THE NUCLEAR CRYOGENIC PROPULSION STAGE

PRESENTED AT
SPACE 2014

August 4, 2014
The mass of a toy marble equals the mass of uranium providing the NTP energy for the entire Mars Mission.

Standing next to an NTP engine before launch for one year is less radiation than diagnostic x-rays.

NTP ground test regulations allow annual public dose to be 25% of what comes from all annual food you eat (e.g., bananas, potatoes, etc.), or 20 hours of plane flight.
Crews of nuclear submarines have lower radiation exposure than the general public above the water.

NTP provides faster trip times to Mars & exposes the astronauts to less galactic cosmic radiation.

NTP reactor fission products from the entire Mars mission is about equal to products formed after ~10 minutes of runtime from a nuclear power plant.
Using NTP saves up to 4 SLS launches for a human to mars mission and saves $B’s, shortens total launch schedule, and increases chances of mission success.

NERVA prototype flight engine was ready to be fabricated based on successful NTP ground test demonstrations in 1960’s. Current TRL for new fuel ~4.

Low enriched uranium (LEU) design has much lower security costs/risks.
President John F. Kennedy ...

- First, I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth....

- Secondly, an additional 23 million dollars, together with 7 million dollars already available, will accelerate development of the Rover nuclear rocket. This gives promise of some day providing a means for even more exciting and ambitious exploration of space, perhaps beyond the Moon, perhaps to the very end of the solar system itself.

Excerpt from the 'Special Message to the Congress on Urgent National Needs'
President John F. Kennedy
Delivered in person before a joint session of Congress May 25, 1961
Nuclear thermal propulsion (NTP) is a fundamentally new capability
- Energy comes from fission, not chemical reactions
- Virtually unlimited energy density

Initial systems will have specific impulses roughly twice that of the best chemical systems
- Reduced propellant (launch) requirements, reduced trip time
- Beneficial to near-term/far-term missions currently under consideration

Advanced nuclear propulsion systems could have extremely high performance and unique capabilities

The goal of the NCPS project is to establish adequate confidence in the affordability and viability of the NCPS such that nuclear thermal propulsion is seriously considered as a baseline technology for future NASA human exploration missions
Why is NTP considered for Human Missions to Mars?

- **Chemical**
 - $\text{isp}=465 \text{ sec}$

- **SEP**
 - $\text{isp}=4000 \text{ sec}$

- **NEP**
 - $\text{isp}=1800-4000 \text{ sec}$

- **NTP**
 - $\text{isp}=900 \text{ sec}$

Shorter Trip Times reduce exposure to Galactic Cosmic Radiation
Nuclear Cryogenic Propulsion Stage (NCPS) Organizational Structure

1.0 NCPS Project Management
- Project Manager: Mike Houts (MSFC)
- GRC Lead: Stan Borowski
- JSC Lead: John Scott
- DOE - NE75 Lead: Anthony Belvin
- DOE - NNSA Lead: Steve Clement

2.0 Pre-conceptual Design of the NCPS & Architecture Integration
Co-Leads: Tony Kim (NASA), Stan Borowski (NASA), David Poston (LANL)

3.0 High Power (≥ 1 MW) Nuclear Thermal Rocket Element Environmental Simulator (NTREES)
Lead: Bill Emrich (NASA)

4.0 NCPS Fuel Design / Fabrication
Co-Leads: Jeramie Broadway (NASA), Lou Qualls (ORNL), Jim Werner (INL)

5.0 NCPS Fuels Testing in NTREES & CFEET
Co-Leads: Bill Emrich (NASA), Robert Hickman (NASA), Lou Qualls (ORNL), Jim Werner (INL)

6.0 Affordable NCPS Development and Qualification Strategy
Co-Leads: Harold Gerrish (NASA), Glen Doughty (NASA), Stan Borowski (NASA), David Coote (NASA), Robert Ross (NASA), Jim Werner (INL), Roy Hardin (NRC)
NCPS Team FY14/15 Milestones

1. Fabricate short (~3") cermet fuel element and test in CFEET, 2/14/14
2. Extrude 16” graphite element and coat multiple internal channels of ~16" graphite specimen, 6/30/14
3. Fabricate representative, partial length (~16"), cermet fuel element with prototypic depleted uranium loading and test in NTREES, 8/4/14
4. Fabricate representative, partial length (~16"), coated graphite composite fuel element with prototypic depleted uranium loading, 9/1/14
5. Complete initial NTREES testing of ~16" coated graphite composite fuel element with prototypic depleted uranium loading, 11/1/14
6. Provide an initial NASA/DOE-NE75 recommendation on down selection of leader and follower fuel element types (Cermet vs. graphite composite), 12/15/14
Test Program safely accomplished in the past

20 NTP engines designed, built, and tested during Rover/NERVA
W/UO₂ CERMET Fuel Element Fabrication: 7 Channel Element with Depleted Uranium

Above left/right: 7 channel W-UO₂ FE during HIP process

Left & above: LANL sample post fill and closeout prior to shipping

Above/Below: 7 channel WUO₂ fuel element post HIP and cross sections
Short, 7 Channel W/UO$_2$ Element Fabricated and Tested in Compact Fuel Element Environmental Tester (CFEET)

CFEET System 50 kW Buildup & Checkout

Completed CFEET system. Ready for W-UO$_2$ and H$_2$ testing

Left: View looking down into the CFEET chamber during shakeout run 1. BN insulator and bright orange sample inside

Above/left: Pure W sample post shakeout run 2. Sample reached melting point (3695K) and was held in place by the BN insulator.

Initial Testing of Short W/UO$_2$ Element
Coated Graphite Composite Development (ORNL)

Above: Members of Oak Ridge National Laboratory fuels team with the graphite extruder; Left: Graphite extruder with vent lines installed for DU capability

Above and Left: Extrusion samples using carbon-matrix/Ha blend .75” across flats, .125” coolant channels

Right: Layoff base / Graphite insert

Above: Test Piece highlighting ZrC Coating
Right: Coating primarily on external surface
Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

General Description:

- Water cooled ASME coded test vessel rated for 1100 psi
- GN₂ (facility) and GH₂ (trailer) gas supply systems
- Vent system (combined GN₂/GH₂ flow)
- 1.2 MW RF power supply with new inductive coil
- Water cooling system (test chamber, exhaust mixer and RF system)
- Control & Data Acquisition implemented via LabVIEW program
- Extensive H₂ leak detection system and O₂ monitoring system
- Data acquisition system consists of a pyrometer suite for axial temperature measurements and a mass spectrometer
- “Fail Safe” design

New Cooling Water System now provides 2 separate systems that cool induction coil and power feedthrough, induction heater and H₂N₂ mixer respectively

New Coil is Heavily Insulated and Rugged

Old Coil was Uninsulated and Somewhat Fragile

Coil and Feedthrough Assembly
NTREES 1 MW Operational Readiness Inspection

NTREES Walk-thru for ORI Board: 1/30/14
What Else Needs Done?

Observations:

59 years since the start of the Rover / NERVA program

NTP programs typically cancelled because mission is cancelled, not because of insurmountable technical or programmatic issues

Programmatic constraints, technical capabilities, available facilities, mission needs, etc. all continually change

Need to devise an optimal approach to developing a 21st century NTP system
What Else Needs Done?

Options Have Changed Since 1955

Tremendous advances in computational capabilities (nuclear and non-nuclear).

Increased regulation and cost associated with nuclear operations and safeguards.

Extensive development of non-nuclear engine components. Extensive experience with various types of nuclear reactors.

Recent successes in “space nuclear” public outreach (Mars Science Lab).
What Else Needs Done?

Many Decisions will Affect Long-Term Affordability and Viability of any Potential NTP Development Program

• Balance between computational and experimental work.

• Flight qualification strategy / human rating

• Low-enriched uranium vs highly-enriched uranium

• Unscrubbed, scrubbed, or fully contained exhaust during ground testing.

• Choice of facility for any required testing (i.e. NCERC, NASA center, industry, etc.

• Many others!
Bore Hole
- Relies on permeability of desert alluvium soil to filter engine exhaust
- Reports from Nevada Test Site show significant effects of water saturation, turbulent flow rate, hole depth, and pressures on soil permeability.

Above Ground Scrubber
- Engine exhaust is filtered of radioactive aerosols and noble gases and directly flared to atmosphere
- Nuclear Furnace (NF-1) ground test scrubber successfully tested at the end of Rover/NERVA project
- DOE and ASME standards available for nuclear air cleaning and gaseous waste treatment

Total Containment
- Engine hydrogen exhaust is burned at high temperatures with oxygen and produces steam to be cooled, condensed, and collected for controlled processing and disposal
- All analyses to date indicate system will reliably and economically accomplish task

NTP Ground Test Options

Ground Testing Concepts for Nuclear Thermal Propulsion

NASA/SSC/EA00
16-17JUL14

Total containment with combustion and condensation

Above ground scrubber with filters

Engine Test Cell with Exhaust Processing Facility

Bore hole
NTP Total Containment Test Facility Concept

How it works:
- Hot hydrogen exhaust from the NTP engine flows through a water cooled diffuser that transitions the flow from supersonic to subsonic to enable stable burning with injected LO2.
- Products include steam, excess O₂ and a small fraction of noble gases (e.g., xenon and krypton).
- Heat exchanger and water spray dissipates heat from steam/O₂/noble gas mixture to lower the temperature and condense steam.
- Water tank farm collects H₂O and any radioactive particulates potentially present in flow. Drainage is filtered post test.
- Heat exchanger-cools residual gases to LN2 temperatures (freezes and collects noble gases) and condenses O₂.
- LOX Dewar stores LO₂, to be drained post test via boil-off.

Strategy:
- Fully Contain engine exhaust
- Slowly drain containment vessels after test
Low Enriched Uranium (LEU) NTR - Example

Space Capable Cryogenic Thermal Engine
(Baseball Card as of 6/20/14, Rev. 0.2.2)

SCCTE: A LEU W-UO₂ cermet fuel, ZrH₁.₈
Moderated Nuclear Thermal Rocket

Reactor System Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core power (MW)</td>
<td>558.2</td>
</tr>
<tr>
<td>Core average fuel power density (MW/l)</td>
<td>18.50</td>
</tr>
<tr>
<td>Max Fuel Temp. (K)</td>
<td>2850.0 K</td>
</tr>
<tr>
<td>U-235 Enrichment (a%)</td>
<td>19.75</td>
</tr>
<tr>
<td>U-235 inventory (kg)</td>
<td>31.86</td>
</tr>
</tbody>
</table>

Engine System Interface Information

<table>
<thead>
<tr>
<th>Interface Point</th>
<th>Flow Rate (lbm/s)</th>
<th>Pressure (psia)</th>
<th>Temp. (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core inlet</td>
<td>29.0</td>
<td>543.2</td>
<td>432.3</td>
</tr>
<tr>
<td>Core outlet</td>
<td>29.0</td>
<td>449.9</td>
<td>4927.7</td>
</tr>
</tbody>
</table>

Power Deposition

- Tie Tubes (MW): 16.19
- Radial Reflector (MW): 2.56
- Other Non-Fuel Components (MW): 3.00

Key Dimensions

- Total Reactor Length (fuel + axial reflector) (cm): 99.24
- Total Reactor Dia. (core + vessel + radial reflector) (cm): 99.67
- Core Dia. (cm): 64.00
- Core Length (cm): 84.00

Reactor System Mass

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Mass (291 Elements)</td>
<td>430.47</td>
</tr>
<tr>
<td>Tie Tubes (680 Elements)</td>
<td>782.03</td>
</tr>
<tr>
<td>Radial Reflector + Control Drums</td>
<td>568.7</td>
</tr>
<tr>
<td>Axial Reflector</td>
<td>22.7</td>
</tr>
<tr>
<td>Slats + Barrel + Vessel</td>
<td>341.4</td>
</tr>
<tr>
<td>Internal Structure (Plate + Chamber)</td>
<td>436.8</td>
</tr>
<tr>
<td>Total Mass (Excluding Shield) (kg)</td>
<td>2582.1</td>
</tr>
</tbody>
</table>
Human Mars Mission Architecture & Mission Design

Thrust Sensitivity Trades
- 3 x 25 klbs thrust
- 5 x 15 klbs thrust
- 2 x 50 klbs
- 3 x 30 klbs
- 1 x 75 klbs
- 1 x 100, 125, 150...
- 8 x 10 klbs

Isp Sensitivity Trades
- 825-950 sec
- Isp to fit 4 launch mission
- Isp to fit 5 launch mission
- # of LV needed w/ 900 s

Thrust/Weight Sensitivity Trades
- 1, 2, 3, 4, ...
- Engine T/W
- Vehicle T/W

Initial Assumptions
- DRM 5.0 Human Mars Mission
- 3 x 25 klbs thrust
- Isp = 900 s
- Engine T/W = 3.5
- 4 re-starts
- 102 minutes total burn time
- 2033 Opposition Class (hardest case)

Considerations affecting thrust, t/w, Isp
- 20## Human Mars Mission
- # x ## klbs thrust
- Isp = ### seconds
- Engine T/W = ##.
- # re-starts
- ### minutes total burn time

Outside NCPS influence
- Enabling technologies
- HAT requirements
- SLS Launch Vehicle (or other)

NCPS Task 3 & Task 6 influence
- Fuel Element material (Isp)
- Affordable Strategy (testing limitations)

NCPS Task 2 influences (modeling & analysis)
- Trajectory (min delta V, minimize time)
- Boil-off estimates
- Transient operations (start, shutdown)
- Leakage
- Human Rating (engine out scenario)
- Bi-modal
- Radiation shield concept (large mass)
- Higher fidelity analysis
- Innovative efficient concepts

Independent Review Panel, July 2014
HEOMD’s AES Nuclear Cryogenic Propulsion Stage (NCPS) project is making significant progress.

Safety is the highest priority for NTP (as with other space systems). After safety comes affordability.

No centralized capability for developing, qualifying, and utilizing an NTP system. Will require a strong, closely integrated team.

Tremendous potential benefits from NTP and other space fission systems. No fundamental reason these systems cannot be developed and utilized in a safe, affordable fashion.
Deaths by TeraWatt Hours (TWh) *

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Death Rate (per TWh)</th>
<th>Percent - World Energy /Electricity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal (electricity, heating, cooking)</td>
<td>100</td>
<td>26% / 50%</td>
</tr>
<tr>
<td>Coal (electricity - world average)</td>
<td>60</td>
<td>26% / 50%</td>
</tr>
<tr>
<td>Coal (electricity, heating, cooking) - China</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Coal (electricity) - China</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Coal - USA</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Oil</td>
<td>36</td>
<td>36%</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>4</td>
<td>21%</td>
</tr>
<tr>
<td>Biofuel / Biomass</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Peat</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Solar (rooftop)</td>
<td>0.44</td>
<td>0.2% of world energy for all solar</td>
</tr>
<tr>
<td>Wind</td>
<td>0.15</td>
<td>1.6%</td>
</tr>
<tr>
<td>Hydro</td>
<td>0.10 (Europe death rate)</td>
<td></td>
</tr>
<tr>
<td>Hydro (world including Banqiao dam failure)</td>
<td>1.4</td>
<td>(About 2500 TWh/yr and 171,000 Banqiao dead)</td>
</tr>
<tr>
<td>Nuclear</td>
<td>0.04</td>
<td>5.9%</td>
</tr>
</tbody>
</table>

60% for coal for electricity, cooking and heating in China. Pollution is 30% from coal power plants in China for the particulates and 66% for sulfur dioxide. Mining accidents, transportation accidents are mostly from coal for electricity.

Radiation Dosage Comparison

<table>
<thead>
<tr>
<th>Event</th>
<th>Duration</th>
<th>Rem</th>
<th>mSv</th>
<th>Yearly mSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>eating 1 banana</td>
<td>instantaneous</td>
<td>0.00001</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Dental x-ray (panoramic)</td>
<td>instantaneous</td>
<td>0.001</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>living in a stone/brick/concrete building</td>
<td>1 year</td>
<td>0.007</td>
<td>0.07</td>
<td>0.1</td>
</tr>
<tr>
<td>public exposure limit due to NTR testing</td>
<td>1 year</td>
<td>0.010</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>eating 1000 bananas</td>
<td>1 year</td>
<td>0.010</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>20 hour plane flight</td>
<td>20 hours</td>
<td>0.010</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>chest x-ray (2 views)</td>
<td>instantaneous</td>
<td>0.010</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>EPA yearly release limit for nuclear power plant</td>
<td>1 year</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1 mammogram</td>
<td>instantaneous</td>
<td>0.3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Normal yearly background dose to person</td>
<td>1 year</td>
<td>0.4</td>
<td>3.65</td>
<td>4</td>
</tr>
<tr>
<td>a beach in Brazil (Guarapari)</td>
<td>1 year</td>
<td>17.5</td>
<td>175</td>
<td>175</td>
</tr>
<tr>
<td>Ramsar Iran</td>
<td>1 year</td>
<td>25.0</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>No observable effects</td>
<td>instantaneous</td>
<td>25.0</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Possible temporary blood effects</td>
<td>instantaneous</td>
<td>25.0</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Radiation worker one-year dose limit</td>
<td>1 year</td>
<td>5.0</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Space Shuttle Mission 41-C</td>
<td>8 day @ 460 km orbit</td>
<td>0.6</td>
<td>6</td>
<td>255</td>
</tr>
<tr>
<td>Apollo 14</td>
<td>9 day mission to moon</td>
<td>1.1</td>
<td>11</td>
<td>446</td>
</tr>
<tr>
<td>Skylab 4</td>
<td>87 day mission @ 473 km orbit</td>
<td>17.8</td>
<td>178</td>
<td>747</td>
</tr>
<tr>
<td>ISS mission</td>
<td>6 month</td>
<td>16.0</td>
<td>160</td>
<td>320</td>
</tr>
<tr>
<td>Estimated Mars Mission (in space)</td>
<td>3 year</td>
<td>120.0</td>
<td>1200</td>
<td>400</td>
</tr>
<tr>
<td>Estimated Mars Surface</td>
<td>1 day</td>
<td>0.1</td>
<td>0.67</td>
<td>245</td>
</tr>
<tr>
<td>Astronaut career limit (female age 25)</td>
<td>5 years</td>
<td>100.0</td>
<td>1000</td>
<td>200</td>
</tr>
<tr>
<td>Astronaut career limit (male age 55)</td>
<td>20 years</td>
<td>400.0</td>
<td>4000</td>
<td>200</td>
</tr>
<tr>
<td>50 km NW of Fukushima accident (March 16 & 17)</td>
<td>1 day</td>
<td>0.4</td>
<td>3.6</td>
<td>1314</td>
</tr>
<tr>
<td>Severe radiation poisoning</td>
<td>instantaneous</td>
<td>200.0</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>Extremely severe radiation poisoning</td>
<td>instantaneous</td>
<td>400.0</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>Fatal dose of radiation poisoning</td>
<td>instantaneous</td>
<td>800.0</td>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>People have survived (possibly)</td>
<td>instantaneous</td>
<td>1000.0</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>contact with Chernobyl explosion reactor core steam</td>
<td>10 minutes</td>
<td>5000.0</td>
<td>50000</td>
<td></td>
</tr>
</tbody>
</table>