Hot Hydrogen Testing of Tungsten-Uranium Dioxide (W-UO₂) CERMET Fuel Materials for Nuclear Thermal Propulsion

Nuclear Cryogenic Propulsion Stage (NCPS) Advanced Exploration System (AES) Project

> Robert Hickman Jeramie Broadway Doug Trent Adam Dziubanek NASA Marshall Space Flight Center

AIAA Joint Propulsion Conference Cleveland, OH July 28-30, 2014

- NCPS Overview
- Heritage CERMET Development
- Non-Nuclear Fuels Testing
- Compact Fuel Element Environmental Test (CFEET)
 - System development
 - Current configuration and validation
- Hot Hydrogen Testing of W-UO2
- Non-Uniform RF Heating Profile
- Forward Plan and Summary

Nuclear Cryogenic Propulsion Stage (NCPS)

- NCPS started in FY2012 to assess affordability and viability of NTP
- NTP is game changing for space exploration
 - High ISP, reduced trip times
- Overall tasks
 - Conceptual design and architecture integration
 - Fuel Fabrication and Test
 - Nuclear Thermal Rocket Element Environmental Simulator (NTREES)
 - Affordable Development /Qualification Strategy
- Critical need for fuels development
 - Lack of qualified fuel material is a key risk
 - Development of stable fuel form is a critical path, long lead activity
- Enables fuel optimization and ground test

Fuel Element Design, Fabrication, and Test

Engine Ground Test

Heritage CERMET Fuel Development

- CERMET fuels consist of a metal matrix with embedded ceramic fuel particles
 - W matrix (high melting point, H2 compatibility)
 - UO₂, UN, (U,Zr)CN fuel particles
- Current work is based on GE710, ANL, and NASA LeRC development Programs
 - Must recapture capabilities and processes
- Data is not sufficient to support selection of a baseline fabrication technique
 - Large variation in materials, processes, and testing
- Significant progress made to characterize fuel
 - Fuel loss and failure mechanisms are known
 - Materials and process options to improve fuel performance are known

W-UO2 CERMET Samples fabricated during ANL Program

W - light phase, UO2 - dark phase

Non-Nuclear Hot H2 Screening and Evaluation

- Need affordable approach to evaluate fuels
 - Fuel loss and stability
 - Validate M&P and designs
 - Perform prior to expensive nuclear testing
- Hydrogen testing used extensively on previous programs
- NASA-LeRC induction furnace
 2760 C specimen temperatures
- ANL H₂ test loops (small & large)
 - Resistively heated H2 flowing through sample
 - Up to 2450 C
- Rover/NERVA test facilities
 - Full Length H₂ test systems at LANL & WANL
 - Resistively heated (1MW) elements

NASA-LeRC Induction Furnace

Compact Fuel Element Environment Test (CFEET)

- Affordable, rapid screening of subscale samples
- Utilizes RF induction heating
- Numerous system modifications
 - Power supply, cooling water, RF coil, data acquisition, H2 feed, and sample support
- Initial testing with 15kW RF power supply
 - Operational tests using W and W-Re-HfN CERMET
 - 2565 C in vacuum, 2042 C in flowing H2
 - Temps limited by power supply
- System re-design and upgrade to 50 kW

Pre/Post test W-Re-HfN CERMET samples

Pure W samples

Current CFEET Configuration

Cart

- Fully operational with DU
- 16.5 SLPM H₂ Flow Rate
- >2500 C, 2 hour run times

CFEET Chamber and RF Induction Coil

CFEET Temperature Validation

- Multispectral pyrometer up to 2000 C, 2 color up to 3000 C •
 - 2 color pyrometer adjustment to multispectral at 1500 C

Titanium Sample Post Test (1" length)

CFEET Model Validation

temperature for a Mo sample in CFEET

- Multiphysics model uses CFEET RF current data to estimate magnetic flux density and sample temperatures
 - Includes fully coupled flowing H2 and material properties

W-UO₂ Sample Testing in CFEET

- Initial W-UO2 samples are not optimized
 - UO₂ agglomeration
 - No interconnected W matrix
 - Low density (interconnected porosity)
 - No protective W claddings
 - No UO₂ stabilizers
- Testing mainly to understand CFEET system
 - RF coupling and temperature control
- Evaluate UO₂ vaporization
- Samples can only get better with further materials and process development!

UO2 agglomeration in current samples. Dark regions are UO2, light regions are W.

Stages of W-UO₂ Decomposition

Initial W-UO₂ Sample Testing in CFEET

- 7-Hole W-UO₂ sample cycled for 30 minutes at 1650 C in flowing H₂ to remove surface oxides and contamination
 - 10% of 50 KW power supply, No visible change in sample
- 2nd cycle of 7-hole sample with slow ramping up to 2500 C
 - Cycle terminated after 30 sec at ~2400 C due to rapid UO₂ vaporization (pyrometer sight glass completely covered with U deposits)
 - Cracking, particle deposition on the hot end and 1.5% weight loss
- W-UO₂ slug sample cycled for 10 minutes at 2500 C
 - Sample reduced to powder after cooling

7-hole W-UO₂ in CFEET and post testing up to 2400 C

W-UO2 slug after 10 min in CFEET at 2500C

Build up on CFEET Sight Glass

W-UO₂ Phase Map Pre CFEET Test

500µm

U M series

r

500µm

W-UO₂ Phase Map Post CFEET Testing

W M series

г

1mm

1mm

WUO₂ Post CFEET Test

U M series

500µm W M series

500µm

CSNR/Aerojet Rocketdyne W-UO₂ Testing

- W-UO₂ samples fabricated at the Center for Space Nuclear Research in Idaho Falls, ID
 - Spark Plasma Sintering (SPS) techniques
- NERVA heritage 19-hole configuration
- Similar to GE710 fuel fabrication approach
 - Multiple bonded segments
 - Improved sintering with SPS
 - Net shape fabrication (reduced machining)
- 3" sample cycled in CFEET in flowing H_2 to ~2200 C
- Testing terminated due to observed non-uniform heating profile and temperature readings
- Testing of SPS samples will proceed after optimization and verification of CFEET system

Current CFEET Thermodynamic Heating Profile

- Sample location in coil is critical for uniform heating (radial and axial position)
 - 3" long sample located with top edge near top of RF induction coil (6" long)
 - Flowing H2 atmosphere at 16.5 SLPM
- Increased local current (heating) at surface due to melting (gouging effect)

Non-symmetrical RF Heating Effects

- Non-uniform heating due to offaxis alignment of coil and sample
- Eddy currents produce heating of sample through the Joule effect
- Smaller gap between coil and sample results in better coupling

 Intense, localized heating
- Larger gap between coil and sample results in poor coupling
 - Less intense, more diffuse heating

Proximity effect in non-symmetrical single-turn inductor

Rudnev, Valery. "Chapter 3: Theoretical Background." *Handbook of Induction Heating*. New York: Marcel Dekker, 2003. Page 121. Print

Electromagnetic End Effects

- Coil overhang can affect power density on the sample
- Sample outside of coil
 - Predictable power density curves (σ_1)
- Sample inside of coil
 - Less predictable power densities at the extremes, as seen by $\sigma_3 \sigma_7$
- Can get under heating or overheating at the extreme ends of the sample
 - Dependent on axial location
- Need to optimize sample location
 - May constrain sample size for current coil configuration (~1.5")

Rudnev, Valery. "Chapter 3: Theoretical Background." *Handbook of Induction Heating*. New York: Marcel Dekker, 2003. Page 129-131. Print

Non-Uniform Heating Profile Verification

- Kovar sample during induction heating, flowing H2
- 3" sample located with top edge near top of coil

Improve RF Heating Profile with W Susceptor

- Susceptors are used to absorb electromagnetic energy and convert it to radiant heat
- Shield the sample from RF heating
 - Eliminates preferential heating from surface edges, defects, and other anomalies such as joints
 - More uniform heat deposition on sample
- Susceptor evaluation trials in CFEET
 - More uniform heating
 - Eliminated focused current/joule heating failures

Magnetic flux density on a BN insulator

Magnetic flux density on a W susceptor

0.08

0.06

0.02

▼ 2.06×10

- Optimize heating profile using a W susceptor and sample size/location
- Upgrade to 3000 C multispectral pyrometers on top and middle
- Complete fabrication and testing of improved subscale W-UO₂ samples
 - W CVD coated UO₂
 - W powder coated UO₂ (binders)
 - With and without integral W claddings
 - SPS and HIP fabricated samples
- CERMETS demonstrated, but not proven to full scale
 - Large variation in materials, processing, and performance
- MSFC has developed subscale hot hydrogen testing capability
 - Rapid, affordable screening
 - Verification of materials and processing prior to expensive nuclear testing
- Development enables fuel optimization for future ground testing and flight technology demonstration