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Entry, Descent, and Landing with Propulsive Deceleration: 
Supersonic Retropropulsion Wind Tunnel Testing  

and Shock Phenomena 
 

Bryan Palaszewski 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
The future exploration of the Solar System will require innovations in transportation and the use of 

entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has 
always been prohibitive, and using the natural planetary and planet’s moon atmospheres for entry, and 
descent can reduce the cost, mass, and complexity of these missions. This paper will describe some of the 
EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future 
Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric 
entry and an additional supersonic retropropulsion (SRP) rocket system for the final soft landing.  

A three engine retropropulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was 
tested in the NASA Glenn Research Center’s 1- by 1-ft (1×1) Supersonic Wind Tunnel (SWT). The 
testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and 
shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 
70° Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a SRP system. This 
baseline testing defined the flow field around the aeroshell and from this comparative baseline data, 
retropropulsion options will be assessed. Images and analyses from the SWT testing with 300- and  
500-psia rocket engine chamber pressures are presented here. In addition, special topics of 
electromagnetic interference with retropropulsion induced shock waves and retropropulsion for Earth 
launched booster recovery are also addressed.  

1.0 Introduction 
Entry, descent, and landing (EDL) are a series of events needed to safely land on the surface of another 

body in the solar system which possesses an atmosphere. Thusly, Mars, Venus, the outer planets, and the 
outer planet moon, Titan, all require technologies that will protect the spacecraft from the high temperatures 
created during the initial hypersonic entry, and finally slow the vehicle from that hypersonic speed into the 
supersonic regime, then to subsonic and of course the final touchdown. In the outer planet atmospheres, the 
final landing would be replaced with a buoyancy system such as an airship or balloon, or an aircraft.  

2.0 Historical Missions 
Landing space vehicles on other planetary bodies is a challenge in propulsion, precision, control, and 

guidance. As there is no atmosphere surrounding Earth’s Moon, the lunar landings of robotic Surveyor 
and human Apollo missions used propulsion for the entire descent. The same was true for the successful 
Luna and Lunakhod flights of the U.S.S.R. For Venus with its dense atmosphere, landing vehicles used 
aeroshell and parachute combinations, with crushable elements (balsa wood, etc.) to absorb the final 
landing energy. On Mars, the landing vehicles became more massive and complex (Viking, Pathfinder, 
Mars Exploration Rovers (MER), Mars Science Laboratory (MSL)), and the since the atmosphere was 
very thin, the final landing systems was a combination for aeroshell, parachute and retro rockets. To allow 
landing in more rugged areas of Mars, an additional airbag system was devised for the Pathfinder and 
MER landers to assure a successful landing in rock strewn sites.  
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3.0 Mars 
Several EDL configurations are under assessment for Mars. Figure 1 presents the historical comparison 

of the U.S. Mars entry capsules (Ref. 1). The typical 70° cone angle for these configurations was selected 
for high stability and high drag. As the planet’s atmosphere is quite thin, the blunt body can provide the 
needed drag for relatively small payloads of up 1 metric ton. As the mass of the lander vehicle increases, a 
different set of EDL technologies are required. Based on past studies (Refs. 2 and 3), parachutes are 
impractical for vehicles with lander masses of over 20 metric tons. The lander’s parachutes would be too big 
to deploy effectively and reliably. Therefore a combination of inflatable decelerators (for hypersonic and 
supersonic speeds) and SRP has been suggested. Many past studies have investigated landing on Mars with 
aerodynamic systems (Ref. 4 to 8). However, the most recent studies imply that the past studies assumptions 
are too optimistic and are in need of revision to assure success. Supersonic retropropulsion, perhaps 
beginning as early as Mach 5, will therefore likely be required for soft landing on Mars.  

4.0 Experimental Planning 
While the Viking-like aeroshell design has proven successful for missions, but higher mass missions 

of many tens of tons will likely require more energetic retropropulsion. Figure 2 and Figure 3 show some 
of the historical testing on SRP (Ref. 3). This testing was only pursued with relatively small models and 
did not result in flight test hardware. To expand the relatively small data base of SRP information, a series 
of test programs were established and planned. The 1×1 SWT was used for the testing. It has a wide range 
of test velocities from Mach 2.0 to 6.0. Several types of data were gathered during the testing: surface 
pressure measurements, surface temperature measurements, and low speed and high speed digital 
Schlieren video movie imaging.  

Model development began for a 2.5-in. diameter aeroshell. The 2.5-in. size was selected based on the 
previous wind tunnel testing of the aerodynamic blockage of the tunnel. The initial model was based on the 
70° sphere-cone shape of the Viking entry capsule. It was attached to a sting-strut that was adjustable and 
can hold the model at a flexible angle of attack from 0° to 20° of angle of attack (AoA). The construction of 
the model and sting strut was stainless steel. The model was also instrumented with both temperature 
sensors and pressure transducers. There were three thermocouples and nine pressure ports on the windward 
side of aeroshell. There were three thermocouples and three pressure ports on leeward side of aeroshell. One 
additional thermocouple was placed near the trailing edge of the strut. High frequency pressure transducers 
(kulites) were used to measure the engine chamber pressures and tunnel wall pressures in three locations. 
Optical access to the test section allowed imaging with low speed and high speed Schlieren video movie 
recording. The high speed Schlieren recordings were made at 500 frames per second.  

5.0 Test Data 
Testing commenced on March 17, 2010, for a 1 day period. The tunnel operations were very smooth 

and in each test run, the tunnel pressure increased until the flow was started on the model and a stable bow 
shock was established. The tunnel pressure was then adjusted until the minimum pressure for tunnel 
operation was reached. Data was taken at this point, and then successive data points were taken at the 
remaining Mach numbers. Measurements were taken at Mach = 2.5, 3.0, 3.5, 4.0, and 5.0. Trailer-provided 
air was used for the simulated rocket engine flow. The rocket nozzle design was derived from Reference 9.  

During the testing, it was noted that with the 2.5-in. model, an initial stable bow shock could be 
established at all Mach numbers. Based on previous testing, no unanticipated aerodynamic blockage 
occurred when the engines were not firing. When the rocket engines were firing, significant tunnel 
unstarts occurred in only several runs, and their occurrences are noted in Table I. The tunnel unstarts 
occurred with all of the 500 psia runs at M = 2.5 and 3.0 and with all of the 300 psia runs at M = 2.5. At 
all other conditions, excellent model performance was demonstrated with minimal wall interactions.  
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Figure 4 shows a typical Schlieren image for the baseline SWT testing three retropropulsion engines. 
The Mach number was 2.91 (M = 3.0 range). The angle of attack was 0°. Note that at M = 3.0, the bow 
shock has a small interaction with the tunnel walls in the image. Additional data was gathered at Mach 
Number = 3.5, 4.0, and 5.0, with the angle of attack at 0.0°, and these results are shown in Figure 4 to 
Figure 7, respectively. As the Mach number increases, there is less noticeable or no wall shock interaction 
in the images. On most runs, we are searching and striving to reach the lowest Reynolds number (Re)/foot 
and the lowest total pressure at each Mach number, so that we can more accurately simulate the Mars 
entry conditions. Higher values of Re/foot can represent other atmospheric entries into Earth, the outer 
planets, and Titan.  

The location of the bow shock very close to the sphere-cone model was unforeseen. The rocket 
engines in past testing have used higher engine pressures of up to 1500 psia, and thus the bow shock is 
often far from the body, perhaps one to several entry vehicle diameters. The lower pressures used here 
were seen to penetrate the bow shock and that shock remained very near the entry body model. Such 
shock locations will have likely significant influence on vehicle heating due to shock impingement, etc.  

An important parameter for the retropropulsion testing is the thrust coefficient. It is the ratio of the 
thrust of the vehicle to the drag of the vehicle and is computed with this equation (Ref. 3): 

   
Where: 
CT Thrust coefficient 
γ∞ Ratio of specific heats at infinity 
M∞ Mach Number at infinity 
Pe Pressure at nozzle exit 
P∞ Pressure at infinity (tunnel pressure) 
Ae Nozzle exit area 
AB Test article projected area 
γe Ratio of specific heats at nozzle exit 
Me Mach Number at nozzle exit 
 

Figure 8 illustrates the thrust coefficient versus Mach number for four engine chamber pressures: 200, 
300, 500, and 1500 psia. The engine expansion ratio is 10:1. For the test cases below 500 psia, the thrust 
coefficient is a maximum of 0.36, Only when the chamber pressure is near 1500 psia and near M = 2.0 
will the thrust coefficient be equal to or greater than 1.0. Computations of the thrust coefficients at other 
planned expansion ratios (4:1, 20:1, and 50:1) show very similar results.  

Testing with retrorocket configurations was planned to include flexible changes of the nozzle 
expansion ratio and the angle of attack. The overall design of a retropropulsion model is shown in  
Figure 9 to Figure 11. Three expansion rations of 10:1, 20:1 and 4:1 are shown, respectively. Appendix A 
shows the Schlieren images from the runs with a chamber pressure of 300 and 500 psia, at an angle of 
attack of 0.0°, 10.0° and 15.0° . Again, over the entire test program, rocket engine chamber pressures of 
200, 300 and 500 psia were tested with the 10:1 rocket engine expansion ratio. Appendix B provides the 
test conditions for each run: tunnel total and static pressures, and the tunnel Re/foot. Appendix C provides 
a detailed drawing of the windward side of the aeroshell test model.  

6.0 Thoughts on Alternate Retropropulsion Configurations 
Figure 12 shows the Mars Lander configuration of the Design Reference Architecture 5 (DRA-5, 

Ref. 8). As currently designed, the vehicle has a large series of open trusses that support the subsystems 
of the vehicle: tankage, propellants, engines, rover(s), return vehicle, etc. During EDL, it has been 
suggested that the aeroshell surrounding the vehicle can be released at supersonic speed and the main 
engines be used for SRP. With all of the major open trusses of the lander structure in the aerodynamics 
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stream, this would lead to severe damage to the lander (and is not recommended). By using a combination 
of deployable structures and SRP, the vehicle could be much more controllable and safe from unwanted 
aerodynamic heating.  

Saturn I retrorocket separation—The Saturn I rocket from the 1960s used a retrorocket system to 
assist with the first and second stage separation. The separation motors were solid rockets, and were used 
to assure that the stages did not collide during separation. The retro rocket flow field was analyzed (see 
Figure 13 and Figure 14) and predictions made of the influence of the flow field on vehicle 
communications (Ref. 10). Such analyses will likely be important in future Mars exploration missions 
using SRP.  

U.S. Air Force (USAF) reusable booster system (RBS) Rocketback maneuver—The USAF RBS has 
been suggested as a potential new launch vehicle (Refs. 11 and 12). The RBS is composed on a reusable rocket 
powered first stage and a rocket powered second stage, as shown in Figure 15. In the suggested design, the 
booster staging separation velocity is so high that the first stage must employ a rocket back maneuver (see 
Figure 15). After staging, the first stage vehicle will turn to fire its main engines into the oncoming airflow, 
and slow the vehicle down so that it may return to the launch site. Figure 16 shows a flowfield calculation for 
4 angles of attack (Ref. 12). Severe heating may be experienced during this maneuver.  

Fins—Due to the severity and large variations of the flow field from the retro rockets, extensions 
from the entry body may be an important option for stability enhancements. Past testing at supersonic 
speed of fin extensions (grid fins, etc.) shows that such configurations can provide the stability 
enhancements for missiles and human rated vehicles (Russian Soyuz launch vehicle, etc.). The 4 grid fins 
are mounted on the sides of the vehicles and provide enhanced stability during the use of the launch 
escape system. U.S. Army and international missile testing (Refs. 13 to 23) has also evaluated grid fins. 
The missile testing was for long slender missiles, and hence the application may be for a more restricted 
set of higher lift to drag (L/D) EDL configurations (biconic aeroshells, etc.)  

7.0 Concluding Remarks 
Experimental programs were planned and executed to gather data of supersonic propulsive 

deceleration (or SRP). Initial data gathering was successful and this data will be used as the comparative 
baseline for upcoming larger scale retropropulsion testing. Schlieren imaging was captured to assess the 
successful formation of the bow shock surrounding the aeroshell. In some cases, the shock interactions 
with the SWT walls occurred and were also visualized. The high speed camera video at 500 frames per 
second identified the chaotic nature of the retrorocket—shock interactions. More detailed data and image 
analyses are continuing. Test planning and model development has been conducted for additional 
retrorocket equipped aeroshells with different area ratio rocket nozzles: 4:1, 20:1, and 50:1. Due to test 
time limitations, the 4:1, 20:1, and 50:1 expansion ratios were not tested.  

Entry, descent, and landing (EDL) technologies are under development for the high mass Mars Entry 
system (HMMES). Many investigations of aerodynamic deceleration for the outer planets have been 
conducted as well. The challenges for EDL are numerous, especially for inflatable decelerator and the 
interactions that will occur with propulsive deceleration retro propulsion. The high velocities involved in 
entry and descent will require high temperature materials that are flexible for folding into a small volume, 
but reliable when they are deployed to their full diameter.  

Many exciting possibilities are foreseen for Mars and outer planet exploration and exploitation (Refs. 24 
to 40). The resources of the outer planets may allow fueling of nuclear fusion vehicles and other power 
plants that may be the engine for all of Earth’s energy. Wresting fuels such as hydrogen and helium 3 from 
the gas giant planets may be a critical element of outer planet exploration and also flight to the nearby stars. 
The EDL systems will be an integral part of all of these exploration and exploitation scenarios.  
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TABLE I.—OVERALL RESULTS OF AND COMMENTS ON EDL SRP TEST MATRIX  
[A 2.5-in.-diameter aeroshell model, three engine configuration. NASA EDL SRP 1×1 SWT test results summary, March 17, 2010] 

Reading Mach 
no. 

AoA, 
deg. 

Pjet, 
psia 

Comment Specifics 

6 2.5 0 200 Some strong wall 
interaction 

Some strong wall interactions interaction 

9 2.5 0 300 Tunnel unstart, with 
recovery 

Post firing: this firing is a potential unstart, with the tunnel taking a few 
seconds to recover the full Mach number after the engines are turned off. 

10 2.5 0 500 Tunnel unstart, with 
recovery 

Post firing: this firing is a potential unstart, with the tunnel recovering 
the full Mach number flow after the engines are turned off. 

7 2.5 10 200 Some strong wall 
interaction 

Some strong wall interaction 

8 2.5 10 300 Tunnel unstart, with 
recovery 

Post firing: this firing is a potential unstart, with the tunnel recovering 
the full Mach number flow after the engines are turned off. 

11 2.5 10 500 Tunnel unstart, with 
recovery 

Post firing: this firing is a potential unstart, with the tunnel recovering 
the full Mach number flow after the engines are turned off. 

      

19 3.0 0 200 Spectacular Minor wall interactions 
20 3.0 0 300 Spectacular Some strong wall interactions 
23 3.0 0 500 Tunnel unstart, with 

recovery 
Post firing: this firing is a potential unstart, with the tunnel recovering 
the full Mach number flow after the engines are turned off. 

16A, 17 3.0 10 200 Spectacular Minor wall interactions 
21 3.0 10 300 Spectacular Minor wall interactions 
22 3.0 10 500 Tunnel unstart, with 

recovery 
Post firing: this firing is a potential unstart, with the tunnel recovering 
the full Mach number flow after the engines are turned off. 

24 3.0 15 500 Tunnel unstart, with 
recovery 

Post firing: this firing is a potential unstart, with the tunnel recovering 
the full Mach number flow after the engines are turned off. 

      

30 3.5 0 200 Spectacular No wall interactions 
35 3.5 0 300 Spectacular No wall interactions 
39 3.5 0 500 Spectacular No wall interactions* 
31 3.5 10 200 Spectacular No wall interactions 
34 3.5 10 300 Spectacular No wall interactions 
38 3.5 10 500 Spectacular No wall interactions* 

No rdg. 3.5 15 200 No data point taken No data point taken 
36 3.5 15 300 Spectacular No wall interactions 
37 3.5 15 500 Spectacular No wall interactions* 

   
   

43 4.0 0 200 Spectacular No wall interactions 
48 4.0 0 300 Spectacular Some wall interactions 
49 4.0 0 500 Spectacular Minor wall interactions 
44 4.0 10 200 Spectacular Minor wall interactions,  far downstream 
47 4.0 10 300 Spectacular No wall interactions 
50 4.0 10 500 Spectacular Minor wall interactions 
45 4.0 15 200 Spectacular Minor wall interactions,  far downstream 
46 4.0 15 300 Spectacular Minor wall interactions,  far downstream 
51 4.0 15 500 Spectacular Minor wall interactions, downstream, near backshell 

      

63 5.0 0 200 Spectacular No wall interactions. Required heater usage, T= 300 °F to establish 
stable shock on the model. Heater used in all M = 5.0 tests 

64 5.0 0 300 Spectacular No wall interactions 
65 5.0 0 500 Spectacular Minor wall interactions 
62 5.0 10 200 Spectacular No wall interactions 
61 5.0 10 300 Spectacular No wall interactions 
60 5.0 10 500 Spectacular No wall interactions 
57 5.0 15 200 Spectacular No wall interactions 
58 5.0 15 300 Spectacular No wall interactions 
59 5.0 15 500 Spectacular No wall interactions 



NASA/TM—2014-217891 6 

 
Figure 1.—Comparison of Viking-spacecraft-like (sphere-cone) aeroshells for Mars entry  

(Ref. 1).  
 

 
Single nozzle 60° aeroshell model with blunt flow interaction, M∞ = 2.0, CT = 1.1. 

Figure 2.—Historical retropropulsion testing (Ref. 3, 1970). 
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Figure 3.—Historical retropropulsion testing, three engine configuration 

(Ref. 3, 1970). 
 

 
Figure 4.—Schlieren image from 1x1 SWT testing—three engine model, Mach = 3.0, Re/ft = 1.45x106, 

and Ptotal (psi) = 8.67, AoA = 0°, 300 psia engine chamber pressure. 
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Figure 5.—Schlieren image from 1x1 SWT testing—three engine model, Mach = 3.5, Re/ft = 1.86x106, 

and Ptotal (psi) = 15.00, AoA = 0°, 300 psia engine chamber pressure. 
 

 

 
Figure 6.—Schlieren image from 1x1 SWT testing—three engine model, Mach = 4.0, Re/ft = 2.58x106, 

and Ptotal (psi) = 26.13, AoA = 0°, 300 psia engine chamber pressure. 
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Figure 7.—Schlieren image from 1x1 SWT testing—three engine model, Mach = 5.0, Re/ft = 5.19x106, 

and Ptotal (psi) = 92.39, AoA = 0°, 300 psia engine chamber pressure. 
 
 
 

 
Figure 8.—Thrust coefficient versus Mach number for varying engine chamber pressures.  
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Figure 9.—Retropropulsion model for three engine configuration, with nozzle extensions 

(expansion ratio = 10:1). 
 
 
 

 
Figure 10.—Retropropulsion model for three engine configuration, with nozzle extensions 

(expansion ratio = 20:1). 
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Figure 11.—Retropropulsion model for three engine configuration, with no nozzle extensions 

(expansion ratio = 4:1). 
 

 
Figure 12.—Mars Lander Configuration, NASA DRA-5 (Ref. 8). 
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Figure 13.—Retrorocket plume at ignition. 

 
 
 

 
Figure 14.—Comparison of retrorocket plum size and 

telemetry signal strenght SA-5. 
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Figure 15.—Reusable Booster System Flight Path with Rocket Back Maneuver (Ref. 11). 

 

 
Steady-state Cp values on vehicle and off-body mid-span plane for four angles of attack, M = 4.5, Q = psf 

Figure 16.—Reusable Booster System Cp Predictions for 4 Angles of Attack (Ref. 12) 
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Appendix A.—Schlieren Images  
A.1 AoA = 10° (15°, in Some Cases), 300 psia Chamber Pressure 

 
Figure A.1.—Schlieren image from 1x1 SWT testing—three engine model, Mach = 3.0, Re/ft = 1.42x106, 

and Ptotal (psi) = 8.49, AoA = 10°, 300 psia engine chamber pressure. 
 

 
Figure A.2.—Schlieren image from 1x1 SWT testing—three engine model, Mach = 3.5, Re/ft = 1.87x106, 

and Ptotal (psi) = 15.03, AoA = 15°, 300 psia engine chamber pressure. 
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Figure A.3.—Schlieren image from 1x1 SWT testing—three engine model, Mach = 4.0, Re/ft = 2.57x106, 

and Ptotal (psi) = 25.94, AoA = 10°, 300 psia engine chamber pressure. 
 

 

 
Figure A.4.—Schlieren image from 1x1 SWT testing—three engine model, Mach = 5.0, Re/ft = 5.32x106, 

and Ptotal (psi) = 90.37, AoA = 10°, 300 psia engine chamber pressure. 
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A.2 AoA = 0°, 500 psia Chamber Pressure 

 
Figure A.5.—Schlieren image from 1x1 SWT testing—three engine model, Mach = 3.0, Re/ft = 1.50x106, 

and Ptotal (psi) = 8.95, AoA = 0°, 500 psia engine chamber pressure, tunnel unstart. 
 
 

 
Figure A.6.—Schlieren image from 1x1 SWT testing—three engine model, Mach = 3.0, Re/ft = 1.45x106, 

and Ptotal (psi) = 8.67, AoA = 0°, 300 psia engine chamber pressure. 
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Figure A.7.—Schlieren image from 1x1 SWT testing—three engine model, Mach = 4.0, Re/ft = 2.60x106, 

and Ptotal (psi) = 26.33, AoA = 0°, 300 psia engine chamber pressure. 
 
 

 
Figure A.8.—Schlieren image from 1x1 SWT testing—three engine model, Mach = 5.0, Re/ft = 4.91x106, 

and Ptotal (psi) = 89.36, AoA = 0°, 500 psia engine chamber pressure. 
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A.3 AoA = 10°, 500 psia Chamber Pressure 

 
Figure A.9.—Schlieren image from 1x1 SWT testing—three engine model, Mach = 3.0, Re/ft = 1.44x106, 

and Ptotal (psi) = 8.66, AoA = 10°, 500 psia engine chamber pressure, tunnel unstart. 
 

 
Figure A.10.—Schlieren image from 1x1 SWT testing—three engine model, Mach = 3.5, Re/ft = 1.86x106, 

and Ptotal (psi) = 15.00, AoA = 10°, 500 psia engine chamber pressure. 
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Figure A.11.—Schlieren image from 1x1 SWT testing—three engine model, Mach = 4.0, Re/ft = 2.56x106, 

and Ptotal (psi) = 26.01, AoA = 10°, 500 psia engine chamber pressure. 
 
 
 

 
Figure A.12.—Schlieren image from 1x1 SWT testing—three engine model, Mach = 5.0, Re/ft = 5.42x106, 

and Ptotal (psi) = 90.40, AoA = 10°, 500 psia engine chamber pressure. 
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Appendix B.—SRP Run Data, 1×1 SWT 
NASA EDL SRP 1×1 SWT TEST RESULTS SUMMARY, MARCH 17, 2010 

Rdg Scan Total
_sc 

Navg Date Time Ptotal, 
psia 

Pstatic, 
psia 

Mach 
number 

Re/ft Pjet, 
psia 

AOA, 
deg. 

6 1 1 0 17-Mar-10 10:05:08 5.10347 0.3425 2.41215 1.10×106 200 0 
7 1 1 0 17-Mar-10 10:15:37 5.00908 0.335 2.41438 1.08×106 200 10 
8 1 1 0 17-Mar-10 10:23:10 5.05017 0.335 2.41961 1.08×106 300 10 
9 1 1 0 17-Mar-10 10:34:14 4.98458 0.3305 2.4199 1.07×106 300 0 

10 1 1 0 17-Mar-10 10:40:37 5.02854 0.333 2.4207 1.08×106 500 0 
11 1 1 0 17-Mar-10 10:47:04 4.98026 0.3285 2.42324 1.07×106 500 10 

            

16 1 1 0 17-Mar-10 11:28:13 8.5857 0.2705 2.90301 1.44×106 200 10 
17 1 1 0 17-Mar-10 11:41:31 8.44954 0.2655 2.90478 1.41×106 200 10 
18 1 1 0 17-Mar-10 11:47:55 8.44737 0.265 2.90585 1.41×106   
19 1 1 0 17-Mar-10 11:51:28 8.47748 0.2655 2.90696 1.41×106 200 0 
20 1 1 0 17-Mar-10 11:58:26 8.66597 0.271 2.90794 1.45×106 300 0 
21 1 1 0 17-Mar-10 12:07:46 8.49397 0.266 2.907 1.42×106 300 10 
22 1 1 0 17-Mar-10 12:15:42 8.66238 0.2695 2.91134 1.44×106 500 10 
23 1 1 0 17-Mar-10 12:22:04 8.94823 0.285 2.89584 1.50×106 500 0 

            

30 1 1 0 17-Mar-10 13:17:15 14.9783 0.207 3.46295 1.88×106 200 0 
33 1 1 0 17-Mar-10 13:36:17 15.0123 0.205 3.47135 1.87×106 200 10 
34 1 1 0 17-Mar-10 13:37:19 15.0393 0.205 3.47261 1.87×106 300 10 
35 1 1 0 17-Mar-10 13:43:25 15.0024 0.2025 3.4795 1.86×106 300 0 
36 1 1 0 17-Mar-10 13:49:28 15.0258 0.203 3.47887 1.87×106 300 15 
37 1 1 0 17-Mar-10 13:55:21 14.8584 0.201 3.47795 1.85×106 500 15 
38 1 1 0 17-Mar-10 14:01:20 15.0031 0.203 3.4778 1.86×106 500 10 
39 1 1 0 17-Mar-10 14:07:15 15.0038 0.1985 3.49359 1.85×106 500 0 

            

43 1 1 0 17-Mar-10 14:46:17 25.8632 0.1825 3.94839 2.55×106 200 0 
44 1 1 0 17-Mar-10 14:52:20 26.8485 0.1915 3.94039 2.66×106 200 10 
45 1 1 0 17-Mar-10 15:00:02 26.1978 0.1845 3.94985 2.58×106 200 15 
46 1 1 0 17-Mar-10 15:05:52 26.3128 0.1875 3.9411 2.61×106 300 15 
47 1 1 0 17-Mar-10 15:11:27 25.9392 0.185 3.94045 2.57×106 300 10 
48 1 1 0 17-Mar-10 15:17:25 26.1281 0.185 3.94585 2.58×106 300 0 
49 1 1 0 17-Mar-10 15:23:23 26.3289 0.1855 3.94954 2.60×106 500 0 
50 1 1 0 17-Mar-10 15:29:02 26.0068 0.182 3.95456 2.56×106 500 10 
51 1 1 0 17-Mar-10 15:34:48 26.7106 0.187 3.95427 2.63×106 500 15 

            

57 1 1 0 17-Mar-10 16:48:45 86.9416 0.176 4.94131 5.54×106 200 15 
58 1 1 0 17-Mar-10 16:56:23 90.1885 0.1675 5.01495 5.58×106 300 15 
59 1 1 0 17-Mar-10 17:02:19 89.7116 0.161 5.04444 5.48×106 500 15 
60 1 1 0 17-Mar-10 17:08:35 90.403 0.1535 5.09235 5.42×106 500 10 
61 1 1 0 17-Mar-10 17:15:12 90.3647 0.1455 5.13857 5.32×106 300 10 
62 1 1 0 17-Mar-10 17:21:26 90.4469 0.14 5.17308 5.25×106 200 10 
63 1 1 0 17-Mar-10 17:27:29 90.0932 0.1325 5.21807 5.14×106 200 0 
64 1 1 0 17-Mar-10 17:33:12 92.3942 0.13 5.25723 5.19×106 300 0 
65 1 1 0 17-Mar-10 17:39:16 89.3562 0.118 5.31368 4.91×106 500 0 
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Appendix C.—Model Drawing, Front (Windward) of the Aeroshell 
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