

Article

Interannual Variation in Phytoplankton Class-specific Primary Production at a Global Scale

Cecile S. Rousseaux ^{1,2,*} and Watson W. Gregg ¹

¹ Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA; E-Mail: Watson.Gregg@nasa.gov (Watson Gregg)

² Universities Space Research Association, Columbia, Maryland, USA

* Author to whom correspondence should be addressed; E-Mail: Cecile.S.Rousseaux@nasa.gov; Tel.: +1-301-614-5750; Fax: +1-301-614-5644.

Received: / Accepted: /

Published:

Abstract: We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. First we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998–2011. Globally, diatoms were the group that contributed the most to the total phytoplankton production (~50%, the equivalent of ~20 PgC y^{-1}). Coccolithophores and chlorophytes each contributed to ~20% (~7 PgC y^{-1}) of the total primary production and cyanobacteria represented about 10% (~4 PgC y^{-1}) of the total primary production. Primary production by diatoms was highest in high latitude ($>45^\circ$) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998–2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4% (1–2 PgC y^{-1}). We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Niño Index, MEI) and ‘regional’ climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation ($p < 0.05$) between the MEI and the class-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatoms/cyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by

40 SAM had only a limited effect on the class-specific primary production in the Southern
41 Ocean. These results provide a modeling and data assimilation perspective to
42 phytoplankton partitioning of primary production and contribute to our understanding of
43 the dynamics of the carbon cycle in the oceans at a global scale.

44 **Keywords:** Primary production; Phytoplankton composition; Chl-a; remote sensing;
45 MODIS; SeaWiFS; biogeochemical models
46

47 1. Introduction

48 Phytoplankton is responsible for over half of the net primary production on earth [1]. The venue of
49 satellite coincided with the improvement of our knowledge on global dynamics of phytoplankton
50 through the development of ocean color algorithms. More recently, progress has been made in
51 discerning phytoplankton types using algorithms [e.g. 2,3-6] and models [e.g. 7,8-11]. The knowledge
52 on the contribution of various phytoplankton groups to the total primary production is still poorly
53 understood. Data from satellite observations [i.e. 12] suggest that for upwelling regions, photosynthetic
54 rates by microplankton is higher than that of nanoplankton but that when the spatial extent is
55 considered, the production by nanoplankton is comparable or even larger than microplankton. Climate
56 variability has been shown to drive phytoplankton composition shifts in some regions [13-16]. These
57 changes are likely to have an effect on primary production. The contribution of each group to the total
58 primary production and how their contribution changes on seasonal and interannual scales remains
59 very poorly characterized. To our knowledge, there have been few attempts so far at estimating size-
60 specific primary productivity at a global scale [i.e. 17,18,19]. Uitz et al. [5] used the primary
61 production model of Morel [20] to derive size-specific phytoplankton primary production over the
62 upper water column. This approach estimated the contribution of pico-, nano- and microphytoplankton
63 to the total primary production.

64 Although there has been few attempts at estimating size-specific primary production, to our
65 knowledge this paper represents the first attempt at estimating taxonomic/functional class-specific
66 primary production at a global scale. We use the NASA Ocean Biogeochemical Model (NOBM)
67 combined with ocean color remote sensing data assimilation to (1) assess the climatological class-
68 specific primary production globally and (2) assess the contribution of each group to the total primary
69 production on an interannual scale for the period 1998-2011. Class-specific primary production is
70 reported globally and in 12 major oceanographic regions for total chlorophyll, diatoms, chlorophytes,
71 coccolithophores and cyanobacteria.

72 2. Results and Discussion

73 2.1. Climatology of primary production and comparison with VGPM

74 Globally, the total primary production was of 39 PgC y^{-1} with the majority of this total production
75 coming from the Equatorial Pacific ($\sim 17\%$ or 6.5 PgC y^{-1}) and the South and North Central Pacific
76 ($\sim 12\%$, Table 1). Antarctic contributed the fourth most to the global primary production with 4.5 PgC

77 (~11%) produced annually. This estimate of total primary production at a global scale fits in the lower
78 range of values previously reported by Carr et al. [21] in an intercomparison of 24 models for which
79 total primary production ranged between 40 and 60 PgC y^{-1} . This discrepancy can be explained by the
80 fact that the northernmost latitude covered by NOBM is 72°N. Similarly to the spatial distribution of
81 primary production in the NOBM, Carr et al. [21] found that most total primary production occurred in
82 the Pacific Ocean (a total of 21 PgC y^{-1} or 44% for the entire basin compared to 17 PgC y^{-1} or 44% for
83 the entire Pacific Ocean using the NOBM).

84 Carr et al. [21] compared the global primary production fields corresponding to 8 months of 1998
85 and 1999. Comparing one satellite-based approach with the NOBM for a longer period (1998–2011),
86 we found that the primary production from the model was greater than that of the satellite-based
87 approach (VGPM) by ~6 PgC y^{-1} (Figure 1). Within the 12 regions, annual regional means from both
88 approaches was always within ~2 PgC y^{-1} . The greatest difference was observed in the Equatorial
89 regions (model between 1.4 and 2.3 PgC y^{-1} higher than VGPM) and in Antarctic (VGPM 1.2 PgC y^{-1}
90 higher than the model). In all regions except Antarctic, the North Pacific and North Atlantic, i.e., the
91 high latitudes, the primary production from the model was greater than the one from the satellite-based
92 approach.

93 Globally, diatoms were the group that contributed the most to the total phytoplankton production
94 (~50%, the equivalent of ~20 PgC y^{-1} , Figure 2). Coccolithophores and chlorophytes each contributed
95 to ~20% (~7 PgC y^{-1}) of the total primary production. Cyanobacteria represented about 10% (~4 PgC
96 y^{-1}) of the total primary production. Primary production by diatoms was highest in high latitudes
97 (>40°) and in major upwelling systems (Equatorial Pacific and Benguela system, Figure 3a). In
98 Antarctic and the North Pacific, diatoms contributed more than 85% to the total primary production.
99 The only region where diatoms contributed to <40% of the primary production was in the Equatorial
100 Atlantic and the North Central Atlantic. Maximum primary production for chlorophytes occurred in
101 regions directly adjacent to those regions where maximum primary production from diatoms was
102 encountered (i.e. Equatorial Pacific and Benguela systems, Figure 3b) and in the Equatorial Indian.
103 Coccolithophores contributed considerably to the total primary production in the North Central
104 Atlantic (38%, see Table 1 for an equivalence in PgC y^{-1} for all regions and groups) and Western
105 Equatorial Pacific (31%). In the regions along 40°S (South Indian, South Pacific, South Atlantic),
106 primary production by coccolithophores was ~20–30% of the total primary production. Some local
107 high primary production by coccolithophores led to average >20% in the North Atlantic and North
108 Central Pacific (Figure 3c). Finally, although globally cyanobacteria only contributed to ~10% of the
109 total primary production, their contribution reached ~80% in the ocean gyres (Figure 3d).

110 Using a satellite-derived approach, Uitz et al. [17] estimated the global total primary production to
111 be ~7 PgC y^{-1} higher than the NOBM (~46 PgC y^{-1} compared to 39 PgC y^{-1} for NOBM). Except for the
112 primary production by microphytoplankton, a similar tendency (satellite-derived approach higher than
113 the NOBM) was found for the class-specific primary production: ~15 PgC y^{-1} for microphytoplankton
114 (~20 PgC y^{-1} for NOBM), 20 PgC y^{-1} (~8 PgC y^{-1} for NOBM) for nanophytoplankton and 11 PgC y^{-1}
115 (~11 PgC y^{-1} for NOBM) for picophytoplankton. In the satellite-derived approach,
116 microphytoplankton is identified as ‘mostly diatoms’ and therefore is very close to the classification of
117 the NOBM. In Uitz et al. [17], nanophytoplankton includes prymnesiophytes, pelagophytes and
118 cryptophytes and is therefore compared to coccolithophores (prymnesiophytes) from the NOBM.

119 Picophytoplankton of the Uitz et al. [17] approach includes cyanobacteria, prochlorophytes,
120 chlorophytes and are therefore compared to the sum of cyanobacteria and chlorophytes from the
121 NOBM. The group of nanophytoplankton, and to a lesser extent picophytoplankton, in the satellite-
122 derived approach encompasses more groups than in the NOBM. It is therefore expected that the
123 estimates of primary production from the satellite-derived approach for this group would be greater
124 than the one from the NOBM. Some of the differences between the two approaches can also be
125 attributed to the difference in the depth of integration: primary production in the NOBM is calculated
126 over the entire water column whereas the satellite-derived approach integrates over the upper water y^{-1}
127 column (0-1.5 Z_{eu}). This would lead to a higher primary production in the model than in the satellite-
128 derived approach.

129 Uitz et al. [17] divided the global ocean into 6 basins and provided the size-specific primary
130 production for those 6 basins as well as the breakdown numbers for the north and south of each basin.
131 We can therefore compare these regions with the class-specific primary production from the NOBM.
132 Regionally, the greatest difference (4.3 PgC y^{-1}) was observed for nanophytoplankton in the Pacific
133 Ocean and is most likely directly related to the fact that the satellite-derived approach encompasses
134 more group than the NOBM for this size class. For all the other regions (Atlantic, Pacific, Equatorial,
135 Indian and Southern Ocean), the size/class-specific primary production from the two approaches was
136 always within 3.5 PgC y^{-1} of each other. By looking at individual regions, we can attempt to narrow
137 down the reasons, other than the classification difference as described earlier, for the satellite-derived
138 approach being globally higher than the NOBM. If we compare the latitudes between 10°S and 10 °N,
139 we find that except for nanophytoplankton, the total and the primary production by micro- and
140 picophytoplankton using the NOBM was higher than those from the satellite-derived approach (by 2.3-
141 2.4 PgC y^{-1}). This is the opposite of what was observed at a global scale. This suggests that the reasons
142 behind the global satellite-derived approach having larger estimates than the NOBM may be related to
143 the difference in coverage. The northernmost latitude covered by the NOBM being 72°N would lead to
144 a global underestimate of total and class-specific primary production using NOBM, as was observed
145 for total, nano- and picophytoplankton primary production. Some of the discrepancies between the two
146 approaches may also be linked to the inherent sampling bias resulting from clouds, thick aerosols,
147 interorbit gaps, sunglint and high solar zenith angle in the satellite-derived approach. This sampling
148 bias can lead to 6-8% annual mean bias [22] with the largest bias caused by the exclusion of data with
149 high solar zenith angle. This would occur in regions such as North Indian, Equatorial Atlantic, etc
150 which unfortunately were not regions for which Uitz et al. [17] reported size-specific primary
151 production values.

152 2.2. *Interannual variability*

153 Globally the magnitude of interannual variability was of maximum 3 PgC y^{-1} which compares
154 favorably with the previous estimates of an average magnitude of 2 PgC y^{-1} based on a period from
155 1992 to 2010 [23]. Over the period 1998-2011, the relative contribution of each phytoplankton group
156 to the total primary production varied by ~4% except for cyanobacteria for which the highest
157 interannual variability was of only ~2%. This was the equivalent of ~2 PgC y^{-1} for diatoms and
158 chlorophytes and ~1 PgC y^{-1} for cyanobacteria and coccolithophores. In both the Atlantic and the

159 Pacific, the interannual variability in class-specific primary production increased at low latitude
160 (Figure 4).

161 The region where all groups displayed the greatest interannual variation was the Equatorial Pacific
162 (Figure 4). In the Equatorial Pacific, the magnitude of interannual variability in primary production by
163 diatoms and chlorophytes was of ~ 1 PgC y^{-1} and 0.3-0.4 PgC y^{-1} for cyanobacteria and
164 coccolithophores. In this region, the phytoplankton composition is known to be strongly influenced by
165 climate variability. There has been numerous studies that have indicated the impact of climate
166 variability in this region [e.g. 24,25-27]. Rousseaux & Gregg [15] showed a phytoplankton
167 composition shift in this region during transition from El Niño to La Niña conditions. The class-
168 specific primary production follows a similar pattern (Figure 4) with diatoms and chlorophytes
169 reaching their maximum primary production in 1999 while primary production by cyanobacteria is
170 maximum in 1998. Interannual variability in class-specific primary production was also high in the
171 North Central Pacific (Figure 4). Here, the magnitude over which the primary production varied was
172 comparable to that found in the Equatorial Pacific for diatoms (~ 0.85 PgC y^{-1}) but was lower for the
173 other 3 groups (0.10-0.30 PgC y^{-1}).

174 By using climate indices, we can assess the factors driving this interannual variability. Globally all
175 groups except coccolithophores were significantly correlated with the Multivariate El Niño Index
176 (MEI). Behrenfeld et al. [28] showed that for the permanently stratified ocean (between 40°S and 40
177 °N) there was a significant correlation between primary production and MEI. Regionally, there was a
178 significant correlation between the MEI and the primary production from the NOBM for 2
179 phytoplankton groups or more in 7 out of the 12 regions (Table 2). In the Equatorial Pacific for
180 example, primary production by cyanobacteria was significantly ($p < 0.05$) positively correlated while
181 primary production by diatoms and chlorophytes were negatively correlated. In the North Central
182 Pacific, primary production by chlorophytes and diatoms were significantly correlated with MEI but
183 here diatoms were positively correlated while chlorophytes were negatively correlated. This is similar
184 to what was observed using the PDO and is discussed later on. In the Atlantic Ocean, all 4 regions
185 except the Equatorial Atlantic had two or more phytoplankton groups whose primary production was
186 significantly correlated to MEI. In the South Atlantic, diatoms and chlorophytes were negatively
187 correlated and cyanobacteria positively correlated with MEI. In the North and North Central Atlantic
188 primary production by coccolithophores was significantly positively correlated to MEI while primary
189 production by cyanobacteria was significantly negatively correlated with the MEI.

190 Some of the regions such as the North Atlantic, the Pacific Ocean and the Antarctic have well
191 established climate indices. In the Antarctic for example, the Southern Annular Mode (SAM) is the
192 dominant climate pattern. It is defined as the leading mode of Empirical Orthogonal Function analysis
193 of monthly atmospheric pressure gradient. It has been suggested that a positive SAM, characterized by
194 stronger westerly wind anomaly would intensify the upwelling therefore resulting in an increase in
195 phytoplankton biomass [29]. Arrigo et al. [30] found a significant correlation between SAM and SST
196 in the Southern Ocean. In this region, the MEI was not correlated to the primary production for any
197 groups (Table 2) and SAM was only correlated to chlorophytes (Table 3). Similarly, Arrigo et al. [30]
198 found that only 31% of the variation in annual primary production could be explained by SAM index.
199 Instead, Arrigo et al. [30] found that most of the interannual variability in primary production was
200 driven by changes in sea ice cover. Although changes in surface nutrient induced by processed

201 associated with atmospheric variability (e.g. SAM) are also likely to play a role, especially at regional
202 scales through enhanced upwelling, it seems that its effect is relatively limited on both the total and
203 class-specific primary production in this region.

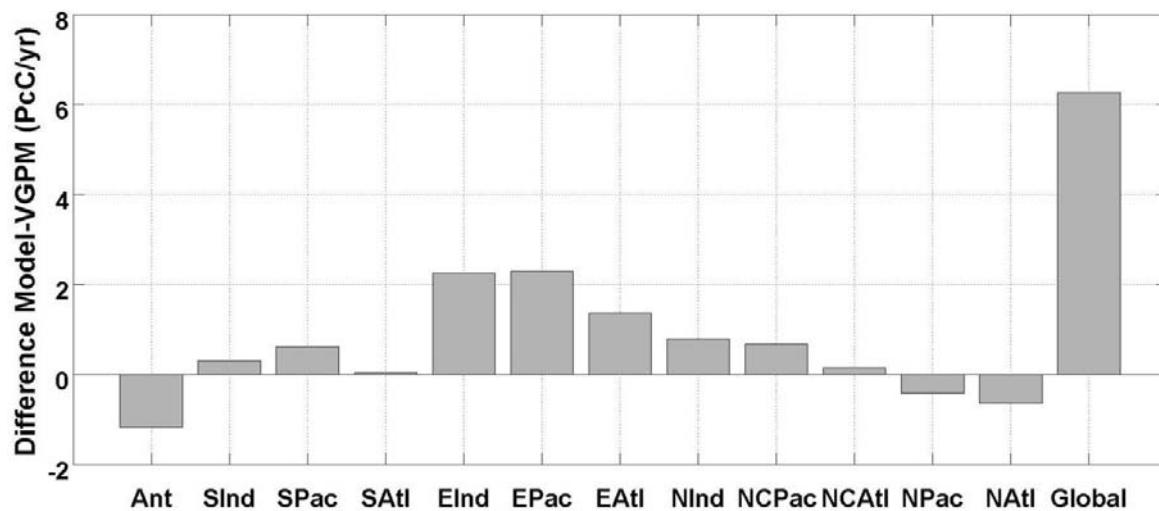
204 The North Atlantic Oscillation index (NAO) is calculated as the normalized sea level pressure
205 difference between the Azores and Iceland [31]. When the NAO is high, the westerlies are stronger
206 than average, which in turn transport warm and moist air toward Europe. Using the NAO, a significant
207 negative correlation was found in the North Atlantic for chlorophytes and coccolithophores. In the
208 North Central Atlantic, a positive NAO was associated with significantly less primary production by
209 diatoms and significantly more by cyanobacteria (Table 3). A few local scale studies have shown a
210 positive correlation between NAO and phytoplankton concentration [32-35] as well as a phytoplankton
211 composition shift from a diatom-dominated community during positive NAO to a dinoflagellates-
212 dominated community during negative phase of NAO in the North Atlantic [36]. At a basin scale,
213 Leterme et al. [37] showed that the influence of NAO on diatoms and dinoflagellates abundance was
214 highly mixed across the North Atlantic basin. Similarly, Barton et al. [38] found that there was no
215 statistical relationship between the detrended NAO and the results from the continuous plankton
216 recorder. These studies suggest that the effects of NAO on phytoplankton composition and production
217 remain unclear. Further studies are necessary to understand the impact of the NAO on the
218 phytoplankton composition and primary production. Finally, although both the MEI and NAO agreed
219 on the limited effect of climate variability on class-specific primary production in the Equatorial
220 Atlantic, both index diverged on the effect of climate variability on the class-specific primary
221 production in the North, North Central and South Atlantic (Table 2 & Table 3). This is not totally
222 unexpected since in contrast to the MEI, the NAO is largely an atmospheric mode.

223 The Pacific Decadal Oscillation [PDO, 39] is an index of oceanic climate variability with a similar
224 expression to El Niño, but acting on a longer time scale. It is defined as the leading principal
225 component of surface temperature variability north of 20°N. During the positive phase of the PDO,
226 trade winds generally weaken reducing the upwelling of nutrient-rich water. Using the PDO, we found
227 that the groups that were significantly correlated with this index in the North Central Pacific were the
228 same as the ones for the MEI (positive for diatoms and negative for chlorophytes). In the North Pacific
229 however, the PDO was negatively correlated with chlorophytes and cyanobacteria whereas there was
230 no significant correlation between the MEI and any of the class-specific primary production. These
231 two climate phenomenon can vary independently and exhibit variable strength in both the warm and
232 cold phase [40,41]. Several studies have shown a correlation between climate variability and
233 chlorophyll concentration as well as primary production in the Pacific [e.g. 42,43-45]. Chiba et al. [46]
234 found a significant correlation between PDO and the timing of the annual bloom in the western North
235 Pacific (average date occurring in mid-May) but could not find a relationship between the interannual
236 variation of the summertime phytoplankton community structure and the PDO. Karl et al. [44,47]
237 found that during a positive phase of the PDO (1965-1977), the plankton community composition
238 shifted with prokaryotes becoming more dominant and coincided with changing new and export
239 production, nutrient supply and fisheries yields. In the Equatorial Pacific, there was a significant
240 positive correlation between both MEI and PDO and the primary production by cyanobacteria and a
241 negative correlation for the production by diatoms. Climate variability seemed to have only a limited
242 effect on the primary production in the South Pacific. Here there was only a significant correlation

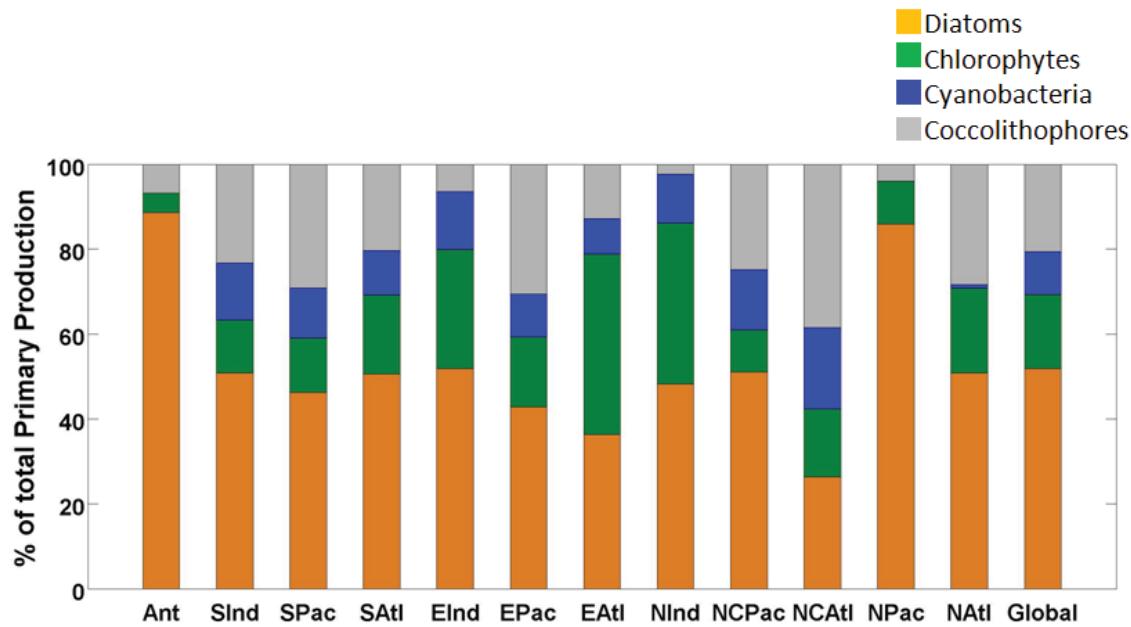
243 between the PDO and the primary production by diatoms. The effects of climate variability in the
 244 South Pacific remains poorly characterized. For this region, Thomas et al. [42] suggested some
 245 correlation between PDO and coastal chlorophyll at least at specific latitudes. The effects that PDO has
 246 on the phytoplankton composition and productivity remain poorly characterized. Furthermore, since
 247 the PDO is a decadal scale phenomena, the satellite observations currently available do not cover a
 248 period long enough to identify possible relationships between PDO and phytoplankton dynamics
 249 (whether in terms of composition or primary production).

250 **Table 1.** Climatological Primary Production for the four phytoplankton groups in PgC y⁻¹
 251 and relative contribution and total primary production in PgC y⁻¹.

	Diatoms		Chloro		Cyano		Cocco		Total	
	PgC y ⁻¹	%	PgC y ⁻¹							
Ant	4.0	89	0.2	5	0.0	0	0.3	7	4.5	
SIND	1.7	51	0.4	13	0.5	13	0.8	23	3.4	
SPAC	2.2	46	0.6	13	0.6	12	1.4	29	4.7	
SATL	1.2	51	0.4	19	0.2	10	0.5	20	2.3	
EIND	1.9	52	1.0	28	0.5	14	0.2	6	3.7	
EPAC	2.8	43	1.1	16	0.7	10	2.0	31	6.5	
EATL	1.1	36	1.2	42	0.2	8	0.4	13	2.9	
NIND	0.7	48	0.6	38	0.2	12	0.0	2	1.5	
NCPAC	2.4	51	0.5	10	0.7	14	1.2	25	4.7	
NCATL	0.6	26	0.4	16	0.5	19	0.9	39	2.4	
NPAC	1.1	86	0.1	10	0.0	0	0.1	4	1.3	
NATL	0.6	51	0.2	20	0.0	1	0.3	28	1.1	
Global	20.3	52	6.8	17	4.0	10	8.0	21	39.0	

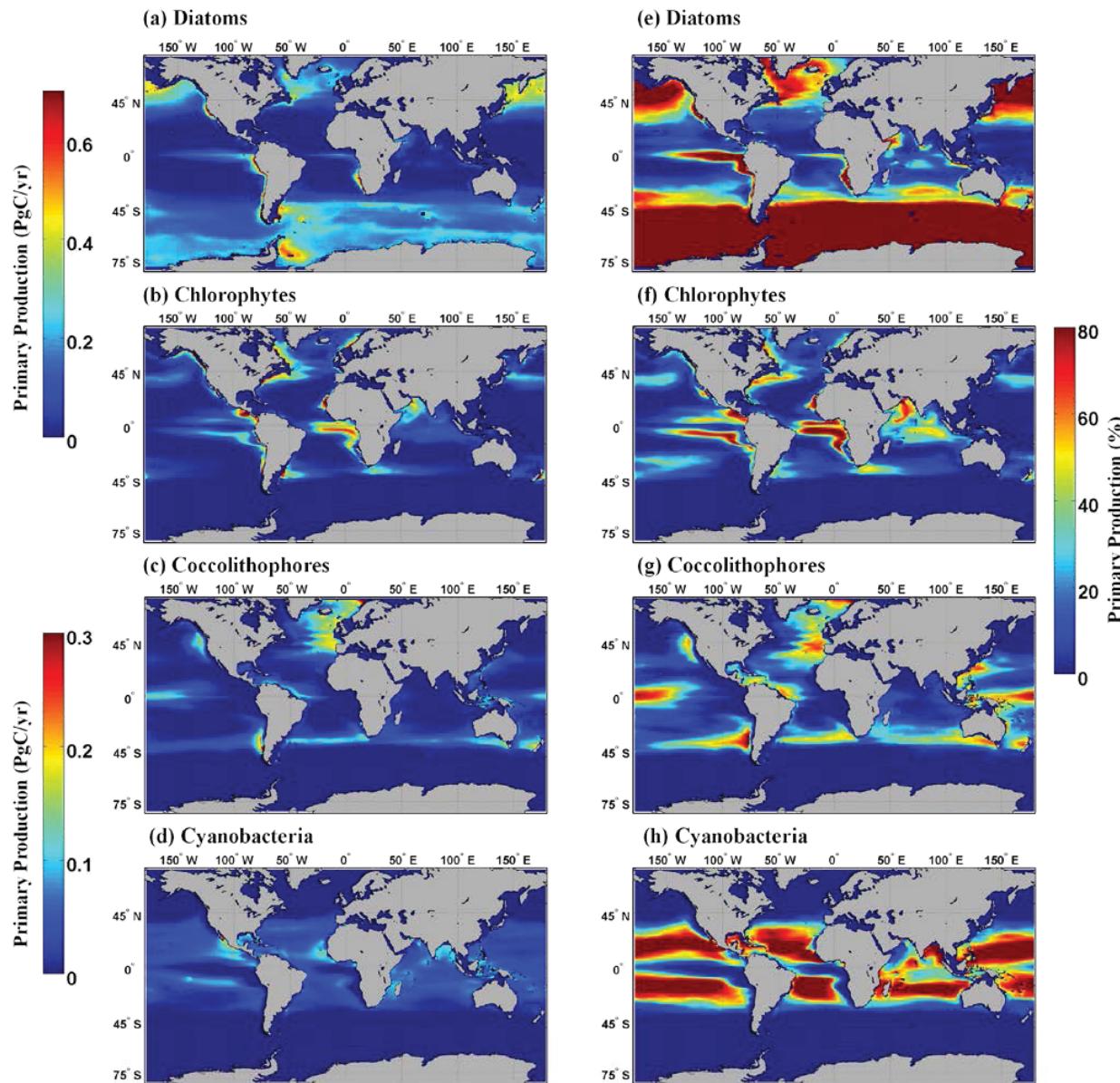

252 **Table 2.** Correlation Coefficient between class specific primary production and the
 253 Multivariate El Niño Index (MEI) in 12 major oceanographic basins. Bold and (*) indicates
 254 statistical significance ($p < 0.05$).

	Ant	SIND	SPAC	SATL	EIND	EPAC	EATL	NIND	NCPAC	NCATL	NPAC	NATL
Diatoms	-0.12	-0.14	-0.10	-0.17*	-0.46*	-0.68*	-0.05	-0.09	0.21*	0.10	0.13	0.18*
Chlorophytes	-0.13	-0.09	-0.06	-0.17*	-0.38*	-0.28*	-0.14	-0.35*	-0.18*	0.06	0.01	0.00
Cyanobacteria	-0.05	0.00	-0.07	0.33*	0.13	0.61*	0.10	0.18*	0.03	-0.17*	0.01	-0.17*
Coccolithophores	0.01	-0.13	-0.06	-0.14	0.09	0.12	-0.14	0.18*	0.08	0.23*	0.12	0.15*

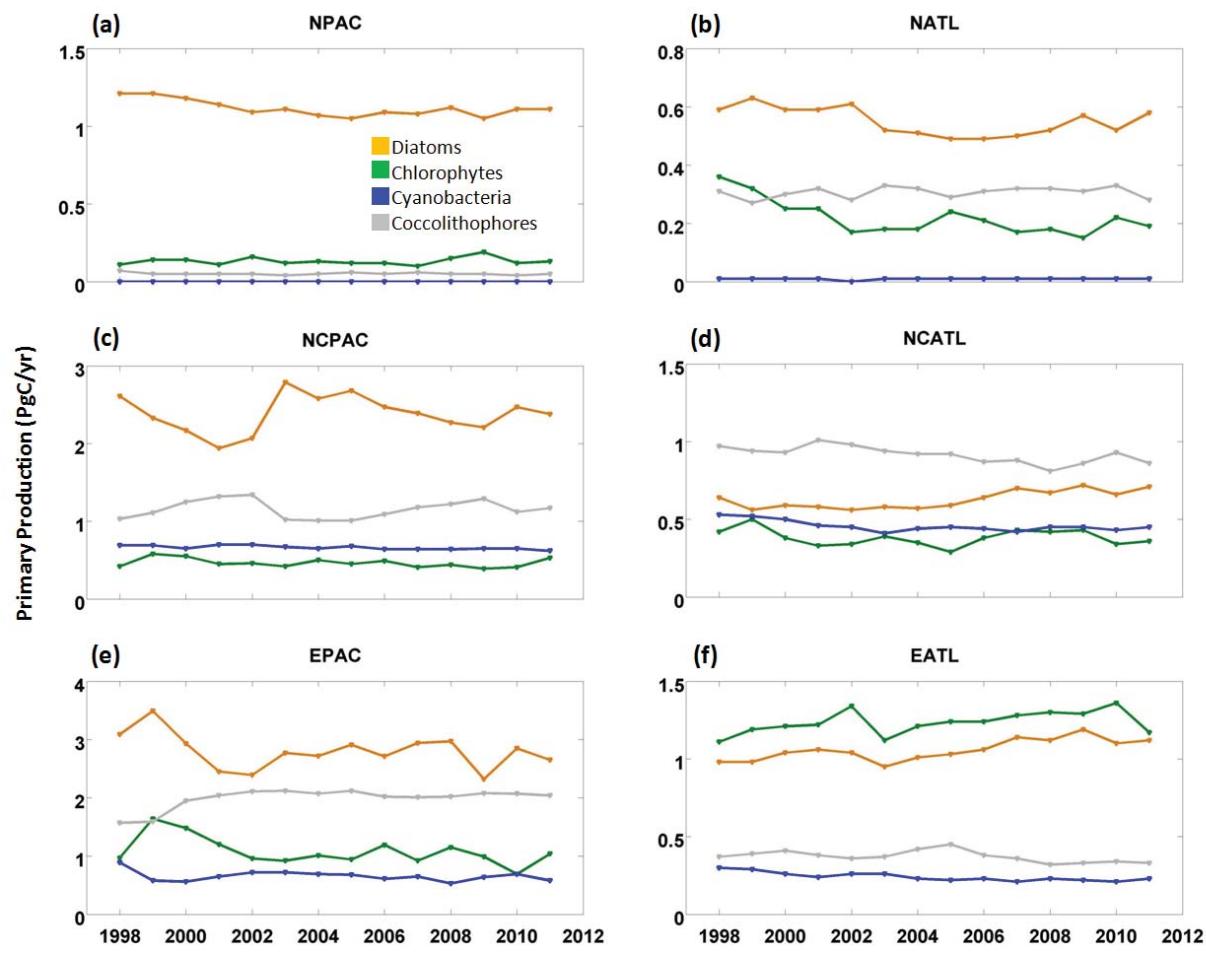

256 **Table 3.** Correlation Coefficient between class specific primary production and several
 257 regions-specific climates indices: Antarctic Oscillation (AAO), North Atlantic Oscillation
 258 (NAO), and Pacific y^{-1} Decadal Oscillation (PDO). Bold and (*) indicates statistical
 259 significance ($p < 0.05$).

		Diatoms	Chlorophytes	Cyanobacteria	Coccolithophores
AAO	Antarctic	0.09	0.16*	0.08	0.14
NAO	North Atlantic	-0.11	-0.22*	-0.09	-0.25*
	North Central Atlantic	-0.17*	-0.05	0.21*	-0.12
	Equatorial Atlantic	-0.06	-0.05	0.00	0.06
	South Atlantic	-0.02	0.12	-0.22*	0.14
PDO	North Pacific	0.02	-0.26*	-0.19*	-0.07
	North Central Pacific	0.40*	-0.25*	0.03	-0.07
	Equatorial Pacific	-0.24*	-0.13	0.45*	0.17*
	South Pacific	-0.20*	0.04	0.09	0.00

260 **Figure 1.** Difference between total Primary production from the NOBM and those from the
 261 VGPM for the 12 regions and at the global scale ($PgC y^{-1}$) averaged over the period from
 262 1998 to 2011. [DifPPVGPM.m]



264 **Figure 2.** Relative contribution of the four phytoplankton group to total primary
265 production at a global scale averaged over the period from 1998 until 2011.
266 [InterannualPerc.m]


267

268 **Figure 3.** Climatology of class-specific primary production for the period from 1998 until
 269 2011. The left-hand panels show the primary production in absolute units (PgC yr^{-1}). Note
 270 the difference of scale between diatoms/chlorophytes (scale from 0 to 0.7 PgC yr^{-1}) and
 271 coccolithophores/cyanobacteria (scale from 0 to 0.3 PgC yr^{-1}). The right-hand panels show
 272 the percent contribution of class-specific production to total primary production (same
 273 scale for all classes).

274
 275

276 **Figure 4.** Interannual variation of class-specific primary production (PgC y^{-1}) for diatoms,
 277 chlorophytes, cyanobacteria and coccolithophores in (a) North Pacific, (b) North Atlantic,
 278 (c) North Central Pacific, (d) North Central Atlantic, (e) Equatorial Pacific and (f)
 279 Equatorial Atlantic.

280
 281

282 **3. Experimental Section**

283 Global primary production is derived from an established coupled ocean biogeochemical model, the
 284 NASA Ocean Biogeochemical Model [NOBM, 48]. It is a three-dimensional representation of
 285 circulation/biogeochemical/radiative process in a domain that spans from -84° to 72° at a 1.25°
 286 resolution in water deeper than 200 m. NOBM is coupled with the Poseidon ocean general circulation
 287 model, which is driven by wind stress, sea surface temperature, and shortwave radiation [48]. The
 288 model includes 3 detrital pools (silica, N/C and iron detritus), 4 phytoplankton groups (diatoms,
 289 coccolithophores, chlorophytes and cyanobacteria) and 4 nutrients (ammonium, nitrate, iron and
 290 silicate). The phytoplankton groups differ in their maximum growth rates, sinking rates, nutrient
 291 requirements, and optical properties.

292 Satellite ocean chlorophyll from SeaWiFS and MODIS-Aqua for the years 1998-2012 is assimilated
 293 into NOBM following Gregg [49]. Multi-variate nutrient adjustments corresponding to the chlorophyll
 294 assimilation [15] are also included. Bias-correction of the satellite chlorophyll data is performed prior
 295 to assimilation using public in situ archives in the Empirical Satellite Radiance-In situ Data (ESRID)
 296 methodology [50]. The ESRID method also has the attribute of reducing discontinuities between the
 297 two satellite data sets [51]. The time series uses SeaWiFS data from 1998-2002, then switches to
 298 MODIS-Aqua data.

299 Primary production is computed in the model as a function of growth rate multiplied by the carbon:
 300 chlorophyll ratio:

$$301 PP = \int \sum \mu_i C_i \Phi dz$$

302 where μ_i is the growth rate of phytoplankton component i , C_i is the chlorophyll concentration of
 303 component i , Φ is the carbon:chlorophyll ratio, and the product is integrated over depth. It is a
 304 diagnostic variable in the model, representing the integral of net carbon uptake in the water column.
 305 Photoadaptation is simulated by stipulating three states: 50, 150, and 200 ($\text{mmol quanta m}^{-2} \text{ s}^{-1}$). This
 306 is based on laboratory studies which typically divide experiments into low, medium, and high classes
 307 of light adaptation [48]. Carbon:chlorophyll ratios (Φ) correspond to the photoadaptation state, to
 308 represent the tendency of phytoplankton to preferentially synthesize chlorophyll in low light
 309 conditions, to enable more efficient photon capture. The three Φ states corresponding to the three light
 310 states are 25, 50, and 80 g g^{-1} . For irradiance levels falling between the three light states, the C:chl
 311 ratios are linearly interpolated.

312 Irradiance data to drive phytoplankton growth is taken from the Ocean-Atmosphere Spectral
 313 Irradiance Model [OASIM; 52] for the years of interest. This model computes spectral irradiance in 33
 314 bands for the domain 200 nm to $4 \mu\text{m}$, at the ocean surface as a function of atmospheric optical
 315 properties [52], and then propagates the spectral irradiance downward and upward through the water
 316 column as a function of ocean optical properties [53,54]. Surface spectral irradiance and
 317 photosynthetically available irradiance data are publicly available at
 318 gmao.gsfc.nasa.gov/research/oceanbiology/data.php.

319 Total primary production from NOBM has been evaluated along with multiple satellite-derived and
 320 numerical models in three intercomparison efforts [21,55,56]. However, for sanity purposes, we
 321 explicitly compare NOBM total primary production with a commonly used satellite-derived method,

322 that has the advantage of public availability (data downloaded from www.science.oregonstate.edu) and
323 heritage, the Vertically-Integrated Production Model [VGPM; 57]. The purpose of this comparison is
324 not to validate per se, because there are many other models and we are not attributing an assessment of
325 the quality of this particular one. However, we are interested in establishing a quantitative comparison
326 of total primary production of NOBM with a common method that has been involved in many
327 intercomparison efforts to place the NOBM total primary production estimates in perspective. Climate
328 indices were downloaded from the NOAA Climate Prediction Center (<http://www.cpc.ncep.noaa.gov>).

329 **Acknowledgments**

330 We thank the NASA Ocean Color project for providing the satellite chlorophyll data and the NASA
331 Center for Climate Simulation for computational support. We also thank the Ocean Productivity
332 website for providing the VGPM data (www.science.oregonstate.edu). This paper was funded by the
333 NASA EOS and MAP Programs.

334 **Conflict of Interest**

335 The authors declare no conflict of interest.

336 **References and Notes**

- 337 1. Behrenfeld, M.J.; Randerson, J.T.; McClain, C.R.; Feldman, G.C.; Los, S.O.; Tucker, C.J.;
338 Falkowski, P.G.; Field, C.B.; Frouin, R.; Esaias, W.E., Biospheric primary production during an
339 enso transition. *Science* **2001**, *291*, 2594-2597.
- 340 2. Ciotti, A.M.; Lewis, M.R.; Cullen, J.J., Assessment of the relationships between dominant cell
341 size in natural phytoplankton communities and the spectral shape of the absorption coefficient.
342 *Limnology and Oceanography* **2002**, *47*, 404-417.
- 343 3. Mouw, C.B.; Yoder, J.A., Optical determination of phytoplankton size composition from global
344 seawifs imagery. *Journal of Geophysical Research* **2006**, *111*, C12018.
- 345 4. Alvain, S.; Moulin, C.; Dandonneau, Y.; Bréon, F.M., Remote sensing of phytoplankton groups in
346 case 1 waters from global seawifs imagery. *Deep-Sea Research Part I* **2005**, *52*, 1989-2004.
- 347 5. Uitz, J.; Claustre, H.; Morel, A.; Hooker, S.B., Vertical distribution of phytoplankton
348 communities in open ocean: An assessment based on surface chlorophyll. *J. Geophys. Res.* **2006**,
349 *111*, C08005.
- 350 6. Aiken, J.; Fishwick, J.R.; Lavender, S.; Barlow, R.; Moore, G.F.; Sessions, H.; Bernard, S.; Ras,
351 J.; Hardman-Mountford, N.J., Validation of meris reflectance and chlorophyll during the bencal
352 cruise october 2002: Preliminary validation of new demonstration products for phytoplankton
353 functional types and photosynthetic parameters. *International Journal of Remote Sensing* **2007**,
354 *28*, 497-516.
- 355 7. Dutkiewicz, S.; Follows, M.J.; Bragg, J.G., Modeling the coupling of ocean ecology and
356 biogeochemistry. *Global Biogeochemical Cycles* **2009**, *23*, GB4017.
- 357 8. Le Quere, C.; Harrison, S.P.; Colin Prentice, I.; Buitenhuis, E.T.; Aumont, O.; Bopp, L.; Claustre,
358 H.; Cotrim Da Cunha, L.; Geider, R.; Giraud, X., Ecosystem dynamics based on plankton

359 functional types for global ocean biogeochemistry models. *Global Change Biology* **2005**, *11*,
360 2016-2040.

361 9. Moore, J.K.; Doney, S.C.; Lindsay, K., Upper ocean ecosystem dynamics and iron cycling in a
362 global three-dimensional model. *Global Biogeochemical Cycles* **2004**, *18*.

363 10. Dunne, J.P.; Armstrong, R.A.; Gnanadesikan, A.; Sarmiento, J.L.; Slater, R.D., Empirical and
364 mechanistic models for the particle export ratio. *Global Biogeochemical Cycles* **2005**, *19*,
365 doi:10.1029/2004GB002390.

366 11. Doney, S.C.; Ducklow, H.W., A decade of synthesis and modeling in the us joint global ocean
367 flux study. *Deep Sea Research Part II: Topical Studies in Oceanography* **2006**, *53*, 451-458.

368 12. Hirata, T.; Hardman-Mountford, N.J.; Barlow, R.; Lamont, T.; Brewin, R.; Smyth, T.; Aiken, J.,
369 An inherent optical property approach to the estimation of size-specific photosynthetic rates in
370 eastern boundary upwelling zones from satellite ocean colour: An initial assessment. *Progress in
371 Oceanography* **2009**, *83*, 393-397.

372 13. Dandonneau, Y.; Deschamps, P.-Y.; Nicolas, J.-M.; Loisel, H.; Blanchot, J.; Montel, Y.;
373 Thieuleux, F.; Bécu, G., Seasonal and interannual variability of ocean color and composition of
374 phytoplankton communities in the north atlantic, equatorial pacific and south pacific. *Deep Sea
375 Research Part II: Topical Studies in Oceanography* **2004**, *51*, 303-318.

376 14. Masotti, I.; Moulin, C.; Alvain, S.; Bopp, L.; Tagliabue, A.; Antoine, D., Large-scale shifts in
377 phytoplankton groups in the equatorial pacific during enso cycles. *Biogeosciences* **2011**, *8*, 539-
378 550.

379 15. Rousseaux, C.S.; Gregg, W.W., Climate variability and phytoplankton composition in the pacific
380 ocean. *Journal of Geophysical Research*, doi:10.1029/2012JC008083 **2012**.

381 16. Martinez, E.; Antoine, D.; D'Ortenzio, F.; Gentili, B., Climate-driven basin-scale decadal
382 oscillations of oceanic phytoplankton. *Science* **2009**, *326*, 1253.

383 17. Uitz, J.; Claustre, H.; Gentili, B.; Stramski, D., Phytoplankton class-specific primary production
384 in the world's oceans: Seasonal and interannual variability from satellite observations. *Global
385 Biogeochemical Cycles* **2010**, *24*, GB3016.

386 18. Kameda, T.; Ishizaka, J., Size-fractionated primary production estimated by a two-phytoplankton
387 community model applicable to ocean color remote sensing. *Journal of Oceanography* **2005**, *61*,
388 663-672.

389 19. Brewin, R.J.; Lavender, S.J.; Hardman-Mountford, N.J., Mapping size-specific phytoplankton
390 primary production on a global scale. *Journal of Maps* **2010**, *6*, 448-462.

391 20. Morel, A., Light and marine photosynthesis: A spectral model with geochemical and
392 climatological implications. *Progress in Oceanography* **1991**, *26*, 263-306.

393 21. Carr, M.E.; Friedrichs, M.A.M.; Schmeltz, M.; Noguchi Aita, M.; Antoine, D.; Arrigo, K.R.;
394 Asanuma, I.; Aumont, O.; Barber, R.; Behrenfeld, M., A comparison of global estimates of
395 marine primary production from ocean color. *Deep-Sea Research Part II* **2006**, *53*, 741-770.

396 22. Gregg, W.W.; Casey, N.W., Sampling biases in modis and seawifs ocean chlorophyll data.
397 *Remote Sensing of Environment* **2007**, *111*, 25-35.

398 23. Chavez, F.P.; Messié, M.; Pennington, J.T., Marine primary production in relation to climate
399 variability and change. *Annual Review of Marine Science* **2011**, *3*, 227-260.

400 24. Chavez, F.P.; Strutton, P.G.; Friederich, G.E.; Feely, R.A.; Feldman, G.C.; Foley, D.G.;
401 McPhaden, M.J., Biological and chemical response of the equatorial pacific ocean to the 1997-98
402 el niño. *Science* **1999**, *286*, 2126-2131.

403 25. Wang, X.; Christian, J.R.; Murtugudde, R.; Busalacchi, A.J., Ecosystem dynamics and export
404 production in the central and eastern equatorial pacific: A modeling study of impact of enso.
405 *Geophysical Research Letters* **2005**, *32*, L02608.

406 26. Strutton, P.G.; Chavez, F.P., Primary productivity in the equatorial pacific during the 1997–1998
407 el nino. *Journal of Geophysical Research* **2000**, *105*, 20089-26101.

408 27. Feely, R.A.; Boutin, J.; Cosca, C.E.; Dandonneau, Y.; Etcheto, J.; Inoue, H.Y.; Ishii, M.; Quéré,
409 C.L.; Mackey, D.J.; McPhaden, M., Seasonal and interannual variability of co₂ in
410 the equatorial pacific. *Deep Sea Research Part II: Topical Studies in Oceanography* **2002**, *49*,
411 2443-2469.

412 28. Behrenfeld, M.J.; O'Malley, R.T.; Siegel, D.A.; McClain, C.R.; Sarmiento, J.L.; Feldman, G.C.;
413 Milligan, A.J.; Falkowski, P.G.; Letelier, R.M.; Boss, E.S., Climate-driven trends in
414 contemporary ocean productivity. *Nature* **2006**, *444*, 752-755.

415 29. Lovenduski, N.S.; Gruber, N., Impact of the southern annular mode on southern ocean circulation
416 and biology. *Geophysical Research Letters* **2005**, *32*, L11603.

417 30. Arrigo, K.R.; van Dijken, G.L.; Bushinsky, S., Primary production in the southern ocean, 1997–
418 2006. *Journal of Geophysical Research: Oceans (1978–2012)* **2008**, *113*.

419 31. Hurrell, J.W., Decadal trends in the north atlantic oscillation. *Science* **1995**, *269*, 676-679.

420 32. Weyhenmeyer, G.A.; Blenckner, T.; Petterson, K., Changes of the plankton spring outburst
421 related to the north atlantic oscillation. *Limnology and Oceanography* **1999**, *44*, 1788-1792.

422 33. Irigoien, X.; Harris, R.P.; Head, R.N.; Harbour, D., North atlantic oscillation and spring bloom
423 phytoplankton composition in the english channel. *Journal of Plankton Research* **2000**, *22*, 2367-
424 2371.

425 34. Reid, P.C.; Edwards, M.; Hunt, H.G.; Warner, A.J., Phytoplankton change in the north atlantic.
426 *Nature* **1998**, *391*, 546-546.

427 35. Sameoto, D., Decadal changes in phytoplankton color index and selected calanoid copepods in
428 continuous plankton recorder data from the scotian shelf. *Canadian Journal of Fisheries and
429 Aquatic Sciences* **2001**, *58*, 749-761.

430 36. Henson, S.; Lampitt, R.; Johns, D., Variability in phytoplankton community structure in response
431 to the north atlantic oscillation and implications for organic carbon flux. *Limnology and
432 Oceanography* **2012**, *57*, 1591.

433 37. Leterme, S.C.; Edwards, M.; Seuront, L.; Attrill, M.; Reid, P.; John, A., Decadal basin-scale
434 changes in diatoms, dinoflagellates, and phytoplankton color across the north atlantic. *Limnology
435 and Oceanography* **2005**, *50*, 1244-1253.

436 38. Barton, A.; Greene, C.; Monger, B.; Pershing, A., The continuous plankton recorder survey and
437 the north atlantic oscillation: Interannual-to multidecadal-scale patterns of phytoplankton
438 variability in the north atlantic ocean. *Progress in Oceanography* **2003**, *58*, 337-358.

439 39. Mantua, N.J.; Hare, S.R., The pacific decadal oscillation. *Journal of Oceanography* **2002**, *58*, 35-
440 44.

441 40. Wolter, K.; Timlin, M.S., Measuring the strength of enso events: How does 1997/98 rank?
442 *Weather* **1998**, *53*, 315-324.

443 41. Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C., A pacific interdecadal climate
444 oscillation with impacts on salmon production. *Bulletin of the American Meteorological Society*
445 **1997**, *78*, 1069-1079.

446 42. Thomas, A.C.; Brickley, P.; Weatherbee, R., Interannual variability in chlorophyll concentrations
447 in the humboldt and california current systems. *Progress in Oceanography* **2009**, *83*, 386-392.

448 43. Karl, D.M.; Bidigare, R.R.; Letelier, R.B., Sustained and aperiodic variability in organic matter
449 production and phototrophic microbial community structure in the north pacific subtropical gyre.
450 In *Phytoplankton productivity: Carbon assimilation in marine and freshwater ecosystems*, Le B.
451 Williams, P.J.; Thomas, D.N.; Reynolds, C.S., Eds. Blackwell Science: 2002; pp 222–264.

452 44. Karl, D.M.; Bidigare, R.R.; Letelier, R.M., Long-term changes in plankton community structure
453 and productivity in the north pacific subtropical gyre: The domain shift hypothesis. *Deep Sea
454 Research Part II: Topical Studies in Oceanography* **2001**, *48*, 1449-1470.

455 45. Corno, G.; Karl, D.M.; Church, M.J.; Letelier, R.M.; Lukas, R.; Bidigare, R.R.; Abbott, M.R.,
456 Impact of climate forcing on ecosystem processes in the north pacific subtropical gyre. *Journal of
457 Geophysical Research: Oceans (1978–2012)* **2007**, *112*.

458 46. Chiba, S.; Batten, S.; Sasaoka, K.; Sasai, Y.; Sugisaki, H., Influence of the pacific decadal
459 oscillation on phytoplankton phenology and community structure in the western north pacific.
460 *Geophysical Research Letters* **2012**, *39*.

461 47. Karl, D.M., Minireviews: A sea of change: Biogeochemical variability in the north pacific
462 subtropical gyre. *Ecosystems* **1999**, *2*, 181-214.

463 48. Gregg, W.W.; Casey, N.W., Modeling coccolithophores in the global oceans. *Deep-Sea Research
464 Part II* **2007**, *54*, 447-477.

465 49. Gregg, W.W., Assimilation of seawifs ocean chlorophyll data into a three-dimensional global
466 ocean model. *Journal of Marine Systems* **2008**, *69*, 205-225.

467 50. Gregg, W.W.; Casey, N.W.; O'Reilly, J.E.; Esaias, W.E., An empirical approach to ocean color
468 data: Reducing bias and the need for post-launch radiometric re-calibration. *Remote Sensing of
469 Environment* **2009**, *113*, 1598-1612.

470 51. Gregg, W.W.; Casey, N.W., Improving the consistency of ocean color data: A step toward climate
471 data records. *Geophysical Research Letters* **2010**, *37*, L04605.

472 52. Gregg, W.W.; Casey, N.W., Skill assessment of a spectral ocean-atmosphere radiative model.
473 *Journal of Marine Systems* **2009**, *76*, 49-63.

474 53. Aas, E., Two-stream irradiance model for deep waters. *Applied Optics* **1987**, *26*, 2095-2101.

475 54. Ackleson, S.G.; Balch, W.M.; Holligan, P.M., Response of water-leaving radiance to particulate
476 calcite and chlorophyll a concentrations: A model for gulf of maine coccolithophore blooms.
477 *Journal of Geophysical Research* **1994**, *99*, 7483-7499.

478 55. Friedrichs, M.A.M.; Carr, M.E.; Barber, R.T.; Scardi, M.; Antoine, D.; Armstrong, R.A.;
479 Asanuma, I.; Behrenfeld, M.J.; Buitenhuis, E.T.; Chai, F., Assessing the uncertainties of model
480 estimates of primary productivity in the tropical pacific ocean. *Journal of Marine Systems* **2009**,
481 *76*, 113-133.

482 56. Saba, V.S.; Friedrichs, M.A.M.; Carr, M.E.; Antoine, D.; Armstrong, R.A.; Asanuma, I.; Aumont,
483 O.; Bates, N.R.; Behrenfeld, M.J.; Bennington, V., *et al.*, Challenges of modeling depth-integrated
484 marine primary productivity over multiple decades: A case study at bats and hot. *Global
485 Biogeochemical Cycles* **2010**, 24.

486 57. Behrenfeld, M.J.; Falkowski, P.G., Photosynthetic rates derived from satellite-based chlorophyll
487 concentration. *Limnology and Oceanography* **1997**, 1-20.

488 © 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
489 distributed under the terms and conditions of the Creative Commons Attribution license
490 (<http://creativecommons.org/licenses/by/3.0/>).

491

492