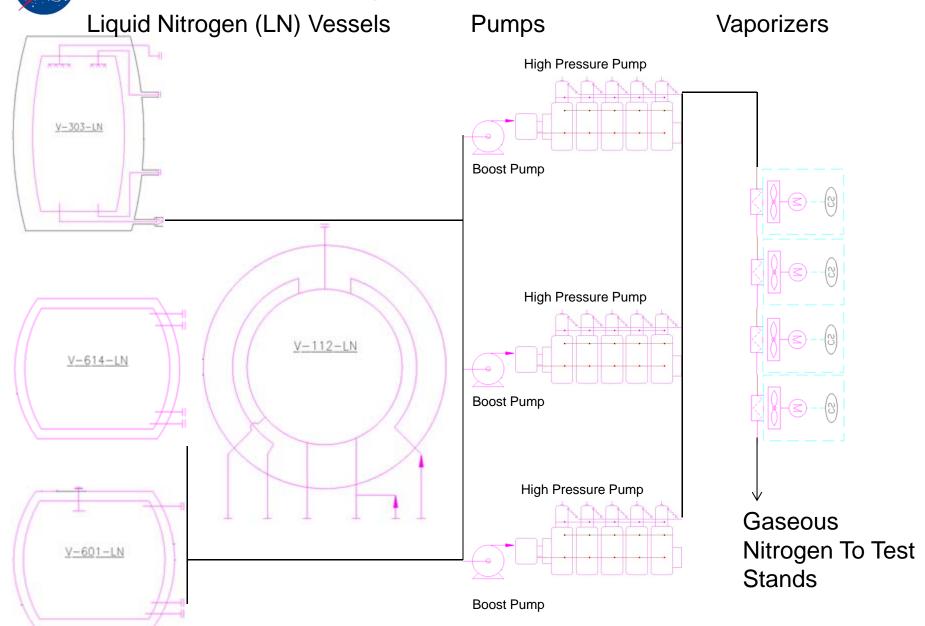
What is the Space Launch System?

SLS Vehicle Configurations

How does SSC Feature in the Project?

- Stennis Space Center (SSC) is NASA's primary rocket engine testing facility.
- The SLS Core Stage will be one of the largest engine tests ever conducted at the facility.
 - Only the Saturn V cluster tests rival it in size.
- The B-2 test stand is undergoing renovations in preparation for the SLS core stage tests.

B Test Complex



High Pressure Gas Facility

- The High Pressure Gas Facility (HPGF) provides the test stands with the fluids necessary for testing.
 - These fluids include hydrogen, helium, nitrogen, and air.
 - The facility includes the storage vessels, compressors, pumps, vaporizers, piping, and control systems for the distribution of the gases to the test stands.
 - During the SLS test, the HPGF will be required to supply large amounts of these fluids to the B-2 test stand.
- Primary work involved studying various components of the nitrogen supply system for the B-2 test stand in preparation for the SLS Core Stage test.
 - Nitrogen serves as a purge gas during testing.
 - SLS tests will have larger demand for nitrogen than standard engine tests.
 - Capabilities of the nitrogen supply system must be assessed to ensure the needs of the test can be met.

HPGF Nitrogen System Schematic

Nitrogen Supply Projections

- Create an estimate of the amount of nitrogen that will be required to supply an SLS Core Stage Test.
 - The SLS testing will require more nitrogen than a typical rocket engine test, placing higher demand on the High Pressure Gas Facility's (HPGF) nitrogen supply systems.
 - Testing normally requires trucks to bring in liquid nitrogen (LN); the SLS testing will require a larger number of LN trucks.
 - Consider sub-optimal test conditions such as extended test time due to holds, empty or failed nitrogen supply vessels, and system losses.

Nitrogen Truck Requirement

- The SLS Test will require running two nitrogen pumps for 21 to 24 hours depending on test conditions.
 - A variety of conditions and variables were considered which resulted in a number of estimates, but the minimum estimate is shown here.

Test Time (hr)	Number of LN Trucks Required
21	18
24	21

Nitrogen Supply System Testing

- The SLS Test will require the HPGF to run two nitrogen pumps simultaneously, a test of the capabilities of the system was performed.
 - Normal operation only requires a single operating nitrogen pump at a time.
 - The nitrogen system was tested to ensure that simultaneous operation of two nitrogen pumps can be performed safely.
 - Data from various sensors on the system were analyzed in preparation for the two pump test.
 - The results of the test showed that simultaneous operation of two nitrogen pumps can be achieved.
 - Data from the test was collected and analyzed for further recommendations on the nitrogen system.

Other Assignments

- Test of gaseous helium system to 4700 psi system pressure.
 - Reviewed data from the test and assembled a summary.
- Checked helium system RV sizing calculations.
 - Used secondary analysis method to verify results and assembled an engineering analysis report.
- Bottle blow down analysis at the A-3 facility.
 - Calculated the time required for a blow down of the nitrogen storage bottles at A-3.
- Sizing of B-2 relief valves to ensure an appropriate amount of flow in the event of a regulator failure.
 - Using an analysis tool developed by EA33 Systems Analysis & Design, the necessary orifice sizes were calculated and compared against the actual sizes of the RV orifices as published by the manufacturer, Anderson Greenwood.

PRV Sizing Tool

PRV Sizing 1	for Gas Sys	tems (Versi	on 1.1)							
Input					Instructions:					
Gas	Nitrogen	_			1. Choose the proper system gas.					
PRV Set Pres	132	132 psig			2. Enter the PRV set pressure.					
PRV Kd	0.816	(0.816 for Type 60 or 80 RV)			3. Ensure the RV is Type 60 or 80, otherwise enter the appropriate discharge coefficient of the RV orifice.					
Max U/S Supply Pres	150	psig	Regulator		4. Enter the ma		ossible u/s supply pressure of the nearest u/s or.			
Max Cv	0.08	gpm/psi^0.5	or Valve		5. Enter the ma	the max Cv of the valve or regulator corresponding to #4.				
Optional Input				6. Output is the required minimum orifice size.						
Facility	ER 5000 Actuation				Notice:					
PRV Locator #	#				This tool assumes the nearest isolation valve or regulator fails open.					
PRV Model #	# 81SF68-6				The analyst is responsible for determining the validity of the failure					
Analyst Name	ne Benton Patterson				scenario assumed by this tool and the interpretation of the results given.					
Date		6/26/2014			This tool does not determine adequacy of PRV lines sizes.					
Output										
Gas MW	Nitrogen 28.0135	lbm/lbmol						Required F	PRV Orifice	
Max Relief Pres	Temp	U/S Density	Compress. Factor	Ratio of Sp. Heats	Gas Factor	Mass Flow Rate		Orifice Area	Orifice Dia.	
psia	R	lbm/ft3	(-)	(-)	(-)	lbm/s		in^2	in	
146.7	520.0	0.829	0.9974	1.42	358	0.005		1.97E-03	0.0500	

Skills Developed

- MathCAD
- WinPlot
- Choked flow nozzle sizing
- Analysis of piping schematics
- Bottle blow down calculations
- Engineering analysis reports

Acknowledgements

- Dr. Harry Ryan
- Thomas Jacks
- Richard Wear
- Nicholas Nugent
- Rebecca Junell
- Justin Junell
- Nancy Bordelon
- Joy Smith
- Engineering & Test Directorate
- NASA Education Department
- John C. Stennis Space Center