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An overview of an initial development of a model of bone loss due to skeletal unloading in 
weight bearing sites is presented. The skeletal site chosen for the initial application of the 
model is the femoral neck region because hip fractures can be debilitating to the overall 
performance health of astronauts. 

The paper begins with the motivation for developing such a model of the time course of 
change in bone in order to understand the mechanism of bone demineralization experienced 
by astronauts in microgravity, to quantify the health risk, and to establish countermeasures. 
Following this, a general description of a mathematical formulation of the process of bone 
remodeling is discussed. Equations governing the rate of change of mineralized bone volume 
fraction and active osteoclast and osteoblast are illustrated.  Some of the physiology of bone 
remodeling, the theory of how imbalance in remodeling can cause bone loss, and how the 
model attempts to capture this is discussed. The results of a preliminary validation analysis 
that was carried out are presented. The analysis compares a set of simulation results against 
bone loss data from control subjects who participated in two different bed rest studies. 
Finally, the paper concludes with outlining the current limations and caveats of the model, 
and planned future work to enhance the state of the model. 

Nomenclature 
aBMD = Aerial Bone Mineral Density (g/cm2) 
BMD = Bone Mineral Density 
BVF = Bone Volume Fraction 
DAP = Digital Astronaut Project 
DXA = Dual-energy X-ray Absorptiometry 
FE = Finite Element 
vBMD = Volumetric Bone Mineral Density (g/cm3) 
QCT = Quantitative Computed Tomography 

I. Introduction 
DER the conditions of microgravity, astronauts lose bone mass at a rate of 1% to 2% a month, particularly in 
the lower extremities such as the proximal femur [1–3]. The most commonly used countermeasure against 

bone loss in microgravity has been prescribed exercise [4]. However, data have shown that existing exercise 
countermeasures do not completely eliminate bone loss in long duration, 4 to 6 months, spaceflight [1, 3, 5, 6]. This 
spaceflight related bone loss may lead to early onset osteoporosis and place the astronauts at greater risk of fracture 
later in their lives. Consequently, NASA seeks to  improve understanding of the mechanisms of bone remodeling 
and demineralization in microgravity in order to appropriately quantify the long term risk, and to establish 
appropriate countermeasures [7]. 

In this light, NASA’s Digital Astronaut Project (DAP) is working with bone specialists in the Human Research 
Program to develop a validated computational models to help predict and assess bone loss during spaceflight, and 
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enhance exercise countermeasure development.  More specifically, proposed computational modeling  augments 
bone research and exercise countermeasure development by elucidating changes in weight-bearing skeletal sites that 
are most susceptible to bone loss in microgravity, and thus at higher risk for fracture. Given that hip and proximal 
femur are dynamic load bearing sights suceptable to micorgravity induced demineralization and potentially 
debilitating fractures the initial model development focused on the femoral neck. Future efforts will focus on 
including other key load bearing bone sites such as the greater trochanter, lower lumbar vertebrae, proximal femur 
and calcaneus. 

The DAP has currently established a beta model of bone loss due to skeletal unloading in the femoral neck 
region.  The model, as applied to the femoral neck region, calculates changes in mineralized volume fraction of bone  
that can be related to changes in volumetric bone mineral density (vBMD) measured by Quantitative Computed 
Tomography (QCT).  The model is governed by equations describing changes in bone volume fraction (BVF), and 
rates of changes in bone cell populations that remove and replace bone in packets within the bone region. For a 
given volumetric element, BVF is defined as the unmineralized plus mineralized bone volume divided by the total 
volume. 

The DAP bone model is considered unique in how it tracks volume fraction changes. In particular it has a higher 
physiological fidelity than  models of volume fraction changes reported in the literature. This higher physiological 
fidelity is achieved by separatation of the BVF into separate relations for mineralized and osteoid volume fractions 
governed by a mineralization rate. This more closely follows the physiology of the remodeling unit cycles where 
bone is first resorbed and then followed by the action of osteoblasts to lay down collagen matrix which eventually 
becomes mineralized.. More detailed description of the model, preliminary validation results, current limitation and 
caveats, and planned advancements are provided in sections II through V. 

The DAP bone model is being developed primarily as a research tool, and not as a clinical tool. The DAP bone 
model is not being developed, nor will it be validated, to  predict bone fracture.  Its purpose is to provide valuable 
additional data via “forward prediction” simulations for during and after spaceflight missions to gain insight on,  (1) 
mechanisms of bone demineralization in microgravity, and (2) the volumetric changes at the various bone sites in 
response to in-flight and post-flight exercise countermeasures. These data can then be integrated with Finite Element 
Modeling similar to the methods proposed in [8, 9] to gain insight on how bone strength may change during and 
after flight. Such information could also contribute to  optimizing exercise countermeasure devices and protocols 
designed to minimize changes in bone strength during flight. Figure 1 illustrates this application process. 

II. Overview of the DAP Bone Remodeling Model 
 Bone remodeling, the physiological mechanism for maintenance, renewal, and repair in the adult skeleton, is the 
process done through the replacement of bone in units by the coupled action of bone cells on the same cell surface. 
The bone resorbing cells, osteoclasts, remove old or damaged bone.  The bone forming cells, osteoblasts, form an 
initial collagen matrix and then mineralize the collagen. Within bone, osteocytes, cells derived from the bone 
forming cells, form what is understood to be a signaling network. The replacement unit or bone remodeling unit 
differs between trabecular bone (the spongy interior tissue in bone marrow) and cortical bone (the compact bone that 
forms the outside shell that encloses bone marrow).  In trabecular bone, the structural unit is a packet shaped like a 
shallow crescent, hemi-osteon, on the surface of a rod or plate like element.   In cortical bone, the structural 
remodeling unit is a single Haversian system, osteon, shaped like a cylinder, singly referred to as a tunnel or cutting 
cone while forming. Osteons run almost parallel to the longitudinal axis of bone enclosing  blood vessels or nerves  
within the Haversian canal [10]. 
 A remodeling unit’s cycle consists of 5 phases: activation, resorption, reversal, formation, and quiescence.  
Activation involves conversion of a small area of bone surface from quiescence to activity requiring the recruitment 
of osteoclasts, a means for them to gain access to bone and a mechanism for attachment to the surface. Briefly, the 
cycle proceeds as follows.  Surface bound molecules, referred to as RANKL (Receptor Activator for Nuclear Factor 
κB ligand) are expressed on the surface of osteoblasts while membrane protein RANK receptor is expressed on the 
surface of preosteoclasts.  The binding of RANK with RANKL causes the derivation of active osteoclasts from 
preosteoclasts which begin to erode bone, resorption, in the shape of a shallow crescent or cutting cone.  Following a 
reversal period, formation by active osteoblasts, derived from a different precursor cell, begins at the same location 
where bone was eroded.  Osteoprotegerin (OPG) is released by osteoblasts and acts as a decoy receptor for RANKL 
blocking RANK-RANKL binding and inhibiting derivation into active osteoclasts[11]. During the time span of 
formation, some active osteoblasts become osteocytes embedded in the bone while others die or become surface 
lining cells. 
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Figure 1. Illustration of how the DAP bone remodeling model will be used to perform “forward prediction”
simulations to gain insight on the volumetric changes in bone and how bone strength is affected based on FE 
method.  The model will accept loading history due to muscle and joint force on bone and produce quantified 
remodeling within the bone region under influence of the applied stress. Furthermore, because they tend to 
respond differently, the bone remodeling model includes both trabecular bone and cortical bone. 

 
The DAP bone remodeling computational model consists of a system of 1st order, nonlinear differential 

equations shown in Table 1 that govern the time rate of change in bone via the bone remodeling process.  The model 
consists of three major topics, (1) the mechanics of the removal and replacement of bone packets via remodeling 
units, (2) the biology and physiology of cellular dynamics of remodeling units, and (3) mechanotransduction which 
describes the function of skeletal loading and its role in maintaining bone health. The basic biological assumption 
used in the cellular physiology can be stated as such: Cell proliferation (anti-proliferation) is directly proportional 
(inversely proportional) to receptor occupancy ratio [12]. 

The model is designed to track BVF (Eq. 1 - base equation) of a representative volume element of a specific 
skeletal site or bone segment, which is divided into the mineralized volume fraction plus the osteoid volume fraction  
as shown in the expression of Eq. 2 and Eq. 3. Assuming the areal volume fraction is equivqalent  to the volume 
fraction [13], the time rate of change of the volume fractions are functions of the areas removed and replaced in a 
cross section of a representative volume element by the cells in the remodeling units, activation frequency, and 
normalized active cell populations. 

The normal maintenance of bone is achieved by balanced processes of bone formation and bone resorption 
described at the beginning of this section, which can be influenced by endocrine regulation, local biochemical 
mediators, and skeletal loading.  When the processes are balanced, the rate of change of BVF of the whole skeletal 
site or bone segment is approximately zero.  When the processes become unbalanced in favor of resorption, 
integration of the equations in time yields a decrease in mineralized volume fraction and BVF.The differences 
between trabecular  and cortical  bone compartments are captured in part by the differences in the shape of the 
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remodeling unit, hemi-osteon vs. cutting cone, and the process by which bone mass is removed and replaced. 
Differences in other parameters, like activation density also distinguish trabecular bone from cortical bone. These 
differences are reflected in the specific values used for the variables listed in the second column of Table 2  when 
applying the model to specific bone sites.  

The normalized active cell populations are governed by Eq. 4 through Eq. 6 to model the physiology of 
resorption and formation via the dynamics of the active bone resorbing cells, osteoclasts, the active bone forming 
cells, osteoblasts, and the responding osteoblasts. Considered a composite of several phenotypes (i.e., early 
osteoblasts or preosteoblasts), the term responding osteoblasts is not considered a true cell type [14]. Rather, the 
uncommitted progenitors commit to differentiating into this category. Osteoblasts progenitors are modeled 
implicitly as a reservoir source as well as the osteoclasts progenitor through the differentiation rate parameters listed 
in Table 3, which also defines the quantities involved in the endocrine regulation, biochemical mediation, and 
skeletal loading. 

Bone remodeling literature encompasses a vast amount of research on the endocrine, biochemical, autocrine, and 
paracrine interactions involving receptors and ligands. With regard to bone-cell communication and the role played 
by receptor-ligand pathways, a large number of hypotheses have been postulated. Although there is much that is not 
understood about the process, the DAP bone remodeling model mathematically formulates the key elements based 
on well accepted knowledge and experimental studies of bone [15]. In particular, the RANK-RANKL-OPG 
signaling pathway discovered in the mid-90s is the essential part of the cellular dynamics. As explained at the 
beginning of section II it’s the balanced signaling pathway that’s followed through the sequence of each complete 
remodeling unit cycle. Causes of bone loss or effects of therapeutic drugs can often be traced to disturbances in this 
pathway, and it is the fundamental principle under which this model is implemented computationally [12, 16, 17]. 
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Table 2. State Variables and Definitions 

)(tBVF  = Bone Volume Fraction )(tAR = Cross Sectional Bone Area Resorbed per BRU (mm2) 

)(tM  = Mineralized Volume Fraction )(tAF = Cross Sectional Bone Area Formed per BRU (mm2) 

)(tO  = Osteoid Volume Fraction af = Activation Density in Normal State (#BRUs activated per   
   day per mm2) 

)(tB  = Concentration of Active Osteoblasts (pM) rr
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Table 3. Parameters and Receptor Occupancy Functions in the Cell Equations 

PBD
 

= Differentiation Rate of Osteoblast Precursors TGFE
 

= TGF-beta Receptor Occupancy Ratio 

   Dependencies – C,rr  

RBD
 

= Differentiation Rate of Responding Osteoblasts PGEE = Prostaglandin PGE-2 Receptor Occupancy 
   Dependencies – M, O 

PCD
 

= Differentiation Rate of Osteoclast Precursors PTHE
 

= Parathyroid Hormone Receptor Occupancy 
   Dependencies – Rate of synthesis SP  

Bk
 

= Rate of Elimination of  B(t) NOE † = Nitric Oxide effect on RANKL 
   Dependencies – M, O 

Ck  = Rate of Elimination of C(t) (Apoptosis) RLE
 

= RANKL Receptor Occupancy Ratio 
   Dependencies – Br, B, ENO 

0B
 

= Reference Osteoblast Population (pM) 0C = Reference Osteoclast Population (pM) 

†It is important to note that the effect of NO on RANKL, ENO, does not appear explicitly in the equations and nor does an 
Osteoprotegerin (OPG) function but both are dependencies of ERL.   To avoid complicating a description of the system, the 
functional expressions of the receptor occupancy ratios are omitted but their dependencies are listed in the tables. 

 
Another key element is the mathematical formulation of the effects of nitric oxide and prostaglandin E2 which 

takes into account the contribution of skeletal loading to the normal maintenance of bone through balanced 
processes of bone formation and bone resorption. Osteocytes (and possibly bone lining cells), which are assumed to 
be the mechanosensors, have been shown experimentally to release the cellular signaling molecule NO and the 
paracrine PGE2 in response to mechanical loading [18–21] Although they can have an inhibiting effect as well as a 
stimulating effect, both have been found to contribute to bone formation either by direct mediation in the RANK-
RANKL-OPG pathway or by indirect promotion of cell differentiation [22, 23]. In the computation model, reduced 
skeletal loading triggers a decrease in NO and PGE2, which in turn triggers an imbalance in the pathway in favor of 
resorption. This leads to a decrease in mineralized volume fraction  M and osteoid volume fraction O, and hence a 
decrease in BVF.  

Although the skeletal loading contribution to the maintenance of bone health has been modeled in, it is important 
to realize that mechanotransduction theory encompasses phases from mechanocoupling to the final effector response 
[24]. Mechanical signals can directly affect bone cells or be turned into chemical signals. However, the mechanisms 
by which effector cells, i.e., osteoblasts and osteoclasts, respond to the original stimulus are not fully established. 
Frost’s mechanostat theory [25, 26] that relates loading-induced strain magnitudes to bone gain or bone loss, defines 
a lower threshold or minimum effective strain.  Although the DAP bone model mathematical formulation develops a 
robust concept of a mechanical stimulus “magnitude” from dynamic loading, this aspect of the model needs testing 
and further development with regard to specific exercise-induced loading. The current beta version includes only the 
bone deconditioning due to mechanical unloading. 

Parameter values referred to in the discussion are still under active research by the research community.  Due to 
the parameter value uncertainty, our approach was to use average values based on experimental studies in the 
literature or assumed values based on experimental studies on ribs or the iliac crest.  A selected example of these is 
as follows: 

 Resorption depth (depth of remodeling unit): An average value of 0.5 mm for trabecular hemi-osteon was 
used based on reported values [27–30]. For cortical bone, femoral neck values for osteonal diameter and 
Haversian canal diameter were used that were reported for controls in studies of hip fractures and 
osteoarthritis [31, 32]. Resorption depth is used in the calculation of resorption area AR, Table 2. 

 Activation frequency: For cortical bone an average of the value reported for three age groups covering ages 
30 to 59 from a histological study of ribs by Frost (1969) was used [33].  In the case of trabecular bone 
average values reported vary greatly. A sample includes 0.45/yr reported by Dempster et al. (1999) [34], 
0.53/yr reported by Chapurlat et al. (2007) [35], 0.42/yr reported by (Mayo Clinic, personal 
communication).  Since our model used a value in terms of #/day any value of about 0.36/yr to 0.53/yr 
gives a value rounded to three digits of 0.001/day. Activation frequency is used in calculating activation 
density 

af , Table 2. 

 TGF-beta 1: Transforming Growth Factor has the ability to stimulate an increase in the osteoblast 
population, but can also inhibit final maturation in active osteoblasts. Because the amount of TGF-beta 1 
involved in the remodeling process comes from the amount released during bone resorption  a value of the 
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Some key caveats that should be taken into consideration are included below. These are due to the inherent 
limitations imposed by the state of knowledge in bone science. 

1) There is a degree of uncertainty and variation in remodeling unit geometry and dimensions reported in the 
literature. It is also difficult to guarantee that the values used in the model agree for the particular skeletal 
site of interest. 

2) There is uncertainty in the way ash fraction is modeled, and the full potential range of values estimated from 
experimental studies is not completely understood. 

3) Activation frequency and activation density are inherently difficult to appropriately model due to the lack of 
human values at skeletal sites other than the iliac crest or rib. 

4) There are several potential algebraic schemes for mapping initial data values to model state variables. They 
depend on several possible definitions of ash fraction and how the steady state version of their respective 
equations are used. 

V. Future Work 
There are several areas of work that we need to complete before the model can be sufficiently mature to inform 

the bone research relating to bone strength standard development effort and exercise physiology. The areas of future 
development include:  

1) Testing, evaluating, and resolving uncertainty in the model parameter values such as ash fraction, activation 
density, activation frequency.  

2) Developing of appropriate methods for mapping experimental data to model variables must be developed. 

3) Integrating with or leveraging data generated by biomechanics exercise models to predict the benefit 
exercise countermeasures for mitigating detrimental bone changes. 

4) Extending the predictive capability of the model to simulate bone adaptation due to gravitational unloading 
and response to exercise countermeasures for up to one year. 

5) Adapting the model to other skeletal sites such as the trochanter, total proximal femur and lumbar spine. 

6) Performing rigorous verification, sensitivity and uncertainty analysis of the system of equations, as well as 
key parameters and variables that describe the bone adaptation process. 

7) Tracking integral vBMD changes by accounting for the endcortical region in additional to the trabecular and 
cortical regions. 

8) Adding age and gender related dependencies. 

9) Enhancing the capabilities of the model to simulate subject specific bone changes. 

VI. Conclusions 
We have summarized the mathematical structure and preliminary validation results of the DAP bone remodeling 

model which substantially advances various principles developed in the literature on models of volume fraction 
changes. More specifically, it represents BVF via separate equations for mineralized and osteoid volume fractions 
governed by a mineralization rates. By taking this approach, a closer representation of the physiology of bone 
remodeling process can be established.  

We have attempted in this model to take  these types of computational models forward to begin to focus on 
specific skeletal sites and to enhance their predictive capability.  Our results show that a good foundation has been 
laid for establishing a physiologically based bone remodeling model that can simulate site specific bone adaptation 
due to mechanical unloading, and ultimately to exercise induced load. We will continue to advance the model by 
systematically addressing the limitations and caveats identified in the sections IV and V.     
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