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Abstract: We used the NASA Ocean Biogeochemical Model (NOBM) combined with
remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups
to the total primary production. First we assessed the contribution of each phytoplankton
groups to the total primary production at a global scale for the period 1998-2011.
Globally, diatoms were the group that contributed the most to the total phytoplankton
production (~50%, the equivalent of ~20 PgC y™). Coccolithophores and chlorophytes
each contributed to ~20% (~7 PgC y™) of the total primary production and cyanobacteria
represented about 10% (~4 PgC y™') of the total primary production. Primary production
by diatoms was highest in high latitude (>45°) and in major upwelling systems (Equatorial
Pacific and Benguela system). We then assessed interannual variability of this group-
specific primary production over the period 1998-2011.  Globally the annual relative
contribution of each phytoplankton groups to the total primary production varied by
maximum 4% (1-2 PgC y™'). We assessed the effects of climate variability on the class-
specific primary production using global (i.e. Multivariate El Nifio Index, MEI) and
‘regional’ climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal
Oscillation (PDO) and North Atlantic Oscillation (NAQO)). Most interannual variability
occurred in the Equatorial Pacific and was associated with climate variability as indicated
by significant correlation (p < 0.05) between the MEI and the class-specific primary
production from all groups except coccolithophores. In the Atlantic, climate variability as
indicated by NAO was significantly correlated to the primary production of 2 out of the 4
groups in the North Central Atlantic (diatoms/cyanobacteria) and in the North Atlantic
(chlorophytes and coccolithophores). We found that climate variability as indicated by
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SAM had only a limited effect on the class-specific primary production in the Southern
Ocean. These results provide a modeling and data assimilation perspective to
phytoplankton partitioning of primary production and contribute to our understanding of
the dynamics of the carbon cycle in the oceans at a global scale.

Keywords: Primary production; Phytoplankton composition; Chl-a; remote sensing;
MODIS; SeaWiFS; biogeochemical models

1. Introduction

Phytoplankton is responsible for over half of the net primary production on earth [1]. The venue of
satellite coincided with the improvement of our knowledge on global dynamics of phytoplankton
through the development of ocean color algorithms. More recently. progress has been made in
discerning phytoplankton types using algorithms [e.g. 2,3-6] and models [e.g. 7,8-11]. The knowledge
on the contribution of various phytoplankton groups to the total primary production is still poorly
understood. Data from satellite observations [i.e. 12] suggest that for upwelling regions, photosynthetic
rates by microplankton is higher than that of nanoplankton but that when the spatial extent is
considered, the production by nanoplankton is comparable or even larger than microplankton. Climate
variability has been shown to drive phytoplankton composition shifts in some regions [13-16]. These
changes are likely to have an effect on primary production. The contribution of each group to the total
primary production and how their contribution changes on seasonal and interannual scales remains
very poorly characterized. To our knowledge, there have been few attempts so far at estimating size-
specific primary productivity at a global scale [i.e. 17,18,19]. Uitz et al. [5] used the primary
production model of Morel [20] to derive size-specific phytoplankton primary production over the
upper water column. This approach estimated the contribution of pico-, nano- and microphytoplankton
to the total primary production.

Although there has been few attempts at estimating size-specific primary production, to our
knowledge this paper represents the first attempt at estimating taxonomic/functional class-specific
primary production at a global scale. We use the NASA Ocean Biogeochemical Model (NOBM)
combined with ocean color remote sensing data assimilation to (1) assess the climatological class-
specific primary production globally and (2) assess the contribution of each group to the total primary
production on an interannual scale for the period 1998-2011. Class-specific primary production is
reported globally and in 12 major oceanographic regions for total chlorophyll, diatoms, chlorophytes,
coccolithophores and cyanobacteria.

2. Results and Discussion
2.1. Climatology of primary production and comparison with VGPM

Globally, the total primary production was of 39 PgC y' with the majority of this total production
coming from the Equatorial Pacific (~17% or 6.5 PgC y™') and the South and North Central Pacific
(~12%, Table 1). Antarctic contributed the fourth most to the global primary production with 4.5 PgC
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(~11%) produced annually. This estimate of total primary production at a global scale fits in the lower
range of values previously reported by Carr et al. [21] in an intercomparison of 24 models for which
total primary production ranged between 40 and 60 PgC y'l. This discrepancy can be explained by the
fact that the northernmost latitude covered by NOBM is 72°N. Similarly to the spatial distribution of
primary production in the NOBM, Carr et al. [21] found that most total primary production occurred in
the Pacific Ocean (a total of 21 PgC y™' or 44% for the entire basin compared to 17 PgC y'1 or 44% for
the entire Pacific Ocean using the NOBM).

Carr et al. [21] compared the global primary production fields corresponding to 8 months of 1998
and 1999. Comparing one satellite-based approach with the NOBM for a longer period (1998-2011),
we found that the primary production from the model was greater than that of the satellite-based
approach (VGPM) by ~6 PgC y™' (Figure 1). Within the 12 regions, annual regional means from both
approaches was always within ~2 PgC y'l. The greatest difference was observed in the Equatorial
regions (model between 1.4 and 2.3 PgC y™' higher than VGPM) and in Antarctic (VGPM 1.2 PgC y’'
higher than the model). In all regions except Antarctic, the North Pacific and North Atlantic, i.e., the
high latitudes, the primary production from the model was greater than the one from the satellite-based
approach.

Globally, diatoms were the group that contributed the most to the total phytoplankton production
(~50%, the equivalent of ~20 PgC y', Figure 2). Coccolithophores and chlorophytes each contributed
to ~20% (~7 PgC y) of the total primary production. Cyanobacteria represented about 10% (~4 PgC
y) of the total primary production. Primary production by diatoms was highest in high latitudes
(>40°) and in major upwelling systems (Equatorial Pacific and Benguela system, Figure 3a). In
Antarctic and the North Pacific, diatoms contributed more than 85% to the total primary production.
The only region where diatoms contributed to <40% of the primary production was in the Equatorial
Atlantic and the North Central Atlantic. Maximum primary production for chlorophytes occurred in
regions directly adjacent to those regions where maximum primary production from diatoms was
encountered (i.e. Equatorial Pacific and Benguela systems, Figure 3b) and in the Equatorial Indian.
Coccolithophores contributed considerably to the total primary production in the North Central
Atlantic (38%, see Table 1 for an equivalence in PgC y™' for all regions and groups) and Western
Equatorial Pacific (31%). In the regions along 40°S (South Indian, South Pacific, South Atlantic),
primary production by coccolithophores was ~20-30% of the total primary production. Some local
high primary production by coccolithophores led to average >20% in the North Atlantic and North
Central Pacific (Figure 3c). Finally, although globally cyanobacteria only contributed to ~10% of the
total primary production, their contribution reached ~80% in the ocean gyres (Figure 3d).

Using a satellite-derived approach, Uitz et al. [17] estimated the global total primary production to
be ~7 PgC y' higher than the NOBM (~46 PgC y™' compared to 39 PcG y' for NOBM). Except for the
primary production by microphytoplankton, a similar tendency (satellite-derived approach higher than
the NOBM) was found for the class-specific primary production: ~15 PgC y for microphytoplankton
(~20 PgC y™' for NOBM), 20 PgC y™' (~8 PgC y' for NOBM) for nanophytoplankton and 11 PgC y™'
(~11 PgC y' for NOBM) for picophytoplankton. In the satellite-derived approach,
microphytoplankton is identified as ‘mostly diatoms’ and therefore is very close to the classification of
the NOBM. In Uitz et al. [17], nanophytoplankton includes prymnesiophytes, pelagophytes and
cryptophytes and is therefore compared to coccolithophores (prymnesiophytes) from the NOBM.
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Picophytoplankton of the Uitz et al. [17] approach includes cyanobacteria, prochlorophytes,
chlorophytes and are therefore compared to the sum of cyanobacteria and chlorophytes from the
NOBM. The group of nanophytoplankton, and to a lesser extent picophytoplankton, in the satellite-
derived approach encompasses more groups than in the NOBM. It is therefore expected that the
estimates of primary production from the satellite-derived approach for this group would be greater
than the one from the NOBM. Some of the differences between the two approaches can also be
attributed to the difference in the depth of integration: primary production in the NOBM is calculated
over the entire water column whereas the satellite-derived approach integrates over the upper water y°
'column (0-1.5 Z¢y). This would lead to a higher primary production in the model than in the satellite-
derived approach.

Uitz et al. [17] divided the global ocean into 6 basins and provided the size-specific primary
production for those 6 basins as well as the breakdown numbers for the north and south of each basin.
We can therefore compare these regions with the class-specific primary production from the NOBM.
Regionally, the greatest difference (4.3 PgC y') was observed for nanophytoplankton in the Pacific
Ocean and is most likely directly related to the fact that the satellite-derived approach encompasses
more group than the NOBM for this size class. For all the other regions (Atlantic, Pacific, Equatorial,
Indian and Southern Ocean), the size/class-specific primary production from the two approaches was
always within 3.5 PgC y™' of each other. By looking at individual regions, we can attempt to narrow
down the reasons, other than the classification difference as described earlier, for the satellite-derived
approach being globally higher than the NOBM. If we compare the latitudes between 10°S and 10 °N,
we find that except for nanophytoplankton, the total and the primary production by micro- and
picophytoplankton using the NOBM was higher than those from the satellite-derived approach (by 2.3-
2.4 PgC y'™"). This is the opposite of what was observed at a global scale. This suggests that the reasons
behind the global satellite-derived approach having larger estimates than the NOBM may be related to
the difference in coverage. The northernmost latitude covered by the NOBM being 72°N would lead to
a global underestimate of total and class-specific primary production using NOBM, as was observed
for total, nano- and picophytoplankton primary production. Some of the discrepancies between the two
approaches may also be linked to the inherent sampling bias resulting from clouds, thick aerosols,
interorbit gaps, sunglint and high solar zenith angle in the satellite-derived approach. This sampling
bias can lead to 6-8% annual mean bias [22] with the largest bias caused by the exclusion of data with
high solar zenith angle. This would occur in regions such as North Indian, Equatorial Atlantic, etc
which unfortunately were not regions for which Uitz et al. [17] reported size-specific primary
production values.

2.2. Interannual variability

Globally the magnitude of interannual variability was of maximum 3 PgC y' which compares
favorably with the previous estimates of an average magnitude of 2 PgC y'1 based on a period from
1992 to 2010 [23]. Over the period 1998-2011, the relative contribution of each phytoplankton group
to the total primary production varied by ~4% except for cyanobacteria for which the highest
interannual variability was of only ~2%. This was the equivalent of ~2 PgC y™ for diatoms and
chlorophytes and ~1 PgC y™ for cyanobacteria and coccolithophores. In both the Atlantic and the
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Pacific, the interannual variability in class-specific primary production increased at low latitude
(Figure 4).

The region where all groups displayed the greatest interannual variation was the Equatorial Pacific
(Figure 4). In the Equatorial Pacific, the magnitude of interannual variability in primary production by
diatoms and chlorophytes was of ~1 PgC y' and 0.3-04 PgC y' for cyanobacteria and
coccolithophores. In this region, the phytoplankton composition is known to be strongly influenced by
climate variability. There has been numerous studies that have indicated the impact of climate
variability in this region [e.g. 24,25-27]. Rousseaux & Gregg [15] showed a phytoplankton
composition shift in this region during transition from El Nifio to La Nifia conditions. The class-
specific primary production follows a similar pattern (Figure 4) with diatoms and chlorophytes
reaching their maximum primary production in 1999 while primary production by cyanobacteria is
maximum in 1998. Interannual variability in class-specific primary production was also high in the
North Central Pacific (Figure 4). Here, the magnitude over which the primary production varied was
comparable to that found in the Equatorial Pacific for diatoms (~0.85 PgC y™') but was lower for the
other 3 groups (0.10-0.30 PgC y™).

By using climate indices, we can assess the factors driving this interannual variability. Globally all
groups except coccolithophores were significantly correlated with the Multivariate El Nifio Index
(MEI). Behrenfeld et al. [28] showed that for the permanently stratified ocean (between 40°S and 40
°N) there was a significant correlation between primary production and MEI. Regionally, there was a
significant correlation between the MEI and the primary production from the NOBM for 2
phytoplankton groups or more in 7 out of the 12 regions (Table 2). In the Equatorial Pacific for
example, primary production by cyanobacteria was significantly (p < 0.05) positively correlated while
primary production by diatoms and chlorophytes were negatively correlated. In the North Central
Pacific, primary production by chlorophytes and diatoms were significantly correlated with MEI but
here diatoms were positively correlated while chlorophytes were negatively correlated. This is similar
to what was observed using the PDO and is discussed later on. In the Atlantic Ocean, all 4 regions
except the Equatorial Atlantic had two or more phytoplankton groups whose primary production was
significantly correlated to MEIL. In the South Atlantic, diatoms and chlorophytes were negatively
correlated and cyanobacteria positively correlated with MEIL In the North and North Central Atlantic
primary production by coccolithophores was significantly positively correlated to MEI while primary
production by cyanobacteria was significantly negatively correlated with the MEL

Some of the regions such as the North Atlantic, the Pacific Ocean and the Antarctic have well
established climate indices. In the Antarctic for example, the Southern Annular Mode (SAM) is the
dominant climate pattern. It is defined as the leading mode of Empirical Orthogonal Function analysis
of monthly atmospheric pressure gradient. It has been suggested that a positive SAM, characterized by
stronger westerly wind anomaly would intensify the upwelling therefore resulting in an increase in
phytoplankton biomass [29]. Arrigo et al. [30] found a significant correlation between SAM and SST
in the Southern Ocean. In this region, the MEI was not correlated to the primary production for any
groups (Table 2) and SAM was only correlated to chlorophytes (Table 3). Similarly, Arrigo et al. [30]
found that only 31% of the variation in annual primary production could be explained by SAM index.
Instead, Arrigo et al. [30] found that most of the interannual variability in primary production was
driven by changes in sea ice cover. Although changes in surface nutrient induced by processed
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associated with atmospheric variability (e.g. SAM) are also likely to play a role, especially at regional
scales through enhanced upwelling, it seems that its effect is relatively limited on both the total and
class-specific primary production in this region.

The North Atlantic Oscillation index (NAO) is calculated as the normalized sea level pressure
difference between the Azores and Iceland [31]. When the NAO is high, the westerlies are stronger
than average, which in turn transport warm and moist air toward Europe. Using the NAO, a significant
negative correlation was found in the North Atlantic for chlorophytes and coccolithophores. In the
North Central Atlantic, a positive NAO was associated with significantly less primary production by
diatoms and significantly more by cyanobacteria (Table 3). A few local scale studies have shown a
positive correlation between NAO and phytoplankton concentration [32-35] as well as a phytoplankton
composition shift from a diatom-dominated community during positive NAO to a dinoflagellates-
dominated community during negative phase of NAO in the North Atlantic [36]. At a basin scale,
Leterme et al. [37] showed that the influence of NAO on diatoms and dinoflagellates abundance was
highly mixed across the North Atlantic basin. Similarly, Barton et al. [38] found that there was no
statistical relationship between the detrended NAO and the results from the continuous plankton
recorder. These studies suggest that the effects of NAO on phytoplankton composition and production
remain unclear. Further studies are necessary to understand the impact of the NAO on the
phytoplankton composition and primary production. Finally, although both the MEI and NAO agreed
on the limited effect of climate variability on class-specific primary production in the Equatorial
Atlantic, both index diverged on the effect of climate variability on the class-specific primary
production in the North, North Central and South Atlantic (Table 2 & Table 3). This is not totally
unexpected since in contrast to the MEI, the NAO is largely an atmospheric mode.

The Pacific Decadal Oscillation [PDO, 39] is an index of oceanic climate variability with a similar
expression to El Nifio, but acting on a longer time scale. It is defined as the leading principal
component of surface temperature variability north of 20°N. During the positive phase of the PDO,
trade winds generally weaken reducing the upwelling of nutrient-rich water. Using the PDO, we found
that the groups that were significantly correlated with this index in the North Central Pacific were the
same as the ones for the MEI (positive for diatoms and negative for chlorophytes). In the North Pacific
however, the PDO was negatively correlated with chlorophytes and cyanobacteria whereas there was
no significant correlation between the MEI and any of the class-specific primary production. These
two climate phenomenon can vary independently and exhibit variable strength in both the warm and
cold phase [40,41]. Several studies have shown a correlation between climate variability and
chlorophyll concentration as well as primary production in the Pacific [e.g. 42,43-45]. Chiba et al. [46]
found a significant correlation between PDO and the timing of the annual bloom in the western North
Pacific (average date occurring in mid-May) but could not find a relationship between the interannual
variation of the summertime phytoplankton community structure and the PDO. Karl et al. [44,47]
found that during a positive phase of the PDO (1965-1977), the plankton community composition
shifted with prokaryotes becoming more dominant and coincided with changing new and export
production, nutrient supply and fisheries yields. In the Equatorial Pacific, there was a significant
positive correlation between both MEI and PDO and the primary production by cyanobacteria and a
negative correlation for the production by diatoms. Climate variability seemed to have only a limited
effect on the primary production in the South Pacific. Here there was only a significant correlation
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between the PDO and the primary production by diatoms. The effects of climate variability in the
South Pacific remains poorly characterized. For this region, Thomas et al. [42] suggested some
correlation between PDO and coastal chlorophyll at least at specific latitudes. The effects that PDO has
on the phytoplankton composition and productivity remain poorly characterized. Furthermore, since
the PDO is a decadal scale phenomena, the satellite observations currently available do not cover a
period long enough to identify possible relationships between PDO and phytoplankton dynamics
(whether in terms of composition or primary production).
Table 1. Climatological Primary Production for the four phytoplankton groups in PgC y’'
and relative contribution and total primary production in PgC v
Diatoms Chloro Cyano Cocco Total
PgCy’ % PgC y'1 %  PgC y'1 %  PgC y'1 % PgC y'1
Ant 40 &89 0.2 5 0.0 0 0.3 7 4.5
SIND 1.7 51 0.4 13 0.5 13 0.8 23 34
SPAC 22 46 0.6 13 0.6 12 14 29 4.7
SATL 1.2 51 0.4 19 0.2 10 05 20 23
EIND 1.9 52 1.0 28 0.5 14 0.2 6 3.7
EPAC 2.8 43 1.1 16 0.7 10 20 31 6.5
EATL 1.1 36 1.2 42 0.2 8 0.4 13 29
NIND 0.7 48 0.6 38 0.2 12 0.0 2 1.5
NCPAC 24 51 0.5 10 0.7 14 1.2 25 4.7
NCATL 06 26 0.4 16 0.5 19 09 39 24
NPAC 1.1 &6 0.1 10 0.0 0.1 4 1.3
NATL 06 51 0.2 20 0.0 1 0.3 28 1.1
Global 203 52 6.8 17 4.0 10 80 21 39.0
Table 2. Correlation Coefficient between class specific primary production and the
Multivariate El Nifio Index (MEI) in 12 major oceanographic basins. Bold and (*) indicates
statistical significance (p<0.05).
Ant SIND SPAC SATL EIND EPAC EATL NIND NCPAC NCATL NPAC NATL
Diatoms -0.12  -0.14  -0.10 -0.17%  -0.46*  -0.68* -0.05  -0.09 0.21* 0.10 0.13  0.18*
Chlorophytes -0.13  -0.09  -0.06 -0.17%  -0.38*  -0.28* -0.14  -0.35* -0.18* 0.06 0.01 0.00
Cyanobacteria -0.05 0.00 -0.07 0.33* 0.13 0.61* 0.10  0.18* -0.17* 0.01 -0.17*
Coccolithophores  0.01 -0.13  -0.06 -0.14 0.09 0.12 -0.14  0.18* 0.23* 0.12  0.15*




Remote Sens. 2013, 5 8

256 Table 3. Correlation Coefficient between class specific primary production and several
257 regions-specific climates indices: Antarctic Oscillation (AAO), North Atlantic Oscillation
258 (NAO), and Pacific y'lDecadal Oscillation (PDO). Bold and (*) indicates statistical
259 significance (p<0.05).
Diatoms  Chlorophytes Cyanobacteria ~ Coccolithophores
AAO Antarctic 0.09 0.16* 0.08 0.14
NAO North Atlantic -0.11 -0.22* -0.09 -0.25*
North Central Atlantic -0.17* -0.05 0.21* -0.12
Equatorial Atlantic -0.06 -0.05 0.00 0.06
South Atlantic -0.02 0.12 -0.22* 0.14
PDO North Pacific 0.02 -0.26* -0.19* -0.07
North Central Pacific 0.40* -0.25* 0.03 -0.07
Equatorial Pacific -0.24* -0.13 0.45* 0.17*
South Pacific -0.20* 0.04 0.09 0.00
260 Figure 1. Difference between total Primary production from the NOBM and those from the
261 VGPM for the 12 regions and at the global scale (PgC y') averaged over the period from
262 1998 to 2011. [DifPPVGPM.m]
8 . i .

f ] | |
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264 Figure 2. Relative contribution of the four phytoplankton group to total primary
265 production at a global scale averaged over the period from 1998 until 2011.
266 [InterannualPerc.m]
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Primary Production (PgC/vr)

Primary Production (PgC/yr)

Figure 3. Climatology of class-specific primary production for the period from 1998 until

2011. The left-hand panels show the primary production in absolute units (PgC y ). Note

the difference of scale between diatoms/chlorophytes (scale from 0 to 0.7 PgC y™) and

coccolithophores/cyanobacteria (scale from 0 to 0.3 PgC y™'). The right-hand panels show

the percent contribution of class-specific production to total primary production (same

scale for all classes).
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Figure 4. Interannual variation of class-specific primary production (PgC y™) for diatoms,

chlorophytes, cyanobacteria and coccolithophores in (a) North Pacific, (b) North Atlantic,
(c) North Central Pacific, (d) North Central Atlantic, (¢) Equatorial Pacific and (f)

Equatorial Atlantic.
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3. Experimental Section

Global primary production is derived from an established coupled ocean biogeochemical model, the
NASA Ocean Biogeochemical Model [NOBM, 48]. It is a three-dimensional representation of
circulation/biogeochemical/radiative process in a domain that spans from -84° to 72° at a 1.25°
resolution in water deeper than 200 m. NOBM is coupled with the Poseidon ocean general circulation
model, which is driven by wind stress, sea surface temperature, and shortwave radiation [48]. The
model includes 3 detrital pools (silica, N/C and iron detritus), 4 phytoplankton groups (diatoms,
coccolithophores, chlorophytes and cyanobacteria) and 4 nutrients (ammonium, nitrate, iron and
silicate). The phytoplankton groups differ in their maximum growth rates, sinking rates, nutrient
requirements, and optical properties.

Satellite ocean chlorophyll from SeaWiFS and MODIS-Aqua for the years 1998-2012 is assimilated
into NOBM following Gregg [49]. Multi-variate nutrient adjustments corresponding to the chlorophyll
assimilation [15] are also included. Bias-correction of the satellite chlorophyll data is performed prior
to assimilation using public in situ archives in the Empirical Satellite Radiance-In situ Data (ESRID)
methodology [50]. The ESRID method also has the attribute of reducing discontinuities between the
two satellite data sets [S1]. The time series uses SeaWiFS data from 1998-2002, then switches to
MODIS-Aqua data.

Primary production is computed in the model as a function of growth rate multiplied by the carbon:
chlorophyll ratio:

PP = J-Zﬁici‘i’dz

where u; is the growth rate of phytoplankton component i, C; is the chlorophyll concentration of
component i, @ is the carbon:chlorophyll ratio, and the product is integrated over depth. It is a
diagnostic variable in the model, representing the integral of net carbon uptake in the water column.
Photoadaptation is simulated by stipulating three states: 50, 150, and 200 (mmol quanta m?s?). This
is based on laboratory studies which typically divide experiments into low, medium, and high classes
of light adaptation [48]. Carbon:chlorophyll ratios (@) correspond to the photoadaptation state, to
represent the tendency of phytoplankton to preferentially synthesize chlorophyll in low light
conditions, to enable more efficient photon capture. The three @ states corresponding to the three light
states are 25, 50, and 80 g g'. For irradiance levels falling between the three light states, the C:chl
ratios are linearly interpolated.

Irradiance data to drive phytoplankton growth is taken from the Ocean-Atmosphere Spectral
Irradiance Model [OASIM; 52] for the years of interest. This model computes spectral irradiance in 33
bands for the domain 200 nm to 4 pum, at the ocean surface as a function of atmospheric optical
properties [52], and then propagates the spectral irradiance downward and upward through the water
column as a function of ocean optical properties [53,54]. Surface spectral irradiance and
photosynthetically available irradiance data are publicly available at
gmao.gsfc.nasa.gov/research/oceanbiology/data.php.

Total primary production from NOBM has been evaluated along with multiple satellite-derived and
numerical models in three intercomparison efforts [21,55,56]. However, for sanity purposes, we
explicitly compare NOBM total primary production with a commonly used satellite-derived method,



322
323
324
325
326
327
328

329

330
331
332
333

334

335

336

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

Remote Sens. 2013, 5 13

that has the advantage of public availability (data downloaded from www.science.oregonstate.edu) and
heritage, the Vertically-Integrated Production Model [VGPM; 57]. The purpose of this comparison is
not to validate per se, because there are many other models and we are not attributing an assessment of
the quality of this particular one. However, we are interested in establishing a quantitative comparison
of total primary production of NOBM with a common method that has been involved in many
intercomparison efforts to place the NOBM total primary production estimates in perspective. Climate
indices were downloaded from the NOAA Climate Prediction Center (http://www.cpc.ncep.noaa.gov).
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