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Nuclear Cryogenic Propulsion Stage (NCPS)

• NCPS started in FY2012 to assess affordability 
and viability of NTP 

• NTP is game changing for space exploration 
– High ISP, reduced trip times 

• Overall tasks 
– Conceptual design and architecture integration 
– Fuel Fabrication and Test 
– Nuclear Thermal Rocket Element Environmental 

Simulator (NTREES) 
– Affordable Development /Qualification Strategy 

• Critical need for fuels development 
– Lack of qualified fuel material is a key risk 
– Development of stable fuel form is a critical path, 

long lead activity 
• Enables fuel optimization and ground test

Fuel Element Design, 
Fabrication, and Test 

Engine Ground Test 



Heritage CERMET Fuel Development

• CERMET fuels consist of a metal matrix with 
embedded ceramic fuel particles 
– W  matrix (high melting point, H2 compatibility) 
– UO2, UN, (U,Zr)CN  fuel particles 

• Current work is based on GE710, ANL, and NASA 
LeRC development Programs 
– Must recapture capabilities and processes 

• Data is not sufficient to support selection of a 
baseline fabrication technique 
– Large variation in materials, processes, and testing 

• Significant progress made to characterize fuel 
– Fuel loss and failure mechanisms are known 
– Materials and process options to improve fuel 

performance are known 

W-UO2 CERMET Samples 
fabricated during ANL Program 

W - light phase, UO2 - dark phase 



Non-Nuclear Hot H2 Screening and Evaluation

• Need affordable approach to evaluate fuels 
– Fuel loss and stability 
– Validate M&P and designs 
– Perform prior to expensive nuclear testing 

• Hydrogen testing used extensively on 
previous programs 

• NASA-LeRC induction furnace 
– 2760 C specimen temperatures 

• ANL H2 test loops (small & large) 
– Resistively heated H2 flowing through sample 
– Up to 2450 C 

• Rover/NERVA test facilities 
– Full Length H2 test systems at LANL & WANL 
– Resistively heated (1MW) elements 

NASA-LeRC Induction Furnace 

Previous capabilities no longer exist and very limited info on systems 



Compact Fuel Element Environment Test (CFEET) 

• Affordable, rapid screening of subscale samples 
• Utilizes RF induction heating 
• Numerous system modifications 

– Power supply, cooling water, RF coil, data 
acquisition, H2 feed, and sample support 

• Initial testing with 15kW RF power supply 
– Operational tests using W and W-Re-HfN CERMET 
– 2565 C in vacuum, 2042 C in flowing H2 
– Temps limited by power supply 

• System re-design and upgrade to 50 kW 
 
 
 

Pre/Post test W-Re-HfN 
CERMET samples Pure W samples 



Current CFEET Configuration 

50 kW      
Power Supply 

Multispectral 
Pyrometer 

Two Color 
Pyrometer 

CFEET Cart Rogowski Coil Data 
Acquisition 

Cart 

CFEET Induction Coil 

CFEET Chamber and RF Induction Coil 

• Fully operational with DU  
• 16.5 SLPM H2 Flow Rate 
• >2500 C, 2 hour run times  



CFEET Temperature Validation 

Ti MP 1660 C 

Pyrometer 
Obstruction 

Titanium Sample 
Post Test (1” length) 

Molybdenum Sample Post Test 
(1” length) 

2 Color 
Pyrometer 
Adjustment 

Mo MP 2620 C 

Multispectral 
Pyrometer 

• Multispectral pyrometer up to 2000 C, 2 color up to 3000 C 
– 2 color pyrometer adjustment to multispectral at 1500 C 



CFEET Model Validation 

Molybdenum melt test calibration 
cycle and model temperature data 

Multiphysics model showing surface 
temperature for a Mo sample in CFEET 

• Multiphysics model uses CFEET RF current data to estimate magnetic 
flux density and sample temperatures 
– Includes fully coupled flowing H2 and material properties 

 



W-UO2 Sample Testing in CFEET 

• Initial W-UO2 samples are not optimized 
– UO2 agglomeration 
– No interconnected W matrix 
– Low density (interconnected porosity) 
– No protective W claddings 
– No UO2 stabilizers 

• Testing mainly to understand CFEET system 
– RF coupling and temperature control 

• Evaluate UO2 vaporization 
 
• Samples can only get better with further 

materials and process development! 
 

 
 

Powder Coated 
Particles 

Vapor Coated 
Particles 

Uncoated 
Particles 

UO2 agglomeration in current 
samples. Dark regions are 
UO2, light regions are W.   



Stages of W-UO2 Decomposition 

W Claddings, Coated UO2 
Uniform high density W matrix Unclad, Uncoated and  non-

stabilized UO2, low density 
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Initial W-UO2 Sample Testing in CFEET 

• 7-Hole W-UO2 sample cycled for 30 minutes at 1650 C in flowing H2 to 
remove surface oxides and contamination 
– 10% of 50 KW power supply, No visible change in sample

• 2nd cycle of 7-hole sample with slow ramping up to 2500 C 
– Cycle terminated after 30 sec at ~2400 C due to rapid UO2 vaporization 

(pyrometer sight glass completely covered with U deposits) 
– Cracking, particle deposition on the hot end and 1.5% weight loss 

• W-UO2 slug sample cycled for 10 minutes at 2500 C 
– Sample reduced to powder after cooling 

 
 

 
 Build up on CFEET 

Sight Glass 

7-hole W-UO2 in CFEET and post 
testing up to 2400 C 

W-UO2 slug after 10 min 
in CFEET at 2500C 



W-UO2 Phase Map Pre CFEET Test



W-UO2 Phase Map Post CFEET Testing



WUO2 Post CFEET Test

W-UO2 sample post test  



CSNR/Aerojet Rocketdyne W-UO2 Testing 

• W-UO2 samples fabricated at the Center for Space 
Nuclear Research in Idaho Falls, ID 
– Spark Plasma Sintering (SPS) techniques 

• NERVA heritage 19-hole configuration 
• Similar to GE710 fuel fabrication approach 

– Multiple bonded segments 
– Improved sintering with SPS 
– Net shape fabrication (reduced machining) 

• 3” sample cycled in CFEET in flowing H2 to ~2200 C 
• Testing terminated due to observed non-uniform 

heating profile and temperature readings 
• Testing of SPS samples will proceed after 

optimization and verification of CFEET system 
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Thermodynamics 
Heat Deposition 
• Non-linear power density 
• Lowest at coil edge 
• highest at coil center 
Sides and Top 
• Radiation 
• Convection 
Bottom 
• Radiation 
• Convection 
• Conduction (BN pedestal) 

• Sample location in coil is critical for uniform heating (radial and axial position) 
• 3” long sample located with top edge near top of RF induction coil (6” long) 
• Flowing H2 atmosphere at 16.5 SLPM 

• Increased local current (heating) at surface due to melting (gouging effect) 
 

Current CFEET Thermodynamic Heating Profile 

R
F Induction C

oil 

3” Kovar (Fe-Ni-Co alloy) 
verification Sample 



Non-symmetrical RF Heating Effects 

Proximity effect  in non-symmetrical 
single-turn inductor 

Rudnev, Valery. "Chapter 3: Theoretical Background." Handbook of Induction 
Heating. New York: Marcel Dekker, 2003. Page 121. Print 

• Non-uniform heating due to off-
axis alignment of coil and sample 

• Eddy currents produce heating of 
sample through the Joule effect  

• Smaller gap between coil and 
sample results in better coupling 
– Intense, localized heating 

• Larger gap between coil and 
sample results in poor coupling 
– Less intense, more diffuse heating 

 
 



Electromagnetic End Effects 

Electromagnetic end effects at 
different coil overhangs Rudnev, Valery. "Chapter 3: Theoretical Background." Handbook of Induction 

Heating. New York: Marcel Dekker, 2003. Page 129-131. Print 

• Coil overhang can affect power 
density on the sample 

• Sample outside of coil 
– Predictable power density curves (σ1) 

• Sample inside of coil 
– Less predictable power densities at the 

extremes, as seen by σ3 – σ7 

• Can get under heating or overheating 
at the extreme ends of the sample 
– Dependent on axial location 

• Need to optimize sample location 
– May constrain sample size for current 

coil configuration (~1.5”) 



Non-Uniform Heating Profile Verification 

Failure Initiation 

1438 C 

1366 C 

MP – 1449 C 
1483 C spike 
from melt pool 

• Kovar sample during induction heating, flowing H2 
• 3” sample located with top edge near top of coil 



Improve RF Heating Profile with W Susceptor  

• Susceptors are used to absorb electromagnetic 
energy and convert it to radiant heat 

• Shield the sample from RF heating 
– Eliminates preferential heating from surface edges, 

defects, and other anomalies such as joints 
– More uniform heat deposition on sample 

• Susceptor evaluation trials in CFEET 
– More uniform heating 
– Eliminated focused current/joule heating failures 

 
 

Magnetic flux density on a BN insulator Magnetic flux density on a W susceptor 

Kovar 
sample 

Niobium 
Susceptor 



Forward Plan and Summary

• Optimize heating profile using a W susceptor and sample size/location 
• Upgrade to 3000 C multispectral pyrometers on top and middle 
• Complete fabrication and testing of improved subscale W-UO2 samples  

– W CVD coated UO2 

– W powder coated UO2 (binders) 
– With and without integral W claddings 
– SPS and HIP fabricated samples 

• CERMETS demonstrated, but not proven to full scale 
– Large variation in materials, processing, and performance 

• MSFC has developed subscale hot hydrogen testing capability 
– Rapid, affordable screening 
– Verification of materials and processing prior to expensive nuclear testing 

• Development enables fuel optimization for future ground testing and 
flight technology demonstration 


