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Advanced space life support systems require lightweight, low-power, durable sensors for 
monitoring critical gas components. A luminescence-based optical flow-through cell to 
monitor carbon dioxide, oxygen, and humidity has been developed and was demonstrated 
using bench-top instrumentation under environmental conditions relevant to portable life 
support systems, including initially pure oxygen atmosphere, temperature range from 50°F 
to 150°F, and humidity from dry to 100% RH and under conditions of water condensation. 
This paper presents the most recent progress in the development of this sensor technology. 
Trace gas contaminants in a space suit, originating from hardware and material off-gassing 
and crew member metabolism, are from many chemical families. The result is a gas mix 
much more complex than the pure oxygen fed into the space suit, and this complexity may 
interfere with gas sensor readings. This paper presents an evaluation of optical sensor 
performance when exposed to the most significant trace gases reported to be found in space 
suits. A study of the calibration stability of the sensors is also presented. For that purpose, a 
profile of temperature, pressure, humidity, and gas composition for the duration of an EVA 
has been defined, and the performance of sensors operated repeatedly under those 
conditions has been studied. Finally, this paper presents the first compact readout unit for 
these optical sensors, designed for the volume, power, and weight restrictions of a PLSS. 

Nomenclature 

 = emission lifetime 
EMI = electromagnetic interference 
EMU = extravehicular mobility unit 
EVA = extravehicular activity 
FOCS = fiber optic chemical sensor 
ISS = International Space Station 
LED = light emitting diode 
 = phase 
NDIR = Non-Dispersive Infrared 
pCO2 = partial pressure of carbon dioxide 
PLSS = Portable Life Support System 
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pO2 = partial pressure of oxygen 
RH = relative humidity 
 
SBIR = Small Business Innovation Research 
SMAC = spacecraft maximum allowable concentration 
Sn-1 = standard deviation 
TC = trace contaminant 

I. Introduction 
IBER optic chemical sensors (FOCS) based on luminescence includes a sensitive material, a light source, optical 
fibers, a photodetector, optical filters, analog amplifiers, and signal processing hardware and software. Light at a 
wavelength selected by an optical filter is launched into the core of the optical fiber. The fiber waveguide carries 

the excitation light to the probe tip, from which it shines on the sensing material containing an indicator dye 
inmobilized in a polymeric matrix, whose emission is affected by the presence of the analyte. The indicator is 
excited by the light, and returns the excess energy in the form of fluorescence (or luminescence). If there is a 
selective interaction with the target analyte species (O2, CO2, H2O…), the luminescence of the sensing material 
undergoes a measurable change in intensity. Concomitantly, in the sensors we have developed for the PLSS, the 
emission lifetime (the time between absorption of excitation photons and emission of luminescent photons) is 
strongly affected. The modified light emitted by the sensing material is guided back through the optical fiber and a 
filter matching the emission wavelength to a photodetector. The resulting electrical signal is amplified and then 
digitized for processing. 

The sensors we have developed for the PLSS measure emission lifetime, in contrast to amplitude measurements, 
making these measurements stable and reliable. The emission lifetime does not depend on the excitation source 
intensity or the detector response, and it is insensitive to movements of the optical fiber. Phase-resolved 
luminescence detection determines emission lifetime indirectly,1 by means of compact and low-power electronics. 

Luminescence-based fiber optic sensors performing phase-resolved measurements to monitor oxygen, carbon 
dioxide, humidity and temperature in Portable Life Support Systems have been developed and their characteristics 
determined by means of benchtop instrumentation, as reported previously.2 Miniaturization and operation under 
liquid water condensation are some of the characteristics unique to these sensors. Further studies to evaluate the 
luminescence-based CO2 sensors under potential environmental conditions in the PLSS are presented in this paper, 
including operation at reduced pressure, operation in the presence of trace contaminants, and stability through 
repeated operation for the length of an EVA. 

Non-Dispersive Infrared (NDIR) sensing technology represents the current state-of-the-art for measuring CO2, 
and today NDIR remains the most accurate, durable, long-term, and stable CO2 monitoring technology for space 
systems. However, it is sensitive to the free water that can condense or accumulate in the gas sampling area, 
particularly on the optical windows, and it is this condensation that has historically been the cause of sensor failures. 
It is reported that 7% of EVA problems in the ISS resulting in mission aborts have been caused by CO2 sensor 
failures. For this reason, the novel fiber optic sensors for carbon dioxide monitoring are of particular interest. 

II. Evaluation of Calibration Stability  
The stability of the calibration of the novel CO2 sensors during repeated operation was studied. Operation of the 

CO2 sensor at elevated temperature has been identified as the main factor that could cause sensor signal drift and 
eventually make recalibration necessary. Therefore, tests were designed to cycle the sensor material temperature 
between ambient and elevated during CO2 response tests. The testing sequence including elevated temperature runs 
for eight hours, the length of an EVA, and is repeated n times (n >12) for each sensor material under evaluation. 
Performance at 25C was taken as a benchmark to analyze sensor stability. The 25C calibration curves (sensor 
signal vs. pCO2) were recorded before and after each eight-hour run. Because the sensor system will only operate 
during EVA, sensor operation over a period of several years can be evaluated in just a few weeks. 

Initially, sensor materails were tested at temperatures up to 50C (four to six hours out of the eight-hour test); 
once the sensor stability was established under those conditions, the peak test temperature was raised to 66C. 
Although the temperature range specified for the PLSS goes up to 66C, exposure of the sensor for four hours at that 
temperature exceeds typical environmental conditions in an EVA, leaving a significant margin of safety in the 
sensor longevity determination. The calibration parameters of the sensor were evaluated in the 0 to 0.30 psi range, 
although some of the tests exposed the sensor to as much as 1.5 psi pCO2. Table 1 records the temperature sequence 
of the tests. Test 1 exposed the sensor cyclically to increasing levels of CO2 and to balance gas. These tests were 
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conducted at constant relative humidity (75% RH) and ambient pressure, with nitrogen or synthetic air as the 
balance gas. Tests at reduced pressure and variable humidity were conduced separately. 

 
Table 1. Temperature sequence of sensor material testing. 

n Cycles. 1 hour Stabilization between T Steps 
Temperature / Time 8 hours 8 hours 

Temperature 2    Test 1 
Temperature 1  Test 1   

25C Test 1  Test 1  
 
The setup for the tests is diagrammed in Figure 1. The sensor temperature is controlled by placing the probe in a 

flow cell in an Espec ECT-3 benchtop temperature chamber. Gas streams with controlled RH values are generated 
by volumetrically mixing saturated gas with dry gas. The flow of moist gas and dry gas is precisely controlled by 
programmable digital mass flow controllers. In this test, bubblers saturate the gas stream with water. While a dew 
point generator would more accurately control the moisture of the gas stream, the use of a bubbler is convenient 
when tests are conducted at varying temperatures. Being able to house both the sensor probe and the bubblers in the 
temperature chamber makes it easy to program tests around the clock, at varying temperatures and humidity levels. 

 

 
Figure 1. Typical configuration of the experimental setup for testing the sensors in a temperature chamber, 
with bubblers to saturate the air. 

 
Because one objective of this study was to evaluate the potential of several sensor materials, we evaluated 

sensors prepared with a number of polymeric matrixes. Figure 2 shows the response profile (phase shift) of a typical 
sensitive film exposed to CO2 cycling at varying temperatures during a typical test. As expected, the sensitivity of 
the sensor material declines as the temperature increases. In an actual CO2 sensor device, a temperature correction 
will be applied to the raw sensor signal to compensate for this effect. 
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Figure 2. Top: Response profile of a CO2 sensor material when exposed cyclically, at varying temperatures, 
to varying partial pressures of CO2 in nitrogen. Bottom: Detail of the first 12 hours of testing. 

 
The 25C calibration curves (sensor signal vs. pCO2) for each cycle, and the phase shift values for three CO2 

concentrations (0, 0.15 and 0.30 psi) recorded at 25C during the tests were extracted and plotted for each sensor 
formulation evaluated. Figures 3 and 4 show the results observed for four sensor formulations. 
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Figure 3. Stability curves: Phase shifts recorded at 25C for four sensor materials at 0.0, 0.15, and 0.30 psi 
pCO2 during a stability test conducted at up to 50C.  
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Figure 4. Calibration curve (phase vs. pCO2) at 25C for four sensor materials during a stability test 
conducted at up to 50C. 

 
Sensors C and D show behavior typical of sensor materials exhibiting good stability. Sensors A and B illustrate 

sensors with limited stability whose calibration curves change slightly during the test. The potential of the sensors to 
measure accurately through a number of EVAs was demonstrated in a test conducted at 50°C and at 66°C, so the 
temperature profile for the tests is more aggressive than a typical EVA temperature profile. Studies to determine the 
stability of the calibration parameters during storage have been designed and will be the focus of future work. 

III. Tests at Reduced Pressure 
Most of our tests designed to determine the sensor characteristics are conducted at ambient pressure, which 

simplifies the testing setup and facilitates operation under pure oxygen. It was assumed that the sensor 
characteristics at ambient and reduced pressures are the same or very similar. To confirm that assumption, the test 
setup was modified to operate the system at reduced pressure, simulating the environmental conditions found on the 
PLSS, as illustrated in Figure 5. 
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Figure 5. Typical configuration of the experimental setup for testing the sensors at reduced pressure. 

 
An absolute pressure of 4.7 psi was selected for these tests. The first series of tests exposed the sensors to three 

values of pCO2 at a total pressure of 4.7 psi, and to ambient pressure of 14.7 psi (Figure 6). As expected, sensor 
response is proportional to pCO2 instead of to the molar fraction; therefore, the total pressure of the system does not 
affect the sensor signal for a particular pCO2 (Figure 7). Thus, sensor signal correction for pressure is not 
necessary, although it is requested in the majority of gas sensor systems. This test was conducted at two 
humidity levels, maintaining the partial pressure of water constant through both tests. 

 

 
Figure 6. Response profile of a sensor material exposed to varying partial pressures of CO2 in nitrogen at 
14.7 psi and at 4.7 psi total pressure at 25C, using dry gases. 
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Figure 7. Response profile of a sensor material exposed to varying partial pressures of CO2 in nitrogen at 
14.7 psi and at 4.7 psi total pressure at 25C and at pH2O = 12.0 mmHg (50% RH @ 760 mmHg). 

 
The second series of tests conducted at reduce pressure reproduced the sequence used for the calibration stability 

evaluation described above, usually at ambient pressure, 4.7 psi (Figure 8). No differences in sensor stability were 
observed between testing at reduced pressure, and at ambient pressure. The variability observed in the phase 
values in the tests does not exhibit a trend of steady increase or steady decrease, which are the fingerprints of sensor 
degradation, but rather can be related to variations in the experimental setup. 

 

 
Figure 8. Phase shift recorded at 25C at 0.0, 0.15 and 0.30 psi pCO2, in a stability test conducted at up to 
66C and at 4.7 psi total pressure. Each cycle corresponds to eight hours of sensor operation. 

IV. Sensor Evaluation in the Presence of Trace Contaminants 
During EVA, trace contaminants (TC) produced by material, hardware, and crewmember off-gassing accumulate 

in the ventilation loop of the PLSS. The expected trace contaminants, generation rates, and spacecraft maximum 
allowed concentration, and the calculation of the concentration that could potentially be accumulated in the space 
suit, have been reported previously (Table 2).3  
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Table 2. Summary of expected constellation space suit PLSS ventilation loop trace contaminants, with 
generation rates,4 spacecraft maximum allowable concentrations5 and adverse effects.5 

  Generation Rate 24-hr SMAC Limit w/o Suit Leak  
 Formula (mg/8-hr EVA) (ppm)* (mg/m3) 8-hr Concentration 

(mg/m3) 
Acetaldehyde** CH2CHO 0.027 6 10 0.181 
Acetone CH3COCH3 0.045 200 500 0.301 
Ammonia NH3 83 20 14 564 
n-Butanol C4H9OH 0.017 25 80 1.13 
Carbon monoxide*** CO 11 100 114 74.4 

Ethyl alcohol C2H5OH 1.3 5000 10000 9.03 

Formaldehyde** H2CO 0.13 0.5 0.6 0.902 
Furan C4H4O 0.1 0.36 1 0.676 
Hydrogen H2 17 4100 340 113 
Methyl alcohol CH4 0.047 5300 3500 3.16 
Methane  CH3OH 200 70 90 1352 
Toulene C7H8 0.2 16 60 1.36 

* Evaluated at 25C and 1 atm 
** Carcinogen 
*** Carboxyhemoglobin target 
 Shaded values exceed SMAC concentrations 

 
The sensitive materials for CO2 detection were initially exposed to a set of selected trace contaminants from 

Table 2 at up to the spacecraft maximum allowable concentrations (SMAC). The actual levels to be found in the 
space suit must be lower than the SMAC, so if the sensor is not affected by a particular gas at the SMAC level, we 
can assume that it will not be affected by that gas during an EVA. The tests were conducted with each of the 
inorganic gases on the list (ammonia, carbon monoxide, and hydrogen), and with methane and ethyl alcohol as 
examples of volatile organic compounds. These were selected because they represent the most adverse scenarios, 
since their SMAC levels are significantly higher than those for any other VOC. The behavior of the sensor in the 
presence of ethyl alcohol can be extrapolated for the presence of the other alcohols on the list, and lower reactivity 
should be expected for the aldehyde and ketone derivatives. 

The sensors were tested at atmospheric pressure, 75% RH, 25C, and with nitrogen as the balance gas, following 
the gas sequence plotted in Figure 9. In that way, the effect of each trace gas was evaluated over the CO2 sensor base 
line (no CO2%) and over the response of the sensor to CO2 (at 1% CO2: 0.15 psi). 
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Figure 9. Gas sequence for evaluation of potential interference. SMAC: spacecraft maximum allowable 
concentration.  

 
Figure 10 shows the response profile of a CO2 sensor during the test conducted in the presence of hydrogen. 

Similar plots were recorded during the tests conducted in the presence of the selected trace contaminants. 
 

 
Figure 10. Response profile of a sensor material exposed to varying partial pressures of CO2 in nitrogen (0 
and 0.15 psi) in the presence of 4,200 ppm of hydrogen.  

 
No significant effect on the sensor baseline or on the sensor response to CO2 was observed in the tests conducted 

with ammonia, hydrogen, carbon dioxide, or methane at the spacecraft maximum allowable concentrations (see 
Table 3), so no further tests were conducted with these gases. However, the response of the sensor was affected by 
the presence of ethyl alcohol at 5,000 ppm, which is the SMAC for this VOC (Figure 11). Tests were then conducted 
at 1,000, 2,500, and 4,000 ppm and similar results were observed. 
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Table 3. Trace contaminant concentrations used for sensor evaluation and sensor readings (mean of ten 
data points) in the presence and absence of the trace contaminant. 

TEST Trace Contaminant  
CO2 Actual Partial 

Pressure (psi) 
CO2 Sensor Reading 

(psi) 
Sn-1 (n=10) 

Test 1 

None 0.000 -0.001 < 0.001 
Hydrogen 4200 ppm 0.000 -0.001 0.001 

None 0.150 0.153 0.001 
Hydrogen 4200 ppm 0.150 0.150 0.001 

Test 2 

None 0.000 -0.002 < 0.001 
Methane 5600 ppm 0.000 -0.002 < 0.001  

None 0.150 0.149 0.001 
Methane 5600 ppm 0.150 0.151 0.001 

Test 3 

None 0.000 -0.003 < 0.001 
Carbon monoxide 100 ppm 0.000 -0.003 < 0.001  

None 0.150 0.149 0.001 
Carbon monoxide 100 ppm 0.150 0.147 0.001 

Test 4 

None 0.000 -0.005 < 0.001 
Ammonia 14 ppm 0.000 -0.005 < 0.001  

None 0.150 0.153 0.001 
Ammonia 14 ppm 0.150 0.152 0.001 

Test 5 

None 0.000 0.000 < 0.001 
Ethyl alcohol 45 ppm 0.000 0.001 0.001 

None 0.150 0.152 0.001 
Ethyl alcohol 45 ppm 0.150 0.154 0.001 

 

 
Figure 11. Response profile of a sensor material exposed to varying partial pressures of CO2 in nitrogen (0 
and 0.15 psi) in the presence of ethyl alcohol at 5,000 ppm. 

 
The tests were therefore repeated at alcohol levels closer to concentrations that could be realistically found in the 

space suit. According to Table 2, the maximum concentration of ethyl alcohol that could be reached during a typical 
8 hour EVA mission is only 4.5 ppm (in absence of a trace gas control system). The tests were repeated at 10 times 
that level (45 ppm) to assure proper sensor operation even in the most adverse scenario. No significant effect was 
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observed in the sensor baseline, nor in the sensor response to CO2 during the test conducted at 45 ppm of ethyl 
alcohol (see Table 3). 

V. Compact Readout Unit 
Advances in sensor materials and the characterization of their analytical properties have been conducted in 

parallel to our development of the first version of a compact, low-power multichannel readout unit that can integrate 
four fiber optic sensors. An EMI-proof optical cable connects the remotely located readout unit to the flow-through 
cell containing the four sensitive materials for O2, CO2, and H2O and temperature. For control of space systems, 
miniature fiber optic sensors connected to the electronic circuitry by an optical fiber cable allow greater flexibility in 
placing the sensor in highly constrained volume systems such as PLSS. 

The readout unit is a phase-resolved luminescence detector module. In phase-resolved measurements, the 
instrument generates a continuous wave sinusoidal waveform of a known and programmable frequency that 
modulates the light source exciting the luminescent sensor materials. The emission intensity of the sensor materials 
is proportional to the excitation light intensity, and therefore is modulated at the same frequency as the excitation 
source. However, because the emission of photons by the excited molecules occurs some time after the absortion of 
energy, there is a delay between the excitation signal and the sensor signal. The instrument collects the sensor 
emission, and by comparison with the excitation signal determines the delay as phase shift () between the two 
signals.  An estimate of the fluorescence lifetime of the indicator probe can then be computed from the phase shift 
(tan = 2f), where f is the modulation frequency and  is the emission lifetime of the probe. 

This version of the electronic unit implements several strategies to increase flexibility and versatility during 
system development, but these will not be needed in the final product. Figure 12 is a block diagram of the system as 
it exists at present. The module for now communicates with a PC-based application for remote operation and data 
collection. 

 

 
Figure 12. Basic block diagram of the phase-resolved luminescence detector module. 

 
The two main blocks of the electronics unit are the Control Block and the Transmission – Reception block: 
The main component of this digital block is a DSPIC33 microprocessor from Microchip’s family of space 

qualified microcontrollers. This block performs six functions: 
1. Calculate the operational parameters of the system, and program its components 
2. Control the synchronization of the system, and generate the digital modulated signal 
3. Determine the phase shift and amplitude of the emission 
4. Perform system auto-diagnosis 
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5. Manage the user interfaces and communications 
6. Determine the CO2, O2, and H2O levels from the phase-shift and temperature measurements. 

 
In this first version of the system, this module has been designed to explore two approaches to phase shift 

measurement (demodulation). The first (microprocessor-based phase detection) is conducted in the microprocessor. 
The second approach (demodulator-based phase detection) is based on a phase demodulator chip. This will enable us 
to evaluate the advantages and limitations of each, and to select one for the next system generation. 

Since the relationship of phase shift to gas concentration is nonlinear, and since fluorescence lifetime depends on 
temperature (and, in the case of the CO2 sensor, on humidity as well), further signal processing is required 
subsequent to the synchronous demodulation. Phase shift and temperature values (and humidity for the CO2 sensor) 
must be compared to values in a three-dimensional or four-dimensional look-up table (including , temperature, RH, 
and gas concentration). The resulting gas concentration determination can be converted to a digital signal for 
interfacing with PLSS Caution and Warning System. This function is initially performed in the PC-user interface to 
facilitate sensor development, although it can also be implemented in the demodulation – linearization block without 
affecting any parallel functionality, since it requires simple mathematical data processing. 

The transmission-reception block is an analog circuit that requires very little power and minimal space. The 
excitation components are a set of 470 nm LEDs  coupled with multiplexed electronics. This block interfaces with 
the optical block. 

Transmission: The modulated sequence of digital data generated in the demodulation block is converted into an 
analog sequence by a D/A converter with normalized levels of amplitude. The LED driver transforms these 
normalized levels into the required currents which, when applied to the light source, produce a light signal with the 
desired amplitude and frequencies. Additionally, a continuous current level is permanently applied to the LED to 
displace the work point and to ensure that at all times the device emits light in the zone of maximum linearity of its 
transfer function. 

This block includes one blue LED for each sensor channel, and an additional red LED. The blue LEDs excite the 
luminescent signal of the sensor, and the red LED serves as a reference signal for determining phase shift. The 
reference signal, which does not interact with the sensitive material, enables the instrument to perform: 

 Compensation for the delay introduced by the electronics in the original excitation signal, and for the 
temperature effects of the electronic circuitry 

 Continuous auto-diagnosis. Phase-shift and amplitude calculation of two sequential periods of the 
reference signal can be used to continuously verify the proper operation of all the electronics, including 
all digital and analog blocks, and to warn of any error. 

Reception: The reception block has a single photodetector to sequentially collect the signal from the four optical 
channels (sensors). An avalanche photodiode (APD) and a photomultiplier tube module (PMT) have been 
incorporated into the electronics unit, so we can evaluate the advantages and limitations of these two photodetection 
devices. The final design will incorporate only the photodetector that demonstrates the best overall signal-to-noise 
ratio, thermal stability, power consumption, size, robustness, etc. 

The reception block is responsible for detecting the optical signal and amplifying the levels of the resulting 
electronic signal coming from the photodetector, for both the reference and the luminescent signal. It also carries out 
the next step of filtering the signal to maximize the signal-to-noise ratio, optimizing detection even under adverse 
conditions of stray light or external disturbances. This first version of the system incorporates a thermoelectric 
cooler and the associated driver for controlling the temperature of the APD. 

Figure 13 shows the current version of the compact multichannel readout unit. The electronic unit has a volume 
of 250 cc and weight of 240 g. The power consumption measured with all the functionality operating 
simulataneously is  2.2 W, which establishes an maximum consumption level for this vrsion of the electronic unit. 
 



Figure 13.
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