On Magnetar Bursts

Chryssa Kouveliotou (NASA/MSFC)

The GBM Magnetar Team

- C. Kouveliotou (NASA/MSFC, USA), G. Younes (USRA, USA), S. Guiriec (UoMD, USA), A. von Kienlin (MPE, Germany)
- E. Gogus, Y. Kaneko (Sabanci University, Turkey)
- > A. Watts, A. van der Horst, D. Huppenkothen, M. van der Klis, R. Wijers, T. van Putten (U. of Amsterdam, The Netherlands)
- M. Baring (Rice University, USA)
- J. Granot (The Open University, Israel)
- > E. Ramirez-Ruiz (UCSC, USA)
- > J. McEnery, N. Gehrels (NASA/GSFC, USA)

Magnetars are magnetically powered NS

- ♣ 26 sources to date six in 2008-2013 All but two (LMC, SMC) are
 MW sources
- \clubsuit Discovered in X/ γ -rays/radio; radio, optical and IR observations Short, soft repeated bursts
- \blacksquare P = [2-11] s, P \sim [10⁻¹¹- 10⁻¹³]s/s
- $+ \tau_{spindown}(P/2 \dot{P}) = 2-220 \text{ kyrs}$
- **4** B~[1-10]×10¹⁴ G (mean surface dipole field: $3.2 \times 10^{19} \text{JPP}$); SGR J0418+5729 with B<7.5 × 10¹² G, SGR 1822.3-1606->B~2.7 × 10¹³ G
- Luminosities range from L~10³²⁻³⁶ erg/s
- No evidence for binarity
- SNe associations

NS populations comprising Magnetars

Soft Gamma Repeaters (SGRs)

Anomalous X-ray Pulsars (AXPs)

Dim Isolated Neutron Stars (DINs)

Compact Central X-ray Objects (CCOs)

Rotation Powered Pulsars (PSRs J1846-0258 & J1622-4950)

2008-2013: Good years for Magnetars!

The Gamma-ray Burst Monitor

- ♦ 4 x 3 NaI Detectors with different orientations.
- View entire sky while maximizing sensitivity to events seen in common with the LAT

The Large Area Telescope (LAT)

GBM BGO detector.

200 keV -- 40 MeV

126 cm², 12.7 cm

Triggering, Spectroscopy

Bridges gap between NaI and LAT.

-GBM NaI detector. 8 keV -- 1000 keV 126 cm², 1.27 cm Triggering, Localization, Spectroscopy.

GBM 5-yr Magnetar Burst Catalog Collazzi et al., 2014

Magnetar	Active Period	Triggers	Comments	
SGR J0501+4516	Aug/Sep 2008	26	New source at Perseus arm	
SGR J1550-5418	Oct 2008 Jan/Feb 2009 Mar/Apr 2009 June 2013	7 331 + 14 1	Known source - first burst active episodes	
SGR J0418+5729	June 2009	2	New source at Perseus arm	
SGR 1806-20	Mar 2010	1	Old source - reactivation	
AXP 1841-045	Feb 2011 June/July 2011	3 4	Known source - first burst active episodes	
SGR 1822-1606	July 2011	1	New source in galactic center region	
AXP 4U0142+61	July 2011	1	Old source - reactivation	
1E 2259+586	April 2012	1	Old source - reactivation	
Unconfirmed Origin	2008-2013	21	Error boxes contain several source candidates	

5GR J1550-5418 formerly known as AXP 1E1547.0-5408 formerly known as an ASCA CCO in G327.0-0.13

- \bullet P = 2.069s
- \bullet P = 2.318 × 10⁻¹¹ s/s and B = 2.2 × 10¹⁴ G
- ◆ Near IR detection, Ks = 18.5±0.3
- ◆ GBM triggered on 132 events from the source in three episodes; 2008 October, 2009 January & March. One more burst 2013 June.
- ◆ Only three other sources have exhibited in the past such "burst storms": SGR 1806-20, SGR 1900+14, SGR 1627-41
- igspace T₉₀ burst duration = 155 (10) ms for 353 (unsaturated) bursts

SGR J1550 - 5418: Temporal

SGR J1550 - 5418: Correlations

- GBM data →
 E_{peak} as hardness indicator. More accurate than hardness ratios
- Large flux/ fluence range: not a simple (anti-) correlation?
- Similar to SGRs J0501+4516, 1806-20, 1900+14

SGR J1550 - 5418: Correlations

SGR J1550 - 5418: phase correlations

SGR J1550 - 5418: phase correlations

All triggers: temporal properties

Unknown event avg T_{90} = 61 ms (known avg ~100 ms)

All triggers: comparative properties

Unknown source locations

Magnetar Distribution in our Galaxy

- NEW: GBM Bursts detected since Fermi launch SYNERGY: Swift-Fermi-RXTE-IPN
- Old source reactivation
- SGRs
- AXPs

Kouveliotou et al. 2011

SGR J1550-5418 — Example of a burst

- GBM Burst example for SGR J1550-5418.
- Saturation periods clearly seen. Excluded from all analyses.

SGR J1550-5418

.
$$P = 2.1 \ s, \dot{P} = 2.32 \times 10^{-11} \ s^{-1}$$

$$B \sim 2.1 \times 10^{14} \ \mathrm{G}$$

- Entered high level of activity in 2008-2009
 - Hundreds of bursts on 22 January 2009 seen with many high-energy instruments, e.g., FERMI/GBM (van der Horst et al. 2012)

Kaneko et al. 2010

GBM-only fit, 8-200 keV

Power-law with high energy exponential cutoff

Classical Comptanization, problems -1

$$\gamma = 1/2 - (9/4 + 4/y_{
m B})^{1/2}$$
 $y_{
m B} = (4kT_{
m e}/m_{
m e}c^2){
m max}\{ au_{
m B}, au_{
m B}^2\}$ Ribicki & Lightman (1979)

GBM-only fit, 8-200 keV

Power-law with high energy exponential cutoff

$$\gamma = 1/2 - (9/4 + 4/y_{
m B})^{1/2}$$
 $y_{
m B} = (4kT_{
m e}/m_{
m e}c^2){
m max}\{ au_{
m B}, au_{
m B}^2\}$ Ribicki & Lightman (1979)

 $au_{
m B}>>$ to accomplish such a spectral curvature will lead to thermalization

GBM-only fit, 8-200 keV

Power-law with high energy exponential cutoff

Classical Comptonization problems

$$< E_{
m peak} > pprox 40 {
m ~keV}, <\gamma> pprox -1$$
 $\gamma = 1/2 - (9/4 + 4/y_{
m B})^{1/2}$ $y_{
m B} = (4kT_{
m e}/m_{
m e}c^2){
m max}\{ au_{
m B}, au_{
m B}^2\}$

to accomplish such a spectral

will lead to thermalization
$$P=2-12~{
m s}, P=10^{-11}-10^{-13}~s~s^{-1}$$

Two thermally emitting regions, 2BB

$$kT_{
m high} pprox 13~{
m keV}, kT_{
m low} pprox 6~{
m keV},$$
 $R_{
m high_kT} pprox 0.3, R_{
m low_kT} pprox 17~{
m km}$ $R^2 = FD^2/\sigma T^4$

Could be thought of as footpoints and surface layer of fireball

$$10^{-11} - 10^{-13} \ s \ s^{-1}$$

SGR J1550-5418 — Spectral modeling GBM+Swift fit, 1-200 keV

Low-energy residuals with the Comptonized model Perfect fit with the 2BBs

2BBs spectral parameters consistent with GBM only fits

- Fit each bin with Comp. model.
- Follow evolution of fit parameters

$$P = 2 - 12 \text{ s}, \dot{P} = 10^{-11} - 10^{-13} \text{ s s}^{-1}$$

- Fit each bin with Comp. model.
- Follow evolution of fit parameters

modeling
Time resolved spectroscopy of 50 brightest bursts

- Fit each bin with Comp. model.
- Follow evolution of fit parameters

Similar spectral evolution for all 50 bursts.

Look for correlations of all 50 bursts

- Fit each bin with Comp. model.
- Follow evolution of fit parameters

Index $\gamma > -1!!!$

SGR J1550-5418 — Spectral modeling Time resolved spectroscopy of 50 brightest bursts

- Fit each bin with 2BB model.
- Follow evolution of fit parameters

modeling
Time resolved spectroscopy of 50 brightest bursts

- Fit each bin with 2BB model.
- Follow evolution of fit parameters

< High_kT $>\sim 13 \text{ keV}$ $< \text{Low_kT} > \sim 6 \text{ keV}$

Younes et al. 2014, ApJ., 785,52

- Fit each bin with 2BB model.
- Follow evolution of fit parameters

- Fit each bin with 2BB model.

- Fit each bin with 2BB model.
- Follow evolution of fit parameters

- Fit each bin with 2BB model.

modeling
Time resolved spectroscopy of 50 brightest bursts

- Fit each bin with 2BB model.
- Follow evolution of fit parameters

Younes et al. 2014, ApJ., 785,52

modeling
Time resolved spectroscopy of 50 brightest bursts

- Fit each bin with 2BB model.
- Follow evolution of fit parameters

Younes et al. 2014, ApJ., 785,52

Flux Range (erg s ⁻¹ cm ⁻²)	Slope below kT _{break}	Slope above kT _{break}	kT _{break} (keV)
$F > 10^{-4.5}$	-2.2 ± 0.3	-5.3 ± 0.4	9±1
$10^{-5.0} < F < 10^{-4.5}$	-2.8 ± 0.3	-4.6 ± 0.4	7 ± 1
$10^{-5.5} < F < 10^{-5.0}$	-3.0 ± 0.3	-4.4 ± 0.5	7 ± 1
$F < 10^{-5.5}$	-	-3.8 ± 0.4^{a}	

Note. a A single PL fit to the data.

- Two thermally emitting regions during bursts
 - Highly coupled with energy equipartition between the two
 - kT_high: adiabatically expanding/contracting region Could be thought of as the footprints of the plasma fireball.
 - kT_low: more complicated to interpret! Representing the outer surface layer of the plasma?
 - $R^2 kT^4$ relation places the plasma close to the surface of the NS.

modeling
Time resolved spectroscopy of 50 brightest bursts

- Fit each bin with 2BB model.
- Follow evolution of fit parameters

$$R_{
u} \sim 10 \; B_{15}^{-2} \left(rac{ heta_{
m max}}{10^{-3}}
ight) \left(rac{V_{\mu}}{1.4 imes 10^8}
ight) \; l_5 \; {
m km},$$

 $R_v < R_{sat.}$ or insufficient excitation

Younes et al. 2014, ApJ., 785,52, Thompson & Duncan 1995

Time resolved spectroscopy of 50 brightest bursts

- Fit each bin with 2BB model.
- Follow evolution of fit parameters

$$R_{
u} \sim 10 \; B_{15}^{-2} \left(rac{ heta_{
m max}}{0.1}
ight) \; \left(rac{V_{\mu}}{0.8 imes 10^8 \; {
m cm \; s^{-1}}}
ight)^{-1} l_5 \; {
m km}$$

$$R_{\nu} < R_{\rm sat}$$

$$B \gtrsim 4.5 imes 10^{15} igg(rac{R_{
m max}}{30 \ {
m km}} igg)^{-1/2} igg(rac{ heta_{
m max}}{0.1} igg)^{1/2} igg(rac{V_{\mu}}{0.8 imes 10^8 \ {
m cm \ s^{-1}}} igg)^{-1/2} l_5^1/2 \ {
m G}$$

$$E_{\rm max} \sim 4 \times 10^{40} \ l_5^2 \ B_{15}^{-2} (\theta_{\rm max}/0.1)^2 \ {\rm erg} \Longrightarrow B \lesssim 5.8 \times 10^{17} (\theta_{\rm max}/0.1) l_5 \ {\rm G}$$

Younes et al. 2014, ApJ., 785,52

Conclusion

- Strength of high-time resolution in studying magnetar bursts
 - Track the evolution of the emitting regions
 - Put to test the emission from a photon-pair plasma fireball
 - Prediction of intrinsic parameters of the system
- Motivation for a more in depth theoretical calculation of emergent spectrum of magnetar bursts, with the many physical and geometrical effects.

ENERGETICS

Fluence: $7 \times 10^{-9} - 1 \times 10^{-5} \text{ erg/cm}^2$

 $E=(2\times10^{37}-3\times10^{40}) d_5^2 erg$

Flux: $8 \times 10^{-7} - 2 \times 10^{-4} \text{ erg/cm}^2 \text{s}$

L: $5 \times 10^{38} - 1 \times 10^{41} \text{ erg/s}$

 $1806-20: 3.0 \times 10^{36}-4.9 \times 10^{39} \text{erg}$

 $1900+14: 7\times10^{35}-2\times10^{39}$ erg

1627-41: 10³⁸-10⁴¹ erg

0501+4516: 2x10³⁷-1x10⁴⁰erg 1E2259+586: 5x10³⁴-7x10³⁶erg

Total Energy Release: 6.6x10⁴¹d₅² erg (8-200 keV)

Magnetar Giant Flares

5. Evolutionary links?

What is the evolutionary link between different types of sources?

Rotation powered PSRs -> SGRs -> AXPs -> DINS

(Kouveliotou 1999, Perna & Pons 2011, Turolla etal 2011, Espinoza etal 2011)

Fermi MAGNETAR Facts

- 1. Since the Fermi launch, GBM has detected bursts from 8 sources: one third of the total population in five years!
- 2. The GBM magnetar burst spectra provide the first evidence for an unusual hardness E_{peak} flux relationship.
- 3. Evidence for higher energetic content in SGR bursts than in AXP bursts.
- 4. Upper limits on the LAT emission detection only.

What Next?

The next five years of Magnetar observations:

- Population studies of magnetars
- Understand the links between PSRs Magnetars DINS
- Systematic searches for seismic vibrations in magnetar burstsindependent B-field measurement: STAND BY ON THESE RESULTS
- Giant flare detection becomes a strong possibility (for a rate of 1/ source/10yrs, we expect one in the next three years - last was in 2004)
- Confirm pulsed emission breaks >100 keV will constrain E_{max} of particles and localization of emission

Overarching theoretical issues:

- Localize the burst energy injection possibly on or near the NS surface to determine the injection mechanism
- Detection of gravitational waves from magnetar Giant Flares
- Determination of the magnetic Eddington limit

Synergy with new observatories:

NuSTAR, LIGO, LOFAR, AstroSAT, SVOM

Serendipitous Discoveries:

Always welcome!