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ABSTRACT
Learning in multiagent systems can be slow because agents
must learn both how to behave in a complex environment
and how to account for the actions of other agents. The
inability of an agent to distinguish between the true en-
vironmental dynamics and those caused by the stochastic
exploratory actions of other agents creates noise in each
agent’s reward signal. This learning noise can have unfore-
seen and often undesirable effects on the resultant system
performance. We define such noise as exploratory action
noise, demonstrate the critical impact it can have on the
learning process in multiagent settings, and introduce a re-
ward structure to effectively remove such noise from each
agent’s reward signal. In particular, we introduce Coordi-
nated Learning without Exploratory Action Noise (CLEAN)
rewards and empirically demonstrate their benefits.

Categories and Subject Descriptors
I.2.6 [Learning]: Miscellaneous

General Terms
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1. INTRODUCTION
In multiagent systems, agents provide a constantly chang-

ing background in which each agent needs to learn its task
[3, 4, 8]. As a consequence, agents need to extract the un-
derlying reward signal from the noise of other agents act-
ing within the environment. Issues arise when agents are
treated as a part of the environment, and their exploratory
actions are seen by other agents as stochastic environmental
dynamics. The inability of agents to distinguish the true
environmental dynamics from those caused by the stochas-
tic exploratory actions of other agents creates noise on each
agent’s reward signal. This problem cannot simply be ad-
dressed by turning off exploration and acting greedily (this
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has been repeatedly shown to result in poor performance as
agents always exploit their current knowledge which is fre-
quently incomplete or inaccurate). Additionally, methods
of slowly turning down exploration (e.g., annealing) or in-
telligently modifying exploration (e.g., Win-Or-Learn-Fast
WOLF [2]) fail to fully address this issue. This is because
these techniques still rely upon agents taking explicit ex-
ploratory actions within the environment. CLEAN rewards
address this issue using implicit exploration via counterfac-
tual action based reward shaping techniques, such that all
explicit exploration is removed from the learning process.

2. EXPLORATORY ACTION NOISE
Agents often treat other agents as part of the environment

— the exploratory actions of other agents become stochas-
tic environmental noise [5, 6, 7, 10]. Here, agents are then
unable to distinguish when their peers are taking purpose-
ful actions or are exploring. This may cause agents bias
their policies such that they actually depend upon the ex-
ploratory actions of other agents to perform well. Agents
learning in the presence of exploration may not be learning
optimal policies (Figure 1a) because agents cannot distin-
guish between true environmental dynamics and dynamics
caused by the exploratory actions of other agents. Here,
agents (the solution) actually become part of the problem
(adding stochastic noise to the environment). This holds for
both off-line and on-line learning methods.

3. CLEAN REWARDS
Coordinated Learning without Exploratory Action Noise

(CLEAN) rewards address the structural credit assignment
problem and issues arising from learning noise caused by
exploration to promote learning, coordination, and scalabil-
ity. CLEAN rewards separate explicit from implicit explo-
ration. Agents behave greedily outwardly (explicitly) and
explore internally (implicitly) via counterfactual exploratory
actions. Agents use Equation 2 to perform counterfactual
reward calculations:

C1,i(a) ≡ G(aai←a′
i
)−G(a) (1)

a is the system action vector and ai is agent i’s action.
This gives the agent a reward that represents how the sys-
tem would have performed had it not followed its best pol-
icy, but instead had taken some counterfactual action, a′

i.
CLEAN rewards use implicit counterfactual exploration to
eliminate explicit exploratory action noise within the envi-
ronment. The Gaussian Squeeze Domain A set of agents
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Figure 1: Gaussian Squeeze Domain Results: a)When agents stop exploring in the GSD domain (episode 1000), system
performance decreases due to exploratory action noise. b) CLEAN rewards outperform global and difference rewards. c)
CLEAN rewards maintain superior performance as scaling increases.

in attempt to learn to optimize the capacity of the following
system objective:

G(x) = xe
−(x−μ)2

σ2 (2)

where x is the sum of the actions of agents (x =
∑n

i=0 ai),
μ is the mean and σ is the standard deviation of the system
objective. Here, μ and σ define the target capacity, x, that
the agents must coordinate their actions to achieve.

4. RESULTS
There were four types of experiments: random agents

(baseline) and three types of Q-learning agents (global (G),
difference (D) [1], and CLEAN (C1,i). Figure 1b shows the
results for 1000 agents learning in the Gaussian Squeeze Do-
main with μ = 175, σ = 175. The performance of agents
using global rewards G is poor in both the online and the
offline settings because global rewards do not provide indi-
vidual agents with specific feedback on how their individ-
ual actions impacted the system performance compared to
the actions of all of the other agents in the system (i.e.,
each agent’s reward signal gets lost in the “noise” of the rest
of the system). Agents using difference rewards D outper-
formed agents using G because difference rewards provide
each agent with a reward that is reflective of it’s own indi-
vidual impact on the system performance. Unfortunately,
difference rewards do not address the issues associated with
exploratory action noise. The disparity in performance be-
tween CLEAN rewards and difference rewards can be di-
rectly attributed to the impact of exploratory action noise
on the learning process. As seen, exploratory action noise
can have a massive impact on learning performance, espe-
cially in large tightly coupled multiagent systems. Agents
using CLEAN rewards all converge to nearly optimal per-
formance, maintaining 5 times the performance of the next
best technique (i.e., D) with scaling up to 1000 agents.

The GSD experiment in Figure 1c considers how perfor-
mance changes as complexity increases. Figure 1c shows the
results of scaling the number of agents with a fixed mean
and variance (μ = 175 and σ = 175). CLEAN rewards are
more robust to scaling (increased congestion) than G and D
because agents receive a cleaner learning signal.

5. DISCUSSION AND CONCLUSION
There has been a lot of research involving the exploration-

exploitation tradeoff within the multiagent learning litera-
ture. However, relatively little work has been done to di-
rectly address the impact of learning noise caused by the

exploratory actions of agents. We first showed the potential
impact of exploratory action noise on learning, demonstrat-
ing that exploratory actions can cause agents to bias their
policies to depend upon the exploratory actions of others,
which can lead to suboptimal learning. We then introduced
CLEAN rewards, which are shaped rewards that promote co-
ordination and scalability in multiagent systems by address-
ing exploratory action noise caused by agent exploration.
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