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A generalized dynamic programming method for finding a set of pareto optimal solutions
for a runway scheduling problem is introduced. The algorithm generates a set of runway
flight sequences that are optimal for both runway throughput and delay. Realistic time-
based operational constraints are considered, including miles-in-trail separation, runway
crossings, and wake vortex separation. The authors also model divergent runway takeoff
operations to allow for reduced wake vortex separation. A modeled Dallas/Fort Worth
International airport and three baseline heuristics are used to illustrate preliminary benefits
of using the generalized dynamic programming method. Simulated traffic levels ranged
from 10 aircraft to 30 aircraft with each test case spanning 15 minutes. The optimal
solution shows a 40-70 percent decrease in the expected delay per aircraft over the baseline
schedulers. Computational results suggest that the algorithm is promising for real-time
application with an average computation time of 4.5 seconds. For even faster computation
times, two heuristics are developed. As compared to the optimal, the heuristics are within
5% of the expected delay per aircraft and 1% of the expected number of runway operations
per hour and can be 1000x faster.

Nomenclature

Qi An ordered set of departure aircraft in departure queue i.
Gi An ordered set of departure aircraft using gate i.
Ci An ordered set of aircraft that cross the runway at runway crossing queue i.
qi The total number of aircraft initially at departure/gate/crossing queue i.
li The number of aircraft remaining in departure/gate/crossing queue i.
mi The queue the last departure aircraft uses, which departs to heading i.
ai
j Aircraft at departure/crossing/gate queue i in position j from the back.

Pi The set of aircraft that must not use the runway before aircraft i.
α(a) The earliest time aircraft a can arrive to the runway.
M(a) The weight class of aircraft a.
fix(a) The departure fix of aircraft a.
S A state.
Ss A state S with corresponding history sequence s.

Hlast
h (Ss) The time an aircraft last left to heading h at state S with corresponding history sequence s.

F last
f (Ss) The time an aircraft last left to fix f at state S with corresponding history sequence s.

Clast
c (Ss) The time an aircraft last left from crossing c at state S with corresponding history sequence s.

Dlast(Ss) The time a departure last used the runway at state S with corresponding history sequence s.
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TIME(Ss) The time an aircraft last used the runway at state S with corresponding history sequence s.
DELAY (Ss) The total delay at state S with corresponding history sequence s.
Sep[x][y] The time based standard wake vortices separation between weight class x trailing weight class y.
R[x][y] The time based reduced wake vortices separation between weight class x trailing weight class y.
MITf The time based miles-in-trail separation required between two consecutive departures heading to fix f.
U(j) A binary function equal to true if aircraft j has used the runway and equal to false otherwise.
X The time based separation between two consecutive runway crossings leaving from the same crossing.
DEP The amount of time a departure takes to clear the runway.
Sepc The amount of time a runway crossing takes to cross the runway at crossing c.
FIX The total number of departure fixes.
n The total number of departure headings.
k1 The number departure queues.
k2 The number of departure gate queues.
k3 The number of runway crossing queues.
K k1 + k2 + k3

I. Introduction

The National Airspace System is a complex transportation network with various operational control points, users,
policies, and facilitators. While airport systems are small in comparison to the size of the National Airspace System,
they represent an important control point for managing aircraft. Runway operations, as one part of the airport
system, serve as a major bottleneck for the National Airspace System. For example, the authors in [1] show that
take off surface delays, measured as the excess time over the scheduled take-off time, account for over 50% of the
National Airspace System delays. Additionally, an analysis using queuing models indicated that the cause of these
delays is an imbalance between runway capacity and runway demand [2]. To alleviate this problem, many airports
have attempted to expand their capacity by building new runways, taxiways, and gates. Unfortunately, this solution
has limited value because many airport systems have exhausted their physical space or are constrained by various
environmental regulations. In addition, [3] found that air traffic controllers use simple heuristics for scheduling. When
trying to schedule a runway, air traffic controllers are faced with the problem of ordering aircraft to use the runway
so that they yield maximum runway efficiency. Since there are a large number of operational considerations including
wake vortex separation, aircraft equipage, traffic management initiatives, and runway crossings, the task of safely
and efficiently scheduling a runway is difficult in practice. This suggests then, that there exist more efficient solutions
for finding aircraft runway schedules than what is currently practiced. In particular, this paper addresses the issue
of finding aircraft runway schedules that are optimal for both throughput and delay.

While there are several attempts at finding efficient aircraft runway schedules in the literature, these attempts
are either not well-suited for application because of large computation times [4][5][6], do not provide aircraft runway
schedules which are optimal for both throughput and delay [4][5][6][7][8][9], or solve simpler variants of a runway
scheduling problem [10][8][7]. The authors in [4][5][6], for instance, formulate a runway scheduling problem as a mixed
integer linear program. These solutions, however, show poor computational performance. Authors in [4][5][6][7][8][9]
attempt to solve the problem by considering only one objective (e.g. either delay or throughput) or explore heuristics
that do not guarantee optimal aircraft runway schedules. Lastly, the authors in [7][8][10] solve simpler variants of
a runway scheduling problem by considering only departure aircraft, preventing large deviations from a first-come-
first-served solution, or ignoring realistic aircraft separation constraints which might violate the triangle inequality.

To fill the gap of the existing research, a single algorithm is developed to find aircraft runway schedules that
are optimal for both delay and throughput, to provide relatively fast computation times, and allows for realistic
separation constraints.

This paper is organized as follows. In Section II a description of the runway scheduling problem is given along
with a brief literature review. In Section III the basic dynamic programming algorithm is described. In Section III.E
two heuristics are provided based off the dynamic programming approach, and in Section IV a set of results for the
modeled Dallas/Fort Worth International Airport are presented. Finally, the authors close this paper in Section V
with some lessons learned and possible extensions of the presented work.

II. Problem Statement and Background

In the following section, an overview of the problem is given, and relevant background information is provided. A
comparison is made between techniques described in the literature and the proposed dynamic programming technique.
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A. Problem Statement

Abstractly, the runway scheduling problem (RSP) can be thought of as a job shop scheduling problem [11] with
precedence and release time constraints, where the objective is to sequence a set of jobs (aircraft) in a particular
order to be processed by a processor (runway) so that some cost function is minimized. For the runway scheduling
problem, one wants to find an efficient schedule for aircraft to use the runway. The output, then, to the runway
scheduling problem is a time for each aircraft to begin using the runway, which will be referred to as a runway
schedule.

The runway scheduling problem is formally described as follows: Given an ordered set of departure aircraft Qd for
each departure queue d, a set of departure aircraft Gg for each gate g of cardinality 1, an ordered set of aircraft Cc for
each runway crossing queue c, a set of aircraft Pi that must not use the runway before aircraft i, an earliest time α(i)
for aircraft i to reach the runway, and various timing constraints (described below), find the set of non-dominatinga

runway schedule(s) with respect to both delay and throughput.
A diagram of a typical problem is shown below in Figure 1. This diagram shows an example airport with one

departure runway, a ramp area, and a network of taxiways. Each aircraft on the airport surface waits to use the
runway in chain like structures called queues. For this diagram, departure aircraft located within the ramp area are
at their gates or gate queues, and departure aircraft near the top left entrance of the departure runway are waiting
in departure queues. Finally, there is one taxiway that crosses the runway with a chain of two aircraft waiting cross.
These aircraft waiting to cross the runway are said to be waiting in their crossing queue.

To be exact, an aircraft ai
j is indexed by its queue j and with its position denoted by i. The position count starts

at 0 from the back of the queue and successively increases for aircraft closer to the front of the queue. In particular,
this figure has two departure queues near the top of the runway, with 2 departure aircraft, a1

0 and a1
1, in departure

queue 1, and 1 departure aircraft, a2
0, in the departure queue 2. The figure also has 3 departure aircraft, a3

0, a
4
0, and

a5
0, waiting at their gates (in the ramp area), and 2 aircraft, a6

0 and a6
1, waiting to cross the runway. Because aircraft

in the same queue cannot simply pull in front of an aircraft waiting ahead of it, there will be precedence constraints
between departure aircraft waiting in the same queues. To the same degree, departure aircraft located at the gates
must wait to depart until their path is clear. Also since each aircraft i has only one α(i), it is assumed a single path
to the runway is provided.

Figure 1. Problem Description

Based upon the various aircraft moving on the airport surface, a tower controller must figure out how to sequence
the aircraft to best utilize the runway. Complicated timing constraints, however, make the task difficult.

aA set of non-dominating sequences with respect to throughput and delay are those that are either better at throughput or
delay but not both. A formal understanding of this concept is given in section III.D.
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1. Departure Wake Vortex Separation: Any departure aircraft following another aircraft to the same heading
must wait a sufficient amount of time before departing due to the leading aircraft’s wake vortex stream.

2. Departure Area Navigation (RNAV) Separation: If the departure aircraft has certain equipage require-
ments [12], a reduced wake vortex timing separation can be used as long as the trailing aircraft is going to a
different heading.

3. Runway Crossings Separation: A departure wanting to take off must wait a minimum time to allow runway
crossing traffic to clear. Vice versa, an aircraft crossing the runway must wait until a departure has cleared the
runway before it can cross. Finally, for any two consecutive aircraft crossing the runway there is a minimum
separation due to communication delay (e.g., voice clearances can not be given simultaneously to parallel
crossings).

4. Miles-in-Trail (MIT) Separation : MIT restrictions are handed down from various Air Route Traffic
Control Centers (ARTCC) and cause delays to ground departures to balance demand and capacity across the
national airspace [13]. In this paper, spatial separations imposed by MIT restrictions are at a departure fix.
These restrictions increase the time between two consecutive aircraft departing to the same fix. Moreover, the
spatial separations are converted into a time equivalent based upon nominal aircraft speed.

While the above constraints are self explanatory for any two consecutive runway operations, one must be careful
when considering more than two aircraft. For example consider Figure 2 below, where the inter-departure separation
between consecutive departures is 60 seconds. If one only considers the consecutive separation values, then the second
aircraft waits to depart 60 seconds after the time the first aircraft departs, and the third aircraft waits to depart
60 seconds after the time the second aircraft departs. However, given that the required separation between the first
and the third aircraft is 218 seconds, by considering only the 60 second consecutive separation values one would not
satisfy required aircraft separation between the first and the third aircraft. Since this situation can occur in reality,
the authors do not ignore this possibility. For the remainder of the paper, the separations or constraints are said to
violate the triangle inequality [14].

Figure 2. Triangle inequality violation.

A novel solution to this problem is given in Section III, but a brief review of the relevant literature is provided
next.

B. Background

While there are several attempts to solve job shop scheduling problems reported in the literature, the authors focus
on those attempts specifically developed to solve a runway scheduling problem. Often, a runway scheduling problem
is solved by using either mixed integer linear programming or dynamic programming.

The runway scheduling problem can be formulated as a mixed integer linear program [4][5][6]. The authors in
[4][6] show how all separation constraints can be incorporated and how departure queue assignments are possible.
While mixed integer linear programs have the advantage of easily modeling a large class of optimization problems,
their computation times are often unsuitable for real-time applications [8][10]. Alternatively, researchers have devised
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methods for enabling faster computation of runway schedules through the use of dynamic programming techniques
under Constrained Position Shifting (CPS) constraints.

In [7] Psaraftis shows how dynamic programming can be applied to solve a simplified runway scheduling problem
by introducing additional constraints. Psaraftis uses CPS to limit deviations in the final position of an aircraft by
comparing the final position to a reference runway schedule. Specifically, this is accomplished by constraining an
aircraft to move a maximum number of positions from its reference position. For various reasons (equity, etc.),
first-come-first-served is often taken as the reference sequence. Within the context of CPS, Psaraftis finds an optimal
runway schedule for landing aircraft but does not consider any timing constraints which might violate the triangle
inequality; therefore, this approach has limited application.

The dynamic programming approach in [7] provides a useful state definition which was then used by Rathinam et
al. [10] in a generalized dynamic programming fashion to find a set of pareto optimal solutions with respect to both
throughput and delay for departure aircraft only. Rathinam et al. extended the work done by Psaraftis for a runway
scheduling problem by showing that it is necessary to keep track of the throughput while attempting to find a delay
optimal aircraft runway schedules. While the authors in [10] present a fast solution for finding a set of pareto optimal
aircraft runway schedules, they do not extend the formulation to incorporate necessary runway constraints where
the triangle inequality is violated. For example, the authors in [10] only consider a problem where three departure
queues are present and there exist no runway crossing operations, which are known to violate the triangle inequality.
In contrast, this paper shows how any timing constraint can be incorporated using a similar state definition.

In [8] the authors show how using a dynamic programming method can solve the runway scheduling problem by
developing a CPS network and then find an optimal makespan by using the dynamic programming method. The
authors successfully incorporate all possible separation constraints and precedence constraints, but do not find a set
of pareto optimal aircraft runway schedules, nor do they find the true optimal. Their solution, for example, includes
CPS constraints and therefore finds sub-optimal either delay or throughput aircraft runway sequences, but not both.
In contrast, this paper shows how a set of pareto optimal solutions can be calculated for with respect to delay and
throughput without any consideration for CPS.

III. Generalized Dynamic Programming Approach

In this section a generalized dynamic programming method is given to solve a runway scheduling problem is
described. In addition to finding optimal solutions, the authors also describe two efficient heuristics which use the
basic dynamic programming framework.

A. State Definition

Psrafties provided the foundation for the state definition used for a simpler version of this problem, which was then
also used by Rathinam et al. in [10]. In order to capture divergent heading operations not included by previous
research efforts, an extension of the state definition is developed. A state for a runway scheduling problem is the
number of aircraft yet to use the runway and the departure that just left to a particular departure heading.

Before showing the complete state definition, some notation is introduced. Any element li such that i = {1, ..., k1}
are the number of remaining aircraft to depart from departure queue i. Any element li such that i = {k1+1, ..., k1+k2}
are the number of remaining aircraft to depart from gate i. To continue, any element li such that i = {k1 + k2 +
1, ..., k1 + k2 + k3} are the number of remaining aircraft to cross the runway from runway crossing queue i. Finally,
mi belongs to the set {1, ..., k1 + k2 + k3} indicating the queue that the last departure aircraft which left to heading
i = {1, ..., n}. Formally then, a state S is defined as,

S = (l1, l2, .., lk1 , lk1+1, ..., lk1+k2 , lk1+k2+1, ..., lk1+k2+k3 ,m1,m2, ...,mn) (1)

For the remainder of this paper, the authors assume that the initial state So has qi aircraft remaining to use the
runway for i = {1, ..., k1 + k2 + k3} and that if no aircraft have departed to heading k at state S then mk = −1. To
reduce unnecessary notation, let K = k1 + k2 + k3, and without loss of generality the authors assume that there are
only two headings based upon operational practice. Furthermore, a state S with a corresponding sequence history s
(a sequence of aircraft which have used the runway) is denoted by Ss.

B. Precedence Constraints and Sample Recursion

To completely enumerate the feasible solution space (e.g., the possible runway schedule(s)), all precedence rela-
tionships must be handled appropriately while recursively branching from state to state. In practice precedence
constraints can be priority based, but the only precedence considered here are those which arise due to physical
conflicts on the airport surface. These constraints can easily be determined by observing an aircraft’s route and the
queuing structures.

To show how precedence constraints are built and respected through the state transformation, consider Figure
3. This figure shows a mock-up airport with various aircraft waiting to use the runway. This airport assumes two
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departure headings, and for sake of simplicity each departing aircraft is supposed to go to heading one. The state is
given next to each picture, indicating how the state transformations occur. The first stage of the recursion from the
initial state shown in Figure 3 is given in Figures 4(a), 4(b), and 4(c). Notice that the departure aircraft at the gate
(shown in the ramp area) can never use the runway because there is always at least 1 departure aircraft blocking its
path to the runway. In contrast, aircraft that are going to cross the runway do not need to wait until the aircraft in
the departure queue are cleared.

Figure 3. Initial state and Parent

(a) Child 1 (b) Child 2

(c) Child 3

Figure 4. First stage in recursion.
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To completely enumerate the state space, one simply needs to continue branching from each child state. When
two sequences converge to the same state, their cost functions need to be checked in order to verify the dominance of
one sequence over the other. These cost functions are described next, and their comparison is given in Section III.D.

C. Timing Constraints using Supporting Cost Functions

For each time based constraint, a supporting cost function is required. While the authors only consider wake vortex
separation, miles-in-trail requirements, and runway crossings, the ideas presented in this section suggest a general
methodology to account for any time based separation between aircraft. In this section, the authors provide a
mathematical description for each supporting cost function.

1. Wake Vortex Separation

To successfully include all variations of wake vortex separation, two separation matrices are provided in Tables 1 and
2. These matrices are a product of an empirical study of surveillance data. In particular, Table 1 represents the
separation required between two consecutive departure aircraft going to the same heading and Table 2 represents
the separation required between two consecutive departure aircraft going to different headings. Table 2 can only be
used when the consecutive aircraft are RNAV equipped. Usually, however, most aircraft are RNAV equipped. For
example, approximately 94% of aircraft at DFW are RNAV equipped [12].

Table 1. Inter-departure aircraft separation in seconds. Column aircraft lead row aircraft.

Small Large Heavy-B757

Small 45 67 80

Large 45 67 80

Heavy-B757 45 67 67

Table 2. Inter-departure RNAV separation in seconds. Column aircraft lead row aircraft.

Small Large Heavy-B757

Small 40 59 80

Large 40 41 80

Heavy-B757 40 41 67

To ensure that separation is satisfied using the above wake vortex tables, one must keep track of the last time
Hlast

h (Ss) a departure departed for each heading h at a given Ss. This value can be calculated for each heading
h = {1, 2} by the following recursion,

Hlast
h ((l1, ..., lK ,m1,m2)s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−N if mh = −1

Hlast
h ((l′1, ..., l

′
K ,m′

1,m
′
2)s′) if l′mh

= lmh

NULL if l′mh
�= lmh and ℘

TIME((l1, ..., lK ,m1,m2)s) otherwise

(2)

where for each k = {1, ...,K}

lk =

{
l′k − 1 if an aircraft just left queue k

l′k otherwise
(3)

and for each h = {1, 2}

mh =

{
k if a departure aircraft just left queue k and went to heading h

m′
h otherwise

(4)

and ℘ represents the following condition
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℘ =

⎧⎨
⎩

true if ∃j ∈ Pa
mh
lmh

such that U(j) = false

false otherwise
(5)

where U(j) is a binary function that is equal to false if and only if aircraft j has not used the runway yet.

TIME((l1, ..., lK ,m1,m2)s) indicates the time an aircraft last used the runway at state S = (l1, ..., lK ,m1,m2)
from sequence history s. A recursion for TIME((l1, .., lK ,m1,m2)s) is given later, but simply knowing its meaning
is sufficient for the current discussion.

From the above equations, one can see that the last time Hlast
h (Ss) an aircraft used heading h is either equal

to a large negative number −N if no aircraft has departed to heading h, equal to the time that the last departure
departed to heading h stored from the prior iteration (S′

s′) if the last aircraft to use the runway did not go to heading
h, NULL if a precedence constraint is violated, or time TIME(Ss) if the last aircraft to use the runway did go to
heading h.

2. Miles-in-trail

Miles-in-trail (MIT) restrictions can often arise due to convective weather from various locations throughout the
National Airspace System. In airspace local to airports, these restrictions may be realized by limiting the departure
rate to a particular departure fix by requiring a relatively large separation between consecutive departure aircraft to
that fix. For example, at Dallas/Fort Worth International Airport there are 16 departure fixes around the airport’s
local airspace, where departure aircraft will be routed through depending on their destination airport. For the
interested reader, MIT restrictions are covered in some detail in references [15] and [13].

To incorporate an MIT constraint for departure aircraft heading to the same departure fix f , the last time
F last
f (Ss) a departure aircraft used fix f must be tracked for each Ss. First assume that fix(a) is aircraft a’s

corresponding fix, then F last
f (Ss) can be updated for each fix f with the following recursion,

F last
f ((l1, ..., lK ,m1,m2)s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−N if m1 = m2 = −1

NULL if lmi �= l′mi
and ℘

TIME((l1, ..., lK ,m1,m2)s) if ∃i: fix(ami
lmi

) = f , lmi �= l′mi
, and ¬℘

F last
f ((l′1, ..., l

′
K ,m′

1,m
′
2)s′) otherwise

(6)

where l′k, m
′
h, ℘, and TIME((l1, ..., lK ,m1,m2)s) have the same meaning as before.

The above recursion updates the time F last
f (Ss) an aircraft last left to departure fix f to TIME(Ss) if a departure

just used fix f . If the aircraft to just use the runway did not go to fix f however, then F last
f (Ss) is either equal to

the prior state’s value F last
f (S′

s′), or a large negative number −N (e.g., no aircraft has left to this fix yet). Finally, if

a there is a precedence violation, then F last
f (Ss) is simply equal to NULL indicating an impossible state.

3. Runway Crossings

In addition to the above constraints, runway crossings are also accounted for. To successfully incorporate runway
crossings two timing values need to be tracked, the time the last departure departed Dlast(Ss) and the time the last
runway crossing occurred Clast

c (Ss) from runway crossing c at Ss. It can easily be seen that,

Dlast(Ss) = max
h={1,2}

{Hlast
h (Ss)} (7)

Furthermore, we can calculate the time the last runway crossing occurred Clast
c (Ss) for each runway crossing

queue c with the following recursion,

Clast
c ((l1, ..., lK ,m1,m2)s) =

⎧⎪⎨
⎪⎩

−N if lc = qc

TIME((l1, ..., lK ,m1,m2)s) if l′c �= lc

Clast
c ((l′1, ..., l

′
K ,m′

1,m
′
2)s′) otherwise

(8)

where TIME((l1, ..., lK ,m1,m2)s), l
′
k, and m′

h have the same meaning as before.

D. Main Cost Functions and Non-Dominating Solutions

For the runway scheduling problem, delay and throughput are the primary or main cost functions. While the time
values given in equations (2), (6), (7), and (8) are necessary to find optimal throughput and delay, they are simply
supporting values to achieve the optimal main cost function values. This section first provides the mathematical
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recursion to find the main cost function values, throughput (TIME()) and delay (DELAY ()). This section then
concludes by giving a condition for which all dual-optimal solutions must maintain.

1. Main Cost Functions

Throughput. As stated before, TIME(Ss) represents the last time an aircraft used the runway at state S with
corresponding sequence history s. This value is also the throughput or makespan of the runway and can be calculated
for recursively. Before showing its recursion, various time constants must be introduced:

1. Sepc indicates the time an aircraft takes to cross the runway at runway crossing c.
2. MITf indicates the time separation between consecutive departures to fix f .
3. R[x][y] indicates the time separation between consecutive departures going to different headings with weight

class x following weight class y
4. Sep[x][y] indicates the time separation between consecutive departures going to the same heading with weight

class x following weight class y
5. DEP is the estimated amount of time a departure takes to clear the runway.
6. X is the amount of time separation required between two consecutive runway crossing from the same crossing

queue.

In addition to the above values, M(a) is the weight class (Large, Heavy, Small) of aircraft a. Then, TIME(Ss) can
be calculated in the following manner (assuming all values are not NULL),

For each case (A-D) a description is given,

1. Case A: No aircraft has used the runway yet.
2. Case B: Departure aircraft at Ss just departed to heading 1 and fix f .
3. Case C: Departure aircraft at Ss just departed to heading 2 and fix f .
4. Case D: Aircraft at Ss just crossed the runway at crossing c.

TIME(Ss) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Case A

max{TIME(S′
s′) + max{maxc{Clast

c (S′
s′) + Sepc},

F last
f (S′

s′) +MITf , H
last
1 (S′

s′) + Sep[M(am1
lm1

)][M(a
m′

1

l′
m′

1

)],

Hlast
2 (S′

s′) +R[M(am1
lm1

)][M(a
m′

2

l′
m′

2

)]}, α(am1
lm1

)} if Case B

max{TIME(S′
s′) + max{maxc{Clast

c (S′
s′) + Sepc},

F last
f (S′

s′) +MITf , H
last
1 (S′

s′) +R[M(am2
lm2

)][M(a
m′

1

l′
m′

1

)],

Hlast
2 (S′

s′) + Sep[M(am2
lm2

)][M(a
m′

2

l′
m′

2

)]}, α(am1
lm1

)} if Case C

max{TIME(S′
s′) + max{Dlast(S′

s′) +DEP,Clast
c (S′

s′) +X},
α(ac

lc)} if Case D

(9)

Delay. To successfully add delay one simply needs to track the delay at each state Ss for each corresponding
sequence s. Delay is calculated as,

DELAY (Ss) =

{
0 if li = qi for all i ∈ {1, ..,K}
DELAY (S′

s′) + TIME(Ss)− α(ak
lk
) if last aircraft left from queue k

(10)

2. Non-dominating Solutions

Next, the authors provide a set of conditions that guarantee the optimality of a runway schedule. To start, two
sequences (e.g., s and s′) can only be compared against each other once they arrive at an identical state S. Then, to
guarantee that a sequence s is non-dominated by any other sequence s′ one must be sure that the following condition
is true,

For each s′ �= s

for each c = {k1 + k2 + k3 + 1, ...,K} Clast
c (Ss) < Clast

c (Ss′) or

for each f = {1, ..., F IX} F last
f (Ss) < F last

f (Ss′) or

for each h = {1, 2} Hlast
h (Ss) < Hlast

h (Ss′) or

TIME(Ss) < TIME(Ss′) or

DELAY (Ss) < DELAY (Ss′)

(11)
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If, for example, sequence s maintains values less than or equal to s′ for all time values being compared above, then
we say that s dominates s′. In this way, one would remove sequence s′ at state S from the possible solutions because
it is not-optimal. An inductive proof can be constructed showing that the aforementioned generalized dynamic
programming technique satisfies conditions that guarantee optimality. [16][17].

E. Heuristics

By taking advantage of CPS constraints to reduce the search space, two efficient heuristics to solve a runway scheduling
problem are presented. Both heuristics are formulated using the following 2-step process:

1. The first step tries to find a good reference sequence sref . To accomplish this, the initial state So is reconfigured
by artificially creating precedence constraints between aircraft at the gates.

2. The second step is a refinement process where the reference sequence sref is improved with respect to throughput
and delay. To accomplish this, sref is refined by re-solving the original problem (e.g., So) and by inducing CPS
constraints for each departure aircraft’s position with respect to sref .

To show this two step process, the authors explain how the first heuristic is formulated. The first heuristic reduces
the search space (e.g., number of possible sequences) by sorting departure aircraft at gates in first-come-first-served
virtual queues based upon aircraft weight class (step 1). Aircraft at gates of the same weight class are combined
into a single queue on a first-come-first-served basis, regardless of their other type-parameters (e.g., fix and heading).
After recombining gate aircraft into virtual queues, one solves the new problem with the redefined state using the
algorithm described above. After solving this problem, a solution is chosen to become sref for use in step 2.

In step 2, the reference sequence sref is improved by using CPS constraints. To achieve this, the initial state So

is solved using the generalized dynamic programming approach with CPS constraints on departure aircraft and sref
is used to define the CPS reference positions.

The second heuristic is similar to the first, but instead the reference sequence (step 1) is found by forming virtual
queues based upon departure heading instead of weight class.

For the remainder of this paper, including all figures and charts, the heuristic where weight is the deciding factor
for redefining the initial state will be referred to as the Weight Class Heuristic (WCH). For similar reasons, the
second heuristic will be referred to as the Heading Heuristic (HH).

IV. Simulation Results

In this section, simulation setup and results are given. The results show the computational time and quality of
runway schedules obtained by finding optimal and heuristic solutions.

A. Simulation Setup

For the following results a model of the east side of Dallas/Fort Worth International Airport in a south flow con-
figuration is used. Runway 17R is used as the departure runway which contains 3 departure queues, 2 departure
headings, 12 departure fixes, and 5 runway crossing queues. In addition, over 20 gates are used for the simulation.

All parameters were gathered empirically using ASDE-X [18][? ] surface surveillance data. The standard wake
vortex separation and reduced wake vortices separation for large, heavy, and small aircraft are given in Tables 1 and
2, respectively. For all simulated trials, only 1 fix had a miles-in-trail separation of 218 seconds. The authors assume
that it takes a departure 30 seconds to clear the runway, and it takes 14 seconds for a plane to cross the runway.
Finally, an aircraft crossing the runway will have 6 seconds separation between them (e.g., X = 6), irrespective of
crossing queue. This feature is to account for a time-lag when controllers issue voice clearancesb.

The authors consider 3 different baselines for this study. It is well known that tower controller strategies vary,
and so it is only fair to assume that controllers will respond to their tasks differently based on their experience and
skills. These baselines are summarized below,

1. FCFS-CPS-1 : This heuristic uses a first-come-first-served reference sequence with a CPS for departure aircraft
of at most 1

2. FCFS-CPS-3 : This heuristic uses a first-come-first-served reference sequence with a CPS of position for
departure aircraft of at most 3.

3. FCFS-CPS-5 : This heuristic uses a first-come-first-served reference sequence with a CPS for departure aircraft
of at most 5.

Aircraft are uniformly distributed to fixes, headings, and weight class. The total number of aircraft is split
between the number of aircraft crossing the runway and the number of aircraft departing off the runway. Traffic loads
ranged from 10 to 30 in increments of 2, and therefore, there are eleven different traffic loads. All aircraft are able

bEffectively, this reduces the number crossing queues to 1. See [7].
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to reach the runway within 15 minutes so that each simulation is relatively dense. For each of the 11 traffic loads,
there are 100 uniformly distributed instances. In total then, there are 1100 (11 × 100) runs for each algorithm (2
heuristicsc, 1 optimal, 3 baselines)d.

B. Results

Since there could be more than one solution in the set of non-dominated solutions, a thorough study should analyze
all solutions and their various characteristics. For the purposes of this study however, one solution was chosen. For
the optimal and heuristics, the solution chosen was the one that contributed to best delay. In contrast, controllers
are often concerned with best throughput, and therefore, the best throughput solution was chosen for all baselines.

First, an analysis of delay savings is given. The main purpose is to understand how much delay, measured as the
excess time over α(i), was attributed by each algorithm. To compare how well each of the heuristics and optimal
performed over the baselines, the expected delay per aircraft is given in Table 3. This table shows that the optimal
achieves a 40 to 70 percent decrease in the expected delay per aircraft depending on the baseline its compared against.
In addition, the heuristics show similar results compared to the baselines and almost have the same expected delay
per aircraft as the optimal.

Table 3. Delay Per Aircraft

Optimal WCH HH FCFS-CPS-1 FCFS-CPS-3 FCFS-CPS-5

Avg. Delay (sec) per Aircraft 118.70 124.53 120.69 365.84 266.07 209.02

%Decrease over FCFS-CPS-1 67.56 67.01 65.96

%Decrease over FCFS-CPS-3 55.34 54.64 53.20

%Decrease over FCFS-CPS-5 43.21 42.26 40.42

Next, an analysis is given to illustrate the benefit of the heuristics with respect to increased traffic loads. Figure
5(a), for example, shows the difference in delay attributed by the Weight Class Heuristic less that of the optimal.
Furthermore, Figure 5(b) shows the difference in the delay attributed by the Heading Heuristic less that of the
optimal. Since there are 100 runs (independent axis) for each traffic load, the results show how well the heuristics
perform as the traffic load progressively increases. For example, runs 1-101 are for a traffic load of 10 aircraft, 102-201
are for a traffic load of 12, etc... Therefore, when the number of aircraft for a given run is low, the heuristics perform
well; however, when the number of aircraft is high, these heuristics perform increasingly worse.

To continue, the Weight Class Heuristic shows a maximum deviation in optimal delay of 1700 seconds approx-
imately, and the Heading Heuristic shows a maximum deviation in optimal delay of about 590 seconds. While it
appears the Heading Heuristic out performs the Weight Class Heuristic, this is likely a function of the inputs. A
more precise study could help to understand the scenarios where one heuristic outperforms the other.

In order to determine how well the optimal, heuristic(s), and baseline(s) perform with respect to throughput, the
authors show the expected number of runway operations per hour in Table 4. The optimal and heuristics achieve
an average of approximately 63 runway operations per hour, whereas the best baseline (FCFS-CPS-5) achieves an
average of approximately 62 runway operations per hour. For the optimal and heuristics, there is approximately an
%8 increase of throughput over FCFS-CPS-1 and approximately a %1 increase over FCFS-CPS-5. This suggests that
the heuristic(s) and optimal solution perform better than all three baselines with respect to throughput on average.

Table 4. Number of Runway Operations

Optimal WCH HH FCFS-CPS-1 FCFS-CPS-1 FCFS-CPS-1

Avg. # of Runway Ops. per Hour 63.01 62.81 62.92 58.11 61.21 62.23

%Inc. over FCFS-CPS-1 8.40 8.12 8.13

%Inc. over FCFS-CPS-3 2.99 2.61 2.63

%Inc. over FCFS-CPS-5 1.31 1.07 1.08

cNote, during the refinement process (step 2) for the heuristics a CPS of 5 was used.
dUnfortunately, when there are 30 aircraft present, the computer system is not capable of storing the required memory to

solve for the optimal solution, resulting in 1033 runs (67 runs were not completed). Memory is relatively cheap, and therefore,
acquiring additional memory proves to be no challenge if solving larger problem instances is desired.
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(a) Weight Class Heuristic

(b) Heading Heuristic

Figure 5. Difference in delay between optimal solution and heuristic solution

Finally, a comparison of the computational effort of the heuristics and optimal is given below. Figures 6, 7, and 8
indicate the computation time (in seconds) to complete each run for the optimal, Weight Class Heuristic, and Heading
Heuristic, respectively. It’s not surprising that the computation time increases rapidly to find the optimal solution as
the number of aircraft increases. The computation time for the Weight Class Heuristic increases marginally up to 2.5
seconds from close to 0 seconds for smaller instances (10 aircraft). Moreover, the computation time for the Heading
Heuristic increases from approximately 0 seconds for smaller instances up to .17 seconds for larger instances. These
results suggest that both heuristics would be suitable for real time application.

Figure 6. Computation times using the optimal.
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Figure 7. Computation times using the Weight Class Heuristic.

Figure 8. Computation times using the Heading Heuristic.

V. Conclusion

A generalized dynamic programming method was presented to solve the runway scheduling problem. The algo-
rithm constructed from the generalized dynamic programming technique differs from other formulations because it
can find the set of non-dominated optimal solutions with respect to delay and throughput while allowing constraints
that violate the triangle inequality . Two new heuristics based on the generalized dynamic programming technique
are presented that show suitable computational performance and solution quality for real-time applications. The
heuristics and optimal outperform 3 baselines which attempt to model different controller strategies. The heuristics
come within 5% of the optimal’s delay per aircraft and achieve approximately the same throughput.

For future studies, it will be important to expand the current tool to incorporate aircraft on the taxiway. To
accomplish this, the authors believe a taxi scheduler will need to be integrated as part of the final solving technique.
When taxi conflicts arise on the airport surface they can hurt the runway schedulers solution or completely cause
the solution to be infeasible. In particular, since the runway scheduler does not account for taxiway conflicts,
certain sequences it suggests could be infeasible or completely unreasonable to practice. In addition to adding a taxi
scheduling element, uncertainty analysis needs to be conducted to determine algorithmic robustness. For example,
it seems unlikely that the runway schedules found from the presented algorithms will be followed precisely due to
uncertainties in α(i), and therefore doing an uncertainty analysis will help to provide a meaningful interpretation of
the benefits presented in this paper. Since the application of this algorithm is at a tactical level of scheduling, rolling
planning horizon algorithms need to be implemented to mend solutions from consecutive schedule calls. Finally
because these algorithms could easily be expanded to additional airport systems, one could provide a deeper analysis
of algorithmic performance across many airport systems.
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