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Abstract 28 

Long-term, global offline (land-only) simulations with a dynamic vegetation phenology 29 

model are used to examine the control of hydroclimate over vegetation-related quantities.  First, 30 

with a control simulation, the model is shown to capture successfully (though with some bias) 31 

key observed relationships between hydroclimate and the spatial and temporal variations of 32 

phenological expression.  In subsequent simulations, the model shows that:  (i) the global spatial 33 

variation of seasonal phenological maxima is controlled mostly by hydroclimate, irrespective of 34 

distributions in vegetation type, (ii) the occurrence of high interannual moisture-related 35 

phenological variability in grassland areas is determined by hydroclimate rather than by the 36 

specific properties of grassland, and (iii) hydroclimatic means and variability have a 37 

corresponding impact on the spatial and temporal distributions of gross primary productivity 38 

(GPP). 39 

  40 



3 
 

1. Introduction 41 

Recognition that the Earth’s energy and water cycles are intrinsically entwined is 42 

longstanding (e.g., Budyko 1971).  The land surface energy and water balances both feature 43 

evapotranspiration as a dominant term, and the generation of rainfall (a key component of the 44 

water cycle) has a profound effect on the heat budget of the atmosphere.  The inseparability of 45 

the energy and water cycles underlies their joint treatment in numerous analyses (e.g., Trenberth 46 

et al. 2011) and the formation of international research projects addressing their linkage, such as 47 

GEWEX (the Global Energy and Water Exchanges Project, part of the World Climate Research 48 

Programme, or WCRP). 49 

The Earth’s carbon cycle is in turn intrinsically entwined with the energy and water 50 

cycles.  Vegetation health (and associated carbon uptake) is affected by water availability; 51 

deserts, for example, tend not to be carbon sinks.  Conversely, carbon affects the water and 52 

energy cycles; the transpiration of water from vegetation and the associated cooling of the land 53 

surface are in large part controlled by the efficiency of the vegetation’s uptake of carbon dioxide 54 

(e.g., Berry et al. 2010), and the build-up of vegetation through carbon uptake has a direct impact 55 

on land surface albedo – how much of the sun’s radiation is absorbed by the surface.  Carbon 56 

dioxide is, of course, also a greenhouse gas.  The basic connection between the surface fluxes of 57 

water, energy, and carbon is appropriately recognized in numerous studies (e.g., Leuning et al. 58 

2004; Bowling et al. 2010), and it is a motivation for such international research projects as 59 

ILEAPS (the Integrated Land Ecosystem Atmosphere Study, another component of WRCP). 60 

In this paper, we focus in particular on the carbon-water linkage at the land surface.  A 61 

number of relevant studies in the literature have shared this focus.  Using data collected at a 62 

number of flux tower sites in North America, Knapp and Smith (2001) provided a powerful, 63 
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geographically diverse analysis of the connections between the surface water and carbon cycles – 64 

specifically, of the controls of precipitation means and variability on aboveground net primary 65 

production (ANPP).  Their results show that carbon uptake by the land surface is indeed strongly 66 

regulated by precipitation characteristics, with maximum uptake related strongly to precipitation 67 

amount and with the interannual variability of the uptake maximized in grassland areas, where 68 

both precipitation variability and vegetation cover are adequately high.  Remotely sensed 69 

measurements of vegetation properties allow for an even more comprehensive and large-scale 70 

analysis of connections between carbon and climatic variables, including precipitation (e.g., 71 

Fang et al. 2005, Iichi et al. 2010, Jahan and Gan 2011).  In a recent global analysis, Zeng et al. 72 

(2013) uncovered strong relationships between the interannual variations contained in a 73 

multidecadal NDVI dataset (normalized difference vegetation index, an indicator of green leaf 74 

area) and antecedent precipitation levels, particularly in temperate and tropical grasslands. 75 

A modeling framework is a natural venue for studying the connections between carbon 76 

and water.  Wang and Eltahir (2000), using a simple coupled biosphere-atmosphere model, 77 

showed how the interaction between vegetation and precipitation can lead to multiple equilibria 78 

for vegetation state.  Zeng et al. (1999) showed, again with a simple coupled model, how 79 

vegetation-climate interactions may affect the nature of precipitation variability in the Sahel.  80 

Puma et al. (2013) used a modeling framework to compare the impacts of meteorological 81 

variability and phenological variability on the simulation of surface moisture and carbon fluxes.  82 

Complex and relatively complete models of vegetation behavior, models that indeed tie together 83 

explicitly the interactions between carbon, energy, and water fluxes at the land surface and 84 

accordingly allow the prediction of vegetation state, are arguably the new state-of-the-art in 85 

numerical climate modeling.  Sellers et al. (1997) pointed to the explicit treatment of carbon as a 86 
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logical step in the evolution of land surface treatments in Earth system models; dynamic 87 

vegetation models (DVMs) following this evolutionary path are already being used at major 88 

climate modeling centers (e.g., Lawrence et al. 2010, Krinner et al. 2005, Boussetta et al. 2012, 89 

Dunne et al. 2013). 90 

An advantage of using a modeling framework for carbon-water studies is the potential for 91 

doing unique analyses that isolate and illustrate the mechanisms that control the transfers of 92 

water and carbon across the land surface.  Carefully formulated modifications of a physical 93 

process treatment or of a variable that forces it can be imposed, and the resulting impacts on 94 

surface fluxes can be quantified and analyzed, thereby elucidating the role of the process 95 

examined.  A second important advantage of such models is their ability to provide data fields 96 

that are unattainable with in situ measurement networks or even satellite-based sensors.  Gross 97 

primary productivity (GPP), for example, can only be measured directly at a limited number of 98 

flux tower sites.  A DVM, however, if driven with observations-based meteorological forcing, 99 

can potentially produce estimates of GPP at high spatial and temporal resolution across the 100 

globe.  Such estimates would be biased relative to nature, of course, due to deficiencies in model 101 

formulation and forcing data; still, if care is given to their interpretation, the estimates do have 102 

scientific value. 103 

Both of these advantages come into play in the present paper, in which we use the 104 

dynamic phenology component of an established DVM together with the water and energy 105 

balance framework of a hydrology-focused LSM to characterize, on a global scale, the controls 106 

of precipitation means and variability on GPP – both on its spatial distribution and on its 107 

temporal variability across the globe.  The modeling system used (described in Section 2) is 108 

indeed found to be effective in capturing the key hydroclimatic controls on phenology that 109 
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operate in nature (as demonstrated in Section 3).  The simulated GPP distributions from the thus-110 

validated system are analyzed jointly with global precipitation data in Section 4.  The model 111 

experiments provide new insights into the relative impacts of precipitation means, precipitation 112 

variability, and vegetation type in determining GPP distributions. 113 

 114 

2. Dynamic Phenology Model 115 

The dynamic phenology model used in this study is in essence a merger of the carbon 116 

physics of the NCAR/DOE CLM4 dynamic vegetation model (Oleson et al. 2010) with the 117 

energy and water balance formulations of the NASA Global Modeling and Assimilation Office 118 

(GMAO) Catchment land surface model (LSM) (Koster et al. 2000).  We provide here a brief 119 

description of these two components and the technique used to merge them into a new model, 120 

hereafter referred to as the Catchment-CN LSM (i.e., the Catchment LSM with carbon and 121 

nitrogen physics). 122 

The NCAR/DOE Community Land Model, version 4 (CLM4), represents prognostic 123 

coupled energy, water, carbon, and nitrogen cycles in a framework that permits global-scale as 124 

well as regional and site-level simulation. The global-scale parameterization used here includes 125 

specification of sub-grid heterogeneity in plant functional type (PFT) distributions, with multiple 126 

PFTs assigned fractional area coverage within each grid cell, where they compete with one 127 

another for available soil moisture and mineral nitrogen resources. In this prescribed 128 

biogeography mode the fractional areas occupied by individual PFTs do not change, but 129 

vegetation growth, soil heterotrophic activity, carbon stocks, and other ecosystem states (such as 130 

leaf area index) do vary prognostically (Thornton et al. 2009). 131 
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The GMAO Catchment land surface model is a state-of-the-art surface energy and water 132 

budget model designed for use with global Earth system models.  As with most other LSMs, the 133 

Catchment LSM employs complex treatments of land surface flux generation, tying the 134 

efficiency of evaporation and runoff generation to the moisture and temperature states of the land 135 

surface, and it includes parameterizations of vegetation impacts on transpiration, canopy 136 

interception, albedo, and surface roughness.  Relatively unique to the Catchment LSM is its 137 

treatment of the subgrid variability of soil moisture and temperature, which is explicitly tied to a 138 

description of the topographic variability in the region modeled – in the Catchment LSM, valley 139 

bottoms within a given grid element are explicitly modeled as being wetter, and the hilltops are 140 

explicitly modeled as being drier.  Runoff and evaporation are calculated independently in the 141 

different hydrological regimes, using regime-specific physics. 142 

In essence, in merging the two models, we retain the Catchment LSM’s energy and water 143 

balance calculation framework while using the NCAR/DOE CLM4 carbon balance calculations.  144 

The approach is illustrated in Figure 1.  In the original Catchment LSM (Figure 1a), the model 145 

uses forcing from the atmosphere along with prescribed vegetation phenology (LAI and 146 

greenness fraction) and the current values of LSM temperature and moisture prognostic variables 147 

to compute the canopy conductance, the parameter describing the ease with which the plants 148 

transpire water.  The canopy conductance, computed separately for each hydrological regime, is 149 

then used in each regime’s energy balance and water balance calculations, which in turn provide 150 

the fluxes of heat and moisture to the atmosphere. 151 

Figure 1b shows the approach used by the merged system, the Catchment-CN LSM.  The 152 

atmospheric inputs are now fed first into the components of the NCAR/DOE model that update 153 

the carbon states and compute, as a matter of course, canopy conductances that reflect an explicit 154 
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treatment of photosynthesis physics.  These canopy conductances, along with the leaf area 155 

indices diagnosed from the new carbon prognostic variables, are fed into the energy and water 156 

balance calculations of the original Catchment LSM.  The output fluxes with the merged system 157 

include a net carbon flux. 158 

The merger of the two models allows the Catchment-CN LSM to follow 19 distinct 159 

vegetation types, a significant increase from the six independent types followed with the original 160 

Catchment LSM.  Furthermore, the unique character of the original Catchment LSM allows for 161 

the independent monitoring of carbon variables in the different topographically-defined 162 

hydrological regimes.  Figure 2 describes our methodology.  Each land surface element is 163 

subdivided into three static carbon zones defined by topography, through analysis of the 164 

distribution of the compound topographic index (Moore et al., 1993).  The first zone, covering a 165 

fixed 10% of the area, represents the valley bottoms; this zone tends to be generally wet.  The 166 

second and third zones represent the lower (drier) hillslopes and upper (even drier) hillslopes, 167 

respectively.  Through areal weighting, soil moisture and temperature information from the 168 

dynamically-varying hydrological zones are combined for use by the carbon physics in the fixed 169 

vegetation zones, as indicated in the figure.  Separate sets of carbon prognostic variables are 170 

followed in each vegetation zone, and thus each zone generates a different manifestation of 171 

phenology.  When examining the model results, we find that green vegetation indeed tends to be 172 

densest in the valley bottoms. 173 

Some additional modifications to the NCAR/DOE vegetation model were needed to 174 

optimize its performance in the GMAO system.   To prevent some occasional singular behavior – 175 

namely, the catastrophic shutdown of vegetation during cold spells and a resulting overgrowth of 176 

the vegetation during the subsequent year – we replaced a particular set of vegetation types (crop 177 
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and temperate shrubs/grass) that feature a strong response to temperature stress by a mix of two 178 

different types: one that is seasonally deciduous and one that is not.  Neither of the replacement 179 

types employ the temperature stress shutdown, though both respond to moisture stress; the 180 

proportion of the mix applied is defined by latitude, and the replacement is indeed limited to the 181 

latitude band 32°-42° in both hemispheres.  Outside of this latitudinal band, we limit the number 182 

of coexisting PFTs in each static carbon zone to two.  Also, we modified the NCAR/DOE 183 

vegetation physics to allow half of the new carbon assimilated by deciduous types to be 184 

displayed during the current year rather than in the following year, which brings certain 185 

measures of our interannually-varying phenology more in line with observations.  Finally, 186 

whereas the NCAR/DOE vegetation model uses the previous year’s annual mean temperature to 187 

determine certain onset triggers, we use a climatological mean temperature. 188 

In our main (“control”) application of the model, the prescribed distributions of 189 

vegetation type follow those used by the default 0.5°×0.5° version of CLM4 (Oleson et al. 2010).  190 

Vegetation phenology and carbon states, however, evolve freely.  The model is run globally 191 

offline (i.e., disconnected from an atmospheric model) on high-resolution catchments (roughly 192 

20-30 km in size) over the period 1948-2008, using the observations-based meteorological 193 

forcing of Sheffield et al. (2006); the simulation loops over this period more than 30 times to 194 

ensure spin-up and equilibration of the carbon storage reservoirs.  The output data examined 195 

(phenological variables, carbon fluxes, etc.) are aggregated to 2°×2.5° for processing.   196 

 197 

3. Evaluation Against Observations 198 

To test the realism of the model’s connections between hydroclimate and vegetation 199 

variables, we focus on two distinct aspects of global phenological expression:  the global spatial 200 



10 
 

pattern of long-term phenological means and the interannual variability of phenology at a given 201 

location.  These are discussed in turn following a brief description of the observations. 202 

 203 

a. Observations used 204 

We examine satellite-based products of NDVI (normalized difference vegetation index) 205 

and FPAR (fraction of absorbed photosynthetically active radiation), both of which increase with 206 

green vegetation cover.  The NDVI data is a subset of the latest version of the Global Inventory 207 

and Mapping Studies, or GIMMS, data (Tucker et al. 2005). The data’s native resolution is 208 

semiweekly at 8 km, and the data span the period July 1981-present.  For our analyses we 209 

aggregate these data to a 2.5°×2.5° degree, monthly resolution for the period 1982-2010. The 210 

data are derived from the Advanced Very High Resolution Radiometer (AVHRR) instrument 211 

with known limitations compared to the more advanced MODIS instrument (Kaufman et al. 212 

1998). However, the longer temporal coverage of GIMMS relative to MODIS (29 versus 11 213 

years) and the good correspondence between their measurements (Tucker et al. 2005, Beck et al. 214 

2011) makes it well suited to the analysis presented here. 215 

The FPAR data are derived directly from the NDVI data using the method of Los et al. 216 

(2000).  The method combines the NDVI-based FPAR estimation technique of Sellers et al. 217 

(1996) with that of Choudhury (1987) and Goward and Huemmrich (1992); the combination 218 

provides estimates that are well behaved relative to available in-situ observations.  The 219 

relationship between NDVI and FPAR underlying this combined approach is monotonic but 220 

nonlinear.   Note that it is also somewhat vegetation dependent, so that the conversion of global 221 
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NDVI data to global FPAR data requires a global field of vegetation types.  Thirteen years of 222 

FPAR data are available, spanning the period 1997-2009. 223 

As will be seen below, the sensitivities of the NDVI and FPAR data to hydroclimatic 224 

variation are similar in many ways.  Both are worth illustrating here.  The NDVI values are 225 

constructed directly from spectral reflectance measurements and thus represent a raw form of the 226 

observations.  While the construction of the FPAR values requires some additional assumptions 227 

regarding vegetation behavior, FPAR has the distinct advantage of representing a physically 228 

meaningful phenological variable, one that can be compared directly to output from the 229 

Catchment-CN model. 230 

The global precipitation data used here consist of monthly precipitation totals for 1979-231 

present at 2.5°×2.5° degree resolution, as produced by the Global Precipitation Climatology 232 

Project as part of their Version 2 Satellite-Gauge dataset (Adler et al. 2003; see also 233 

ftp://precip.gsfc.nasa.gov/pub/gpcp-v2.2/doc/V2.2_doc).  Satellite-based data contributing to the 234 

product, in varying capacities and over various periods and regions, include Special Sensor 235 

Microwave/Imager (SSM/I) passive microwave estimates, Television-Infrared Observation 236 

Satellite (TIROS) Operational Vertical Sounder (TOVS) estimates, and the Adjusted 237 

Geostationary Operational Environmental Satellite (GOES) Precipitation Index (Adler et al. 238 

1994).  A wealth of surface rain gauges is used to adjust the multi-sensor precipitation estimates 239 

over land.  Hall et al. (2006) provide background on the accuracy of the GPCP product; of note is 240 

the higher uncertainty of the product over mountains, deserts, high latitudes, and undeveloped 241 

areas due in large part to a lower density of rain gauges. 242 

 243 

 244 
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b. Impact of hydrological variations on the mean spatial distributions of phenological variables 245 

To deal with the fact that NDVI shows significant seasonal variability, with different 246 

regions having different peak months for the index, we examine a quantity we will call NDVImax.  247 

We compute, at each 2.5°×2.5° grid cell, the average seasonal cycle of NDVI from the GIMMS 248 

data and then identify the month for which the average NDVI is highest.  NDVImax is set to the 249 

average value for the 3-month period centered on this peak month.  (Note that under this 250 

definition, the values for NDVImax in adjacent grid cells may be taken from different 3-month 251 

periods.)  Figure 3a shows the global distribution of NDVImax as derived from the spatially 252 

aggregated GIMMS data.  The distribution mirrors known vegetation distributions, with large 253 

values in tropical, deciduous, and boreal forests, intermediate values in grassland and shrubland 254 

areas, and small values in the deserts. 255 

Figure 4a shows how the spatial distribution of NDVImax in Figure 3a correlates with 256 

various meteorological quantities.  The first four bars of each panel show the square of the 257 

spatial correlation (r2, across land surface grid cells) of NDVImax with, respectively, annual mean 258 

precipitation, the standard deviation of annual precipitation, annual mean air temperature, and 259 

annual mean net radiation.  (The base-10 logarithms of the precipitation quantities are in fact 260 

used here.  Temperature and net radiation information are derived from the full period of the 261 

Sheffield et al. (2006) dataset.  The outgoing longwave component of the net radiation is 262 

estimated using the surface air temperature in that dataset.)  The salient result from the figure is 263 

the dominance of the two precipitation quantities in determining the spatial structure of NDVI.  264 

Multiple regression of NDVImax on the mean and variability of precipitation produces an r2 of 265 

about 0.55 (fifth bar), and adding the temperature and net radiation information to the multiple 266 
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regression does not significantly increase the r2 (sixth bar).  These results underlie the 267 

importance of hydroclimate in determining the spatial distribution of phenological maxima. 268 

Figure 5a shows more directly how NDVImax is related to precipitation means and 269 

variability.  Each dot in Figure 5a corresponds to a 2.5°×2.5° land grid cell.  The size and color 270 

of the dot is determined by the local value of NDVImax, as indicated by the legend.  The dot’s 271 

abscissa is determined by the mean annual precipitation at that grid cell, and the dot’s ordinate 272 

refers to the interannual variability of precipitation there.  (Note the logarithmic scales.)  The 273 

precipitation and NDVI quantities are computed over consistent time periods; for example, if a 274 

grid cell’s peak NDVI, as computed from the GIMMS data for 1982-2010, occurs in July, then 275 

precipitation means and variances are computed from nineteen September-August yearly totals 276 

starting with the total for the period September 1981-August 1982. 277 

Two features of the scatter plot stand out.  The first reflects an expected result: a 278 

minimum average precipitation must be achieved to attain moderately high NDVImax levels.  The 279 

plot shows this minimum value to be roughly 1 mm/day; the dots to the left of this threshold 280 

(which include, of course, all desert points) show low values of NDVImax.  The second, and more 281 

intriguing, feature of the scatter plot is the tendency for NDVImax to decrease as the standard 282 

deviation of precipitation increases.  This feature is illustrated more clearly in Figure 5b, which 283 

shows a binned version of the scatter plot data; to generate this plot, an array of boxes is overlain 284 

on Figure 5a, and the NDVImax values for the points within each box are averaged.  For a given 285 

value of the mean precipitation, especially for values above 1 mm/day, NDVImax clearly tends to 286 

decrease with increasing �P.  This presumably reflects the reduced ability of vegetation to 287 

flourish when the year-to-year supply of water is less stable. 288 
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We also examine in this context the analogous variable FPARmax, the average value of a 289 

grid cell’s FPAR for the 3-month period centered on the peak FPAR month, as determined from 290 

the local climatological cycle.  Figure 3b shows the distribution of FPARmax as computed from 291 

the GIMMS data.  As might be expected, given that FPAR in GIMMS is derived from NDVI, the 292 

spatial distributions in Figures 3a and 3b are very similar, as are the spatial correlations with the 293 

meteorological forcing variables (Figure 4b).  Figures 5c and 5d show the precipitation-based 294 

scatter plots for the FPARmax values.  Average water supply (mean precipitation) and water 295 

supply stability (�P) are seen to impose dual control over FPARmax as well; the sensitivity of 296 

FPAR to hydroclimate is indeed very similar to that of NDVI. 297 

How well does the Catchment-CN model perform?  The model produces diagnostics for 298 

both the incident and absorbed photosynthetically active radiation; we take the ratio of these 299 

quantities to produce the model’s FPAR values.  Figure 3c shows the global distribution of 300 

simulated FPAR in the peak 3-month period; note that for a given location, this peak period may 301 

differ from that for the observations.  Two features of the simulated FPAR distribution stand out.  302 

First, the simulated spatial patterns agree well with the observed patterns in Figure 3b.   Second, 303 

there are, nonetheless, apparent biases in the simulated FPAR values, with the highest simulated 304 

values being too large and the lowest being too small.  Such biases presumably reflect 305 

deficiencies in the model, though they may also stem partially from limitations in the forcing 306 

data or in the observational FPAR values themselves.  The biases must be kept in mind 307 

throughout our analysis. 308 

The square of the spatial correlation of simulated FPAR with meteorological forcing 309 

variables (Figure 4c) agrees quite well with the corresponding values found for observed FPAR 310 

(Figure 4b).  The simulated r2 values with the temperature and net radiation variables are slightly 311 
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higher, but these values are still quite low.  Figure 4 shows that, in strong agreement with the 312 

observations, variations in hydroclimate explain most of the FPAR variability seen in the model. 313 

The agreement in spatial pattern with a presence of bias also manifests itself in the 314 

precipitation-based scatter plot in Figure 5e and the corresponding binned version of the plot in 315 

Figure 5f.  In agreement with the observations, the model clearly shows an increase in FPAR 316 

with increasing precipitation and with decreasing precipitation variability.  Overall, the model, 317 

though biased, does appear to simulate realistic controls of hydroclimatic variation over 318 

phenological means. 319 

 320 

c. Impact of hydrological variations on the interannual variability of phenological variables 321 

As a second and somewhat independent test of the ability of the Catchment-CN model to 322 

capture observed links between carbon and water variables, we examine the interannual 323 

variability of vegetation phenology.  Rather than examining the total variance of a variable such 324 

as summertime NDVI, we focus instead on a modified quantity, one that captures the carbon-325 

water connection: 326 

  Var(NDVI)*� =   Var(NDVI) Corr2(NDVI,P) ,   (1) 327 

where Var(NDVI) is the interannual variance of 3-month NDVI averages (again centered on the 328 

peak NDVI month, based on the climatological seasonal cycle), Corr2(NDVI,P) is the correlation 329 

between these individual NDVI averages and the corresponding yearly precipitation totals (with 330 

the end of the precipitation averaging period corresponding to the end of the 3-month NDVI 331 

averaging period), and Var(NDVI)* is interpreted as the portion of the NDVI variance associated 332 

with variations in moisture availability.  That is, we are employing here the standard 333 
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interpretation of Corr2(NDVI,P) as the fraction of the variance of NDVI “explained” by 334 

variations in P.  Equation (1) allows us to isolate this part of NDVI variability from that 335 

associated with other sources, such as variations in radiation or nutrients as well as interference 336 

from clouds, water vapor, and aerosols (Los et al. 2000). 337 

A few notes are required regarding the estimation of Var(NDVI)*.   First, by using the 338 

annual totals for precipitation, we are assuming that a given year’s precipitation represents the 339 

water available that year for growth.  Of course, other averaging periods for the precipitation 340 

could have been employed (e.g., Zeng et al. 2013).  The patterns in Corr2(NDVI,P) obtained with 341 

these other averaging periods, however, turn out to be the same, to first order; correlation maps 342 

generated using 6-month or 9-month precipitation averages (not shown) are very similar to those 343 

generated with the annual precipitation.  Note that using the annual precipitation rather than the 344 

contemporaneous 3-month precipitation has an important advantage:  it reflects the fact that 345 

antecedent precipitation can provide water to vegetation growth through storage in ground 346 

reservoirs and snowpack (Milly, 1994). 347 

Second, the observations are known to be subject to significant contamination from 348 

clouds in high latitudes and from pollution in Southeast Asia (Fensholt and Proud, 2012), the 349 

upshot being that small and artifactual negative correlations between NDVI and precipitation are 350 

often seen in these regions.  These negative correlations are problematic for our analysis.  We 351 

zero them out before computing Corr2(NDVI,P), making the explicit assumption that any such 352 

negative correlations represent noise.  Note that even on the off chance that the negative 353 

correlations are real, they would not represent the physical relationship we are after in this paper, 354 

namely, the ability of water limitations to limit vegetation growth.   355 
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Figure 6a shows the distribution of Var(NDVI)*, as computed with (1).  The patterns are 356 

quite interesting: the regions for which moisture-related NDVI variability is high tend to 357 

coincide with the Earth’s grassland regimes – in the Great Plains of the U.S., the Nordeste region 358 

of Brazil, the African Sahel, the Asian steppes, and eastern and northern Australia (see Figure 7).  359 

The Var(NDVI)* patterns do miss grassland areas in India and China, but as shown in Figure 7, 360 

these areas are subject to extensive irrigation (Siebert et al. 2005), a supply of water not 361 

accounted for in the Corr2(NDVI,P) diagnostic.  Figure 6 demonstrates that, aside from such 362 

irrigated areas, the locations of the Earth’s grassland areas can be identified reasonably well from 363 

the joint analysis of NDVI and precipitation data.  The same patterns, and thus the same 364 

connections to grassland regimes, are seen for Var(FPAR)*, the portion of the interannual 365 

variance in 3-month FPAR averages related to moisture variations. 366 

The results obtained with the dynamic phenology model are remarkably similar.  A 367 

comparison of Figures 6b and 6c shows that the model captures very well the observed spatial 368 

pattern Var(FPAR)*, though again with a bias, as indicated by the different scaling factors used 369 

for the plotting.   Overall, the model successfully captures the role of hydroclimate in 370 

determining the spatial distribution of interannual variability in phenology. 371 

 372 

4. Model Experiments 373 

Having demonstrated the Catchment-CN model’s ability to capture the basic 374 

hydroclimatic controls on phenology seen in the observations, we now use model experiments to 375 

address key questions regarding the connections between hydroclimate and vegetation. 376 

 377 
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a.  Influence of vegetation type on phenological variability 378 

Clouding the interpretation of the Catchment-CN model’s performance relative to 379 

observations in Section 3 above is the possibility that its use of prescribed vegetation types is 380 

somehow guaranteeing correct model behavior.  Given, for example, that the observed 381 

distribution of Var(FPAR)* in Figure 6b captures well the locations of the world’s grasslands 382 

(Figure 7), we must consider the possibility that high values of Var(FPAR)* are encouraged by 383 

the unique properties of grassland and discouraged by the properties of forests and shrubs, so that 384 

by imposing the observed vegetation distributions in the model, we artificially guarantee high 385 

simulated values of Var(FPAR)* in the correct areas (Figure 6c).  The more intriguing possibility 386 

to consider, however, is that a specific hydroclimatic regime is responsible for high Var(FPAR)* 387 

values, a regime for which only grasslands happen to survive.  With this second possibility, the 388 

vegetation type does not cause the Var(FPAR)* value; rather, the vegetation type and the 389 

Var(FPAR)* value are together controlled by something else, namely, the local moments of 390 

precipitation. 391 

To examine this issue, we performed a repeat of the simulation described above, but with 392 

a twist: grassland vegetation was imposed on all land surfaces, and no other vegetation types 393 

were allowed to exist.  Thus, in this experiment, vegetation type could not affect in any way the 394 

simulated spatial and temporal distributions of FPAR.  Note that in this experiment, grassland is 395 

placed even in the driest deserts and in the wettest tropical areas; if the local climate is not 396 

conducive to grassland’s survival, the grass is accordingly allowed to die out. 397 

Figure 8c shows the spatial distribution of Var(FPAR)* for the all-grassland simulation.  398 

The plot captures, to first order, the features seen in the original model plot, supporting the 399 
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second possibility noted above.  That is, the presence of grassland does not lead to high 400 

Var(FPAR)* values; the high values are instead indicative of a hydroclimatic regime that also 401 

happens to support grassland best.  Similarly, the all-grassland simulation shows a relationship 402 

between FPAR maxima, mean precipitation, and precipitation variability (Figure 8a) that agrees 403 

to first order with that seen in the original model simulation (Figure 5f).  The fact that FPAR 404 

tends to be highest in very wet conditions, for example, is not simply the result of the presence of 405 

dense forests in wet areas; the wet conditions themselves encourage the high FPAR values, and 406 

wet areas also tend to be where dense forests tend to flourish. 407 

We repeated the simulation still again, this time after prescribing a deciduous forest 408 

vegetation type everywhere.  The results, shown in Figures 8b and 8d, are essentially the same.  409 

Hydroclimatic variability, more than vegetation type, appears to dominate phenological 410 

variability – in the model and, we can infer, in nature. 411 

 412 

b. Hydroclimate and the global carbon cycle 413 

As noted in the introduction, a unique advantage of a model that can simulate phenology 414 

is its ability to provide information on additional, difficult to measure quantities.  While carbon 415 

fluxes such as gross primary productivity (GPP), net primary productivity (NPP), and net 416 

ecosystem exchange (NEE) have been measured at various tower sites (Baldocchi 2008), directly 417 

observed global distributions of land-atmosphere carbon exchange are nonexistent.  Model 418 

simulations, however, can readily provide these fields, and many examples of such simulated 419 

distributions already appear in the literature (e.g., Friedlingstein 2006).  (We note that other 420 
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approaches for inferring global fields, such as machine learning algorithms that upscale from the 421 

site measurements, are also available [Jung et al. 2011].) 422 

Here we provide model-based estimates of the connection between carbon exchange and 423 

hydroclimatic variability, focusing mainly on GPP.  We first provide in Figure 9a this particular 424 

model’s vision of the global distribution of GPP.  Because GPP is a flux rather than a 425 

manifestation of vegetation state, we present it in terms of annual averages rather than for a 3-426 

month maximum period.  The distributions have the expected maxima in the densely forested 427 

tropics, with swaths of high values in the boreal forests of the north.  Figures 9b and 9c show the 428 

corresponding GPP fields from the simulations prescribing grassland and deciduous tree types, 429 

respectively.  The three panels show some differences but are, to first order, very similar, 430 

indicating that vegetation type alone is not the main source of spatial variations in GPP; both 431 

GPP and vegetation distributions are apparently controlled in tandem by something else. 432 

Naturally, that “something else” is water availability.  Figure 10 shows, in analogy to 433 

Figure 4, the square of the spatial correlation between GPP and various meteorological forcing 434 

variables.  For all three simulations (control, “all grass”, and “all trees”), precipitation mean and 435 

variability have the dominant impact on GPP, with an r2 of about 0.55 for the multiple regression 436 

of GPP on log10P and log10σP.   Adding in the annual temperature and net radiation information 437 

increases the r2 to about 0.65.  The fact that the r2 values do not increase by much for the 438 

uniform vegetation experiments suggests once again that variations in vegetation type do not by 439 

themselves contribute significantly to spatial variations in GPP; the remaining unexplained 440 

variance in Figure 10a presumably results from spatial variability in, for example, the seasonal 441 

cycles and shorter-term temporal structure of the forcing quantities. 442 
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Figure 11 shows how precipitation means and variability control the spatial distribution 443 

of GPP using scatter plots analogous to those shown in Figure 5.  As with FPAR, GPP tends to 444 

increase with increasing moisture availability (x-axis) and decreasing interannual variability (y-445 

axis), regardless of which vegetation types are assigned at the surface. 446 

In contrast to Figure 5, Figure 11 uses a nonlinear scale for the shading, a scale that 447 

shows the dominance of precipitation means over precipitation variability in determining GPP.  448 

The impact of precipitation variability on GPP, however, is nevertheless significant.  This is 449 

demonstrated with a supplemental model simulation (“ClimP”) in which we prescribed standard, 450 

spatially varying vegetation types (as in the control simulation) but a modified precipitation 451 

forcing: at each grid cell in ClimP, we scaled the precipitation forcing in each month of each year 452 

so that the seasonal cycle of monthly totals for the year matched the long-term (climatological) 453 

seasonal cycle.  Thus, in ClimP, we artificially removed the monthly-scale year-to-year temporal 454 

variability in the precipitation forcing – at each grid cell, the mean precipitation applied was 455 

identical to that used in the control simulation, whereas the interannual variability of monthly 456 

precipitation was, by construction, set to zero. 457 

Figure 12 shows the difference between the mean annual GPP produced in ClimP and 458 

that in the control simulation.  Regions with large positive differences appear in the southeast 459 

U.S., along the eastern coasts of South America and Australia, in the Indian subcontinent, in 460 

northeastern China, and in various other regions of South America and Africa.  Negative 461 

differences do not appear anywhere.  In effect, Figure 12 illustrates where GPP in the real world 462 

would be larger if the year-to-year precipitation supply were more dependable – i.e., where the 463 

interannual variability of precipitation holds down the land surface’s carbon uptake.  Note, 464 

however, that human activities can mitigate the effects of this variability.  India, southeast Asia, 465 
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and northeastern China in particular are known to undergo extensive irrigation (Figure 8).  466 

Because irrigation is effectively a means of providing a more dependable water supply, these 467 

particular areas may, in the real world, be capturing the larger GPP rates. 468 

With Figure 13, we focus on the interannual variability of GPP at each grid cell rather 469 

than on the spatial distribution of its mean.  Figure 13a shows the variance of annual GPP.  470 

Figure 13b shows the spatial distribution of Corr2(GPP,P), where P is the annual precipitation; 471 

that is, Figure 13b shows the fraction of the total GPP variance that is associated with, or can be 472 

“explained by”, variations in annual water supply.  The fractions are reasonably large across the 473 

globe, even in some areas considered to be not strongly water-stressed, such as the southeastern 474 

United States.  In contrast, the fields of Corr2(GPP,T) and Corr2(GPP,Rnet), where T is the 475 

yearly-averaged temperature and Rnet is the yearly-averaged net radiation, show significantly 476 

lower values (Figures 13c and 13d).  While interannual temperature variations do have some 477 

impact on high latitude GPP variations (perhaps through their effects on snowcover duration), 478 

they have little impact anywhere else.  Interannual net radiation variations appear to contribute 479 

more, especially in Africa; it is quite possible, however, that these particular “contributions” are 480 

not real and instead simply reflect known existing correlations between precipitation and net 481 

radiation there (not shown). 482 

Together, annual precipitation, temperature, and net radiation do not explain all of the 483 

simulated GPP variability.  As before, presumably a significant part of the variability stems from 484 

year-to-year variations in (for example) the sub-annual timing of the precipitation and associated 485 

variations in infiltration and runoff. 486 
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Figure 14 shows one final interesting result regarding the interannual variability of GPP.  487 

The shading shows Var(GPP) for a 3-month averaging period (centered, at each grid cell, around 488 

the month of maximum GPP).  Overlain on the plot are black dots indicating where Var(FPAR) 489 

for 3-month averages (centered around the local monthly maximum for FPAR) exceeds a value 490 

of 0.003, an arbitrary threshold chosen for plotting convenience. The figure shows that Var(GPP) 491 

and Var(FPAR) tend not to be maximized in the same regions; Var(GPP) maxima tend to lie on 492 

the wetter sides of the Var(FPAR) maxima.  The same basic result (not shown) is found for 493 

comparisons of the water-limited portions of the variances (i.e., Var(GPP)* versus Var(FPAR)*), 494 

and it is also found (not shown) for the all-grassland and all-deciduous-trees simulations, 495 

suggesting that variations in vegetation type are not responsible for such spatial offsets in the 496 

maxima.  The spatial offsets are instead induced by the carbon physics built into the modeling 497 

system.  Assuming these physical treatments are accurate, then similar offsets would apply to the 498 

real world’s distributions of Var(GPP) and Var(FPAR).  In other words, given estimates of 499 

Var(FPAR) attained, for example, through the processing of the GIMMS data, knowledge of the 500 

offsets could potentially help in the construction of an estimated spatial field of Var(GPP). 501 

 502 

4. Summary and Discussion 503 

Using the Catchment-CN model, a merger of the dynamic phenology components of the 504 

CLM4 dynamic vegetation model with the water and energy budget framework of the GMAO 505 

Catchment LSM, we examine the connections across the globe between hydroclimate and 506 

vegetation variables.  Justification for the use of this model in such a study is provided by its 507 

demonstrated ability to reproduce observed connections between FPAR and precipitation 508 

moments (Section 3), namely, the increase in FPAR with increasing mean precipitation and 509 
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decreasing precipitation variability and the proper geographical placement of spatial maxima in 510 

the global field of moisture-related FPAR variance. 511 

Our model results can be summarized as follows.  First, based on our supplemental 512 

simulations with globally uniform vegetation type, we find that the aforementioned relationships 513 

between FPAR and precipitation moments are largely independent of vegetation type; the fact 514 

that trees grow in wet regimes, grass grows in drier regimes, and shrubs grow in even drier 515 

regimes has only a second-order impact on the spatial distribution of FPAR and its interannual 516 

variability at each location.  Instead, hydroclimatic moments appear to be the dominant 517 

determinants of both vegetation type and phenological expression, as represented by FPAR.  Our 518 

second basic result is that hydroclimatic moments provide a similarly dominant control over the 519 

spatial and temporal variability of gross primary productivity (GPP), again with only a second-520 

order contribution from vegetation type. 521 

Such a global scale description of GPP connections to hydroclimate is achievable with a 522 

DVM but is not possible with observations, which are much more spatially and temporally 523 

limited.  Knapp and Smith (2001) used observations collected across eleven tower sites to show 524 

that aboveground net primary production (ANPP) tends to increase with increasing annual 525 

precipitation, and our global scale results (for GPP, a related variable) are consistent with this.  526 

We do see some inconsistencies, however, with their study.  For example, Knapp and Smith 527 

(2001) find that ANPP has its maximum interannual variability in grassland areas.  We find that 528 

while the interannual variability of FPAR is maximized in grassland areas, the maxima for GPP 529 

variability tend to be spatially offset from these FPAR variance maxima (Figure 14), slightly 530 

toward the wetter (forested) side.  The offset is minor, however, and the apparent inconsistency, 531 

while certainly a possible result of model deficiencies, may also relate to the limited number of 532 
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tower sites they examined.  More importantly, Knapp and Smith (2001) find that “interannual 533 

variability in ANPP [is] not related to variability in precipitation”.  Results from our control 534 

simulation (not shown) indicate that the square of the spatial correlation coefficient between 535 

Var(GPP) and Var(P) across land points is of the order of 30%, which disagrees with their 536 

conclusion; indeed, when we limit the calculation to values at the grid cells containing the LTER 537 

sites they studied, the square of correlation coefficient increases.  We also find a reasonably 538 

strong relationship between the time series of GPP and precipitation (Figure 13b) at individual 539 

locations. 540 

While interpretations of DVM-based results must be tempered by knowledge of model 541 

biases and limitations, DVM experiments, if properly interpreted, open the door to a wealth of 542 

potential studies of the global carbon cycle and its interactions with the global water and energy 543 

cycles.  This paper provides one such study.  Another example of note is provided by Guan et al. 544 

(2012), who show with DVM simulations over Africa that the statistical character of 545 

precipitation forcing (e.g., rainfall intensity) manifests itself in the GPP produced.  The 546 

advantages of using DVMs – their provision of comprehensive (and often unmeasurable) data 547 

and their ability to be modified at will to allow the examination of the impacts of individual 548 

physical processes – stand them in good stead for future carbon analyses.  Our understanding of 549 

global carbon-water-energy connections should continue to increase as researchers continue to 550 

use ever-improving versions of these tools. 551 

 552 

 553 

  554 
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List of Figures 671 

Figure 1.  a. Schematic of flux computations in the original Catchment LSM.  b. Schematic of 672 

flux computations in the merged model, Catchment-CN. 673 

Figure 2.  Schematic of independent vegetation (carbon) treatments in topographically-defined 674 

vegetation zones.  Three static vegetation zones are defined, with independent carbon 675 

prognostic variables in each.  W1, W2, and W3 are soil moisture states in the three 676 

dynamically-varying hydrological zones (with time-varying areas AR1, AR2, and AR3); 677 

weighted averages of these states (e.g, WV2, as shown in the figure) and corresponding 678 

weighed temperature states are passed down to the carbon physics calculations for the 679 

different vegetation zones. 680 

Figure 3.  a. Distribution of average NDVI in peak NDVI season (the month for which the mean 681 

seasonal cycle of NDVI is maximized along with the preceding and following months), 682 

from GIMMS observations.  The peak season varies with grid cell; see text for details.  b. 683 

Same, but for average FPAR in peak FPAR season, from GIMMS observations.  c. Same, 684 

but for average FPAR in peak FPAR season, from model simulation.   685 

Figure 4.  (a) Square of the spatial correlation coefficient (over land grid cells) between observed 686 

NDVI and land surface forcing variables: the logarithm of the mean annual precipitation 687 

(P), the logarithm of the standard deviation of annual precipitation (σP), mean annual air 688 

temperature (T), and mean annual net radiation (Rnet).  The final two bars show the square 689 

of the correlation coefficient obtained from the multiple regression of NDVI against, 690 

respectively, (i) precipitation mean and standard deviation, and (ii) all four quantities.  (b) 691 

Same, but for observed FPAR.  (c) Same, but for modeled FPAR. 692 
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Figure 5.  (a) Average GIMMS NDVI in peak NDVI season as a function of the mean 693 

precipitation (x-coordinate) and the standard deviation of annual precipitation (y-694 

coordinate).  Each dot represents a single land grid cell.  (b) Same as (a), but with the 695 

individual values in the scatter plot averaged over bins.  At least 5 dots must lie within a 696 

bin for the binned value to be plotted.  (c) and (d): Same as (a) and (b), but for GIMSS 697 

FPAR data.  (e) and (f): Same as (a) and (b) , but for model-simulated FPAR data.  698 

Figure 6.  (a) Product of the interannual variance of GIMMS NDVI data averaged over the 699 

maximum NDVI season and the square of the correlation between NDVI and annual 700 

precipitation, multiplied by 1000.  (b) Same, but for GIMMS FPAR data.  (c) Same, but 701 

for model-generated FPAR data, and with the scaling factor changed to 500. 702 

Figure 7.  Map of grassland locations, as derived from the distributions used in the Second Phase 703 

of the Global Soil Wetness Project (Dirmeyer et al. 2006).  The dots overlain on the plot 704 

indicate regions for which irrigation is extensive (>10% of the land area, based on data 705 

aggregated from FAO [http://www.fao.org/nr/water/aquastat/irrigationmap/index.stm]), 706 

suggesting difficulty in relating observations-based FPAR values to local precipitation 707 

amounts. 708 

Figure 8.  (a) Same as Figure 2f (average model-simulated FPAR in peak FPAR season as a 709 

function of the mean precipitation and the standard deviation of annual precipitation), but 710 

for the case in which the entire globe is forced to be covered by grassland.  (b) Same as 711 

(a), but for the “all tree” case.  (c) Same as Figure 6c (product of the interannual variance 712 

of model-simulated FPAR averaged over the maximum FPAR season and the square of 713 

the correlation between NDVI and annual precipitation, multiplied by 500), but for case 714 
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where the entire globe is forced to be covered by grassland. (d) Same as (c), but for the 715 

“all tree” case. 716 

Figure 9.  Global distribution of annual gross primary productivity (GPP, in grams C / m2-day) 717 

for: (a) the control simulation; (b) the simulation in which all land is covered with a 718 

grassland vegetation type; and (c) the simulation in which all land is covered with a 719 

deciduous tree vegetation type. 720 

Figure 10.  (a) Same as Figure 4, but for GPP (rather than NDVI or FPAR) produced in the 721 

control simulation.  (b) Same, but for GPP produced in the “all grass” simulation.  (c) 722 

Same, but for GPP produced in the “all trees” simulation. 723 

Figure 11.  (a) Average GPP (g Carbon / m2-day) as a function of the mean precipitation (x-724 

coordinate) and the standard deviation of annual precipitation (y-coordinate) in the 725 

control simulation, with individual land grid cell values averaged over bins.  At least 5 726 

dots must lie within a bin for the binned value to be plotted.  (b) Same, but for the 727 

simulation in which all land is covered with a grassland vegetation type.  (c) Same, but 728 

for the simulation in which all land is covered with a deciduous tree vegetation type. 729 

Figure 12.  Difference in the mean annual GPP produced in the ClimP simulation (the simulation 730 

using climatological precipitation forcing) and that produced in the control simulation, in 731 

units of grams carbon/m2-day. 732 

Figure 13.  (a) Variance of annual GPP (in g2 / m4day2) as produced by the control simulation.   733 

(b)  Corr2(GPP,P), i.e., the fraction of the GPP variance associated with interannual 734 

variance in annual precipitation.  (c)  Same as (b), but for the fraction of the GPP 735 
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variance associated with interannual variations in annual temperature.  (d) Same as (b), 736 

but for the fraction of the GPP variance associated with variations in annual net radiation.  737 

Figure  14.  Interannual variance of GPP (g2/m4day2) for the 3-month period centered on the 738 

month for which the local GPP is climatologically largest.  Overlain on the plot are black 739 

dots showing where the interannual variance of 3-month FPAR is maximized. 740 

  741 



36 
 

 742

 743

 744

Figure 1.  a. Schematic of flux computations in the original Catchment LSM.  b. Schematic of 745

flux computations in the merged model, Catchment-CN. 746

 747

 748
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 749

 750

 751

Figure 2.  Schematic of independent vegetation (carbon) treatments in topographically-defined 752

vegetation zones.  Three static vegetation zones are defined, with independent carbon prognostic 753

variables in each.  W1, W2, and W3 are soil moisture states in the three dynamically-varying 754

hydrological zones (with time-varying areas AR1, AR2, and AR3); weighted averages of these 755

states (e.g, WV2, as shown in the figure) and corresponding weighed temperature states are 756

passed down to the carbon physics calculations for the different vegetation zones.  Weighted 757

averages of vegetation zone quantities (e.g., canopy conductance) are similarly passed back to 758

the hydrological zones. 759

  760
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 761 

 762 

Figure 3.  a. Distribution of average NDVI in peak NDVI season (the month for which the mean 763 

seasonal cycle of NDVI is maximized along with the preceding and following months), from 764 

GIMMS observations.  The peak season varies with grid cell; see text for details.  b. Same, but 765 

for average FPAR in peak FPAR season, from GIMMS observations.  c. Same, but for average 766 

FPAR in peak FPAR season, from model simulation.   767 
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 768 

 769 

 770 

Figure 4.  (a) Square of the spatial correlation coefficient (over land grid cells) between observed 771 

NDVI and land surface forcing variables: the logarithm of the mean annual precipitation (P), the 772 

logarithm of the standard deviation of annual precipitation (σP), mean annual air temperature (T), 773 

and mean annual net radiation (Rnet).  The final two bars show the square of the correlation 774 

coefficient obtained from the multiple regression of NDVI against, respectively, (i) precipitation 775 

mean and standard deviation, and (ii) all four quantities.  (b) Same, but for observed FPAR.  (c) 776 

Same, but for modeled FPAR.  777 
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 778 

Figure 5.  (a) Average GIMMS NDVI in peak NDVI season as a function of the mean 779 

precipitation (x-coordinate) and the standard deviation of annual precipitation (y-coordinate).  780 

Each dot represents a single land grid cell.  (b) Same as (a), but with the individual values in the 781 

scatter plot averaged over bins.  At least 5 dots must lie within a bin for the binned value to be 782 

plotted.  (c) and (d): Same as (a) and (b), but for GIMSS FPAR data.  (e) and (f): Same as (a) and 783 

(b) , but for model-simulated FPAR data.  784 
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 785 

Figure 6.  (a) Product of the interannual variance of GIMMS NDVI data averaged over the 786 

maximum NDVI season and the square of the correlation between NDVI and annual 787 

precipitation, multiplied by 1000.  (b) Same, but for GIMMS FPAR data.  (c) Same, but for 788 

model-generated FPAR data, and with the scaling factor changed to 500. 789 
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 790 

 791 

Figure 7.  Map of grassland locations, as derived from the distributions used in the Second Phase 792 

of the Global Soil Wetness Project (Dirmeyer et al. 2006).  The dots overlain on the plot indicate 793 

regions for which irrigation is extensive (>10% of the land area, based on data aggregated from 794 

FAO [http://www.fao.org/nr/water/aquastat/irrigationmap/index.stm]), suggesting difficulty in 795 

relating observations-based FPAR values to local precipitation amounts.  796 
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 798 

 799 

Figure 8.  (a) Same as Figure 2f (average model-simulated FPAR in peak FPAR season as a 800 

function of the mean precipitation and the standard deviation of annual precipitation), but for the 801 

case in which the entire globe is forced to be covered by grassland.  (b) Same as (a), but for the 802 

“all tree” case.  (c) Same as Figure 6c (product of the interannual variance of model-simulated 803 

FPAR averaged over the maximum FPAR season and the square of the correlation between 804 

NDVI and annual precipitation, multiplied by 500), but for case where the entire globe is forced 805 

to be covered by grassland. (d) Same as (c), but for the “all tree” case. 806 
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 807 

Figure 9.  Global distribution of annual gross primary productivity (GPP, in grams C / m2-day) 808 

for: (a) the control simulation; (b) the simulation in which all land is covered with a grassland 809 

vegetation type; and (c) the simulation in which all land is covered with a deciduous tree 810 

vegetation type.  811 
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 812 

 813 

Figure 10.  (a) Same as Figure 4, but for GPP (rather than NDVI or FPAR) produced in the 814 

control simulation.  (b) Same, but for GPP produced in the “all grass” simulation.  (c) Same, but 815 

for GPP produced in the “all trees” simulation.  816 
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 817 

Figure 11.  (a) Average GPP (g Carbon / m2-day) as a function of the mean precipitation (x-818 

coordinate) and the standard deviation of annual precipitation (y-coordinate) in the control 819 

simulation, with individual land grid cell values averaged over bins.  At least 5 dots must lie 820 

within a bin for the binned value to be plotted.  (b) Same, but for the simulation in which all land 821 

is covered with a grassland vegetation type.  (c) Same, but for the simulation in which all land is 822 

covered with a deciduous tree vegetation type. 823 
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 827 

 828 

 829 

Figure 12.  Difference in the mean annual GPP produced in the ClimP simulation (the simulation 830 

using climatological precipitation forcing) and that produced in the control simulation, in units of 831 

grams carbon/m2-day.  832 
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 833 

 834 

Figure 13.  (a) Variance of annual GPP (in g2 / m4day2) as produced by the control simulation.   835 

(b)  Corr2(GPP,P), i.e., the fraction of the GPP variance associated with interannual variance in 836 

annual precipitation.  (c)  Same as (b), but for the fraction of the GPP variance associated with 837 

interannual variations in annual temperature.  (d) Same as (b), but for the fraction of the GPP 838 

variance associated with variations in annual net radiation.  839 

 840 

  841 
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 843 

Figure  14.  Interannual variance of GPP (g2/m4day2) for the 3-month period centered on the 844 

month for which the local GPP is climatologically largest.  Overlain on the plot are black dots 845 

showing where the interannual variance of 3-month FPAR is maximized. 846 


