
Automated Testcase Generation for Numerical
Support Functions in Embedded Systems

Johann Schumann1 and Stefan-Alexander Schneider2

1 SGT, Inc./ NASA Ames, Moffett Field, CA 94035, Johann.M.Schumann@nasa.gov
2 Schneider System Consulting, München, Germany, sahschneider@gmx.de

Abstract. We present a tool for the automatic generation of test stimuli
for small numerical support functions, e.g., code for trigonometric func-
tions, quaternions, filters, or table lookup. Our tool is based on Klee to
produce a set of test stimuli for full path coverage. We use a method of
iterative deepening over abstractions to deal with floating-point values.
During actual testing the stimuli exercise the code against a reference
implementation. We illustrate our approach with results of experiments
with low-level trigonometric functions, interpolation routines, and math-
ematical support functions from an open source UAS autopilot.

1 Introduction

Modern aircraft, spacecraft, or cars contain a large amount of software that is
required to function properly for safe system operation and to accomplish the
mission. It is estimated that a modern mid-size car is running more than 100
millions lines of code [1] on potentially more than 100 individual processing units.
With the increase of software size and complexity, model-based approaches have
found their way into safety-relevant applications in the aerospace and automotive
domain. Although extensive analyses can be performed on the model level, a
large percentage of the overall development cost for safety-critical software is
spent on Verification and Validation (V&V) of the actual code and has become
a huge challenge for system integrators and subsystem vendors.

Several prominent standards have been developed that require testing with a
specific coverage metric depending on the safety-criticality of the code. For exam-
ple, ISO 26262 Road Vehicles [2] requires testing according to MC/DC (Modified
Condition Decision Coverage) for code belonging to Automotive Safety Integrity
Level (ASIL) D. For levels A and B, only statement coverage is “highly recom-
mended”. Similarly, DO 178-C [3] defines levels A–E, where level A concerns the
most critical software that has to be tested to 100% MC/DC coverage.

The application software, in particular, when generated using a model-based
tool, requires a large number of low level support routines, which typically
include advanced floating point operations (like trigonometric functions, matri-
ces, vectors, or quaternions) as well as support functions for the auto-generated
code (e.g., table look-up, interpolation, filters, or integrators). Many embedded

system use the Netlib1 mathematical library, or parts thereof like FDLIBM.2

Also, John Hauser’s SoftFloat3 is being widely used. Most underlying algorithms,
approximations, and tables are based on well-known algorithms [4]. Often such
routines are part of the compiler or operating system package. Therefore, they
are assumed to be given and correct and their proper testing tends to be ignored.

Because testing of such routines is essential, but manual test case generation
is cumbersome and time consuming, we have developed a tool for the automatic
generation of test stimuli for small numerical subroutines. In the following, we
will first give a description of testcase generation using symbolic execution with
Klee. We then describe our tool architecture and discuss iterative deepening
of abstractions. To illustrate advantages and limitations of our tool, we present
results of experiments on trigonometric subroutines, table lookup, and a set of
low-level mathematical support functions for an open source autopilot.

2 Automatic Testcase Generation

The input to our tool is a support function o = f(x1, . . . , xm) implemented4 in C
or C++. The tool generates test stimuli, i.e., a set of vectors with concrete values
〈xi

1, . . . , x
i
m〉 that, when given as parameters to f , will fully cover the code of f .

For testing, we use the test stimuli to exercise f , compare the calculated result
o against a reference implementation and measure the code coverage according
to the required coverage metric using an external tool.

Since we test against a reference implementation and do not use the output
of our tool as an oracle, soundness of stimulus generation tool is not required.
Tool unsoundness, however, can lead to an increased number of unnecessary test
stimuli, decreasing testing performance.

Due to the requirement of handling floating-point values, the testcase gener-
ation has to be incomplete in general. Our tool architecture uses iterative deep-
ening over abstractions to accomplish a reasonably complete set of test stimuli.
We obtain the actual coverage by using an external trusted tool.

For the testcase generation, we use Klee,5 which is a symbolic execution
engine based upon the LLVM framework.6 It exhaustively explores all paths of
the code; variables of interest (in our case, xi) are treated as symbolic values, and
each path is represented by a path constraint. For example, the code fragment
if (x<0 || x>10) A; else B; produces three distinct path constraints: 〈[x < 0] :
A〉 means that A can be reached by making the first condition true; similarly for
〈[x > 10] : A〉, the second condition must be true. Finally, the path constraint
〈[¬(x < 0) ∧ ¬(x > 10)] : B〉 reaches B. Solving each path constraint leads to a
set of test stimuli, for example, {−1, 11, 5}. Here, 3 test cases are needed for full

1 http://netlib.org
2 http://www.netlib.org/fdlibm
3 http://jhauser.us/arithmetic/SoftFloat.html
4 This code can also include calls to initialize objects or data structures.
5 klee.llvm.org or [5]
6 http://www.llvm.org

path coverage; statement coverage only requires two stimuli, e.g., {−1, 5}. Klee
uses the powerful STP7 solver to find solutions for the path constraints. However,
Klee only provides very little support for floating point numbers; in most cases,
Klee silently instantiates the variable with a random value. KLEE-FP [6] has
been designed to reason about equivalence of floating point numbers and is not
suitable for this task. Yet, we chose to use Klee, because it can handle the full
C/C++ syntax and provides support for bitwise operations, which is essential
for our purposes.

Our tool architecture and process is depicted in Figure 1. Starting with code
under test P , which implements the function o = f(·) in one or more syntactic
procedures, and an initial set of parameters d = 0, a parameterized abstraction
is generated and applied to P . In this abstraction, all variables of type float or
double are converted to integers. Each floating point constant c is represented as
sign(c)�min(maxint, |c| × 10d)�. We chose a base of 10 because then the abstrac-
tion can be done on the source code by simply moving decimal points. Embedded
function calls to other low-level routines (e.g., sqrt, sin) are abstracted by sim-
ple Taylor series or table lookup. Since most of the results of floating point
operations in P do not show up in equality comparisons in conditional state-
ments, our abstraction is often successful by using this fixed-point abstraction
with d decimal places. Additional abstraction parameters define, how often P
is invoked during each test—an important step for testing reentrant functions
like filters. The abstracted code PA is processed by Klee, which returns a set of
(abstracted) test stimuli TA. They might cover all paths in PA or only a subset
if Klee timed out. We translate TA into actual test stimuli and use them to
exercise P ; coverage is measured on the original code P . If we are not satisfied
with the results, the parameters controlling the abstraction are incremented and
the iterative deepening loop starts again.

d=0 P

Deabstract

KLEEab
st

ra
ct

io
n(

d)

100%?

d=d+1

Abstract

PA TSA

P

Cov. test

Stop

Start

P

Fig. 1. Tool architecture

7 http://people.csail.mit.edu/vganesh/STP_files/stp.html

3 Experiments

In this section, we describe selected experiments with this tool and discuss
findings, advantages, and limitations of our approach.
Trigonometric Functions. Functions to calculate trigonometric functions are
often considered part of the operating system or compiler. However, for small
embedded systems, such functions must be provided externally and must be
tested accordingly. As an example, consider a standard implementation (e.g.,
[8]) of the trigonometric function double sin(double x). In a first step,8 the
input x is broken down into its components (exponent, mantissa, and sign)
according to IEEE 754 [7] using a C union and bit-fields. After handling cases
for infinity, NaN, and very small argument values, x is normalized to [0 . . . π/2],
and the quadrant is determined. Finally, the function value is approximated by
a 7th order polynomial. A complex algorithm for multiplication without loss
of accuracy is used (see [8], [9]). Multiple macro definitions are used to handle
machine-dependent issues. Although there are no loops in this code, there is a
substantially complex control flow with 10 nested if-then-elses and one switch
statement with 4 cases and an empty default label. Such a code structure makes
a manual development of test cases hard.

With our tool, we generated a total of 44 test stimuli in less than 10s CPU
time on an Intel Macbook Pro. This set of stimuli also contain NaN and Inf,
which are encoded according to IEEE 754 by specific settings of mantissa and
exponent bits. Several iterations of abstractions resulted in d = 7. Due to tech-
nical restrictions of KLEE, it also was necessary to pass two 32bit integer values
instead of one 64bit double to the function.

When executing the generated test stimuli, two interesting observations could
be made: (1) a comparison of the calculated values against the standard Mac
OSX implementation revealed that, while the error between this code and the
reference was in general between 10−11 and 10−18, two test stimuli caused errors
that were larger than 3 × 10−6, which might give raise to some concern. (2) a
detailed analysis of the results with the industry-standard testing and coverage
tool LDRA9 revealed that this piece of code, which is actually a part of a com-
mercial distribution, contains dead code. The empty default label in the switch
statement can never be reached due to the range of the argument. Thus no test
set can produce 100% MC/DC coverage, a fact which makes one wonder if that
routine was ever tested according to that metric.
Interpolation Table. One of the most common block types in model-based
systems like Simulink is the table lookup or 1-D interpolation block. Given an
input u, it calculates an approximation of f(u), whereby values of f(x) for mono-
tonically increasing values of x are given statically as a table (see Figure 2A for a
code sketch). We have analyzed a generic version of an 1-D table lookup, which
is somewhat similar to Mathworks’ rt look.c.10 After checking for boundary
cases, a binary search is used to find the appropriate indices into the table.

8 See suppl. material ti.arc.nasa.gov/profiles/schumann/publications/nfm2014
9 http://ldra.com

10 rtw demos/rt look.c is found in Mathworks’ distribution of RealTime Workshop.

We used our tool to generate test stimuli for two relevant scenarios: (1) given
a concrete lookup table 〈x, f(x)〉1..len, find values for u such that all paths are
covered. E.g., for x = 〈−2, 0, 3, 5, 8〉, and f the identity function, the following six
test cases for u are generated in less than 0.1s: u ∈ {−2147483648,−1, 0, 2, 4, 6, 8}.
Here, d = 1 was sufficient to obtain full coverage. In general, the necessary value
of d depends on the minimal difference Δ = xi+1−xi. In the abstracted program
Δ must be at least 2 in order to trigger the divide-and-conquer algorithm. This
requires that d ≥ log10	mini(xi+1−xi)
. In scenario (2), given the desired length
len of the interpolation table, triples (〈x, f(x)〉, u) with length(x) = len are gen-
erated such that the code is fully covered. Note that the values of x must be
increasing monotonically. Therefore, the additional constraint x1 < x2 . . . must
be specified in the test driver. Figure 2B shows, for different values of len, the
number C0 of all generated stimuli and the number C of stimuli that obey our
constraint and can be used as proper test stimuli.

double lookup (double ∗x , double ∗ f , int len , double u){
i f (u <= x [0]) return f [0] ; // o u t s i d e t h e t a b l e (l e f t)
else i f (u >= x [len −1]) return f [len −1]; // o u t s i d e (r i g h t)
else

for (; ;) { // do b i n a r y s e a r c h
a s s e r t ((x [bot] < u) && (u < x [top])) ;

ind = (bot + top)/2 ; // f i n d m i d d l e
i f (. . .)

top = . . . ; bot = . . .
else

return f [ind] ;
} }

len C0 C t[s]

5 15 11 0.3
10 32 9 1.2
20 66 19 4.6
30 96 29 10.2

100 330 231 130

Fig. 2. A: code sketch of interpolation routine, B: number of generated test stimuli

All results have been obtained with the assertion assert (Fig. 2A) turned off.
When activated, it is textually replaced by a conditional statement that aborts
the execution if the condition is not met. Interestingly, Klee could still find a
full coverage test set. This indicates that there exist stimuli u, which, for a given
table x, cause the abortion of the execution. In an embedded system, such a
behavior could have disastrous consequences. A closer look at the code reveals
that the actual binary search loop is correct, but the assertion in rt look.c is
wrong (R2014a and earlier).
ArduPilot. ArduPilot11 is an open source project aiming to provide high qual-
ity code for a simple autopilot for small fixed wing or rotorcraft UAVs, RC cars,
or model boats. Ardupilot is implemented in C++ and runs on the Arduino
platform.12 Its mathematical libraries contain numerous functions dealing with
trigonometric functions (via table lookup), vectors, matrices, quaternions, and
filters. We used our tool to generate test stimuli for a number of those functions,
leveraging the fact that Klee can work on C++ code with templates. Although
the code for each function is short and usually does not contain any loops, the
presence of (nested) conditional statements makes our tool convenient for the
task of testcase generation. In our experiments, we generated between 2 and
more than a hundred test stimuli (e.g., 116 for a function, which determines if a

11 http://code.google.com/ardupilot-mega
12 http://arduino.cc

point is inside or outside a closed polygon with 7 edges).

4 Conclusions and Future Work

We have presented a tool for the automatic generation of test stimuli for small
numeric support functions. Based upon Klee, it uses iterative deepening over
abstractions to deal with floating point operations. Because in practically all
examples we analyzed so far, the results of floating point operations in P do not
show up in equality comparisons, our abstraction is often successful in producing
a sufficient set of test stimuli. Although our tool has been able to conveniently
and automatically generate test stimuli for a number of small, but often “tricky”
numerical support routines, our approach still has several shortcomings. For
example, configuration parameters and #define macros or template parameters
(e.g., length of a filter buffer) currently cannot be treated symbolically and thus
cannot be varied by our tool. Furthermore, preparation and abstraction of the
code has not been fully automated yet, and support for writing test drivers and
test scripts with symbolic variables is still very primitive. Obviously, scalability
is an issue with larger programs, or programs, which contain nested loops (e.g.,
matrix operations). There, the restriction to MC/DC coverage to substantially
reduce number of explored paths and generated stimuli and an abstraction for
loops or the ability to modify Klee’s behavior on generating path conditions
should be investigated.

References

1. Charette, R.: This car runs on code (2009) http://spectrum.ieee.org/

green-tech/advanced-cars/this-car-runs-on-code

2. Intl. standard ISO 26262 Road Vehicles – functional safety 1st ed (2011)
3. RTCA: DO-178C: Software considerations in airborne systems and equipment cer-

tification (2011)
4. Hart, J.F., Cheney, E.W., Lawson, C.L., Maehly, H.J., Mesztenyi, C.K., Rice, J.R.,

Thacher, J.H.G., Witzgall, C.: Computer Approximations. SIAM Series in Applied
Mathematics. John Wiley and Sons (1968)

5. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: 8th USENIX Symp on
Operating Systems Design and Implementation, OSDI. (2008) 209–224

6. Collingbourne, P., Cadar, D, Kelly, P.: Symbolic Crosschecking of Floating-Point
and SIMD Code. In: EuroSys (2011).

7. IEEE standard 754 for floating-point arithmetic (2008)
8. Overton, M.L.: Numerical computing with IEEE floating point arithmetic - includ-

ing one theorem, one rule of thumb, and 101 exercises. SIAM (2001)
9. Huckle, T., Schneider, S.A.: Numerische Methoden: Eine Einführung für Infor-

matiker, Naturwissenschaftler, Ingenieure und Mathematiker. Springer (2006)
10. Giannakopoulou, D., Bushnell, D.H., Schumann, J., Erzberger, H., Heere, K.: For-

mal testing for separation assurance. Annals of Mathematics and Artificial Intelli-
gence 63 (2011) 5–30

Automated Testcase Generation for Numerical
Support Functions in Embedded Systems

(Supplemental Material)

Johann Schumann1 and Stefan-Alexander Schneider2

1 SGT, Inc./ NASA Ames, Moffett Field, CA 94035, Johann.M.Schumann@nasa.gov
2 Schneider System Consulting, München, Germany, sahschneider@gmx.de

Abstract. This document contains supplemental material only.

Methods ASIL
A B C D

1a Statement Coverage ++ ++ + +

1b Branch Coverage + ++ ++ ++

1c MC/DC Coverage + + + ++

Table 1. Different code coverage metrics according to ISO 26262 Road vehicles –
Functional safety, 6–9, Table12. The symbol ++ indicates highly recommended and +
recommended for the identified Automotive Safety Integrity Level (ASIL).

Listing 1.1. Memory format for IEEE 752 double floating point numbers and
data structure for bitwise access.

union i e e e b i t s {
double d ; // d o u b l e
struct { // m a n t i s s a+e x p o n e n t

unsigned int m2: 3 2 ; // m a n t i s s a 2
unsigned int m1: 2 0 ; // m a n t i s s a 1
unsigned int exp : 1 1 ; // e x p o n e n t
unsigned int s i gn : 1 ;
} b ;

struct {
unsigned int i 1 ; // 32 b i t p a c k a g e
unsigned int i 2 ;

} i ; } ;

Listing 1.2. The pseudo-code for the argument qualification and polynomial
approximation of the numerical support function (double) sin((double)x).

double s i n (double x) {

md. d = x ; // b r e a k t h e a r g umen t up i n t o p a r t s
xexp = (int) md. b . exp ;

// h a n d l e b o u n d a r y c o n d i t i o n s
i f (xexp == IEEE MAX) { // x i s Not−a−Number o r i n f i n i t y

i f (md. b .m1 | | md. b .m2)
return x ; // x i s Not−a−Number

else
return NaN; // 0 . 0 / 0 . 0

} else i f (xexp == 0) // x i s i n f i n i t y o r d e n o r m a l i z e d
return x ;

else i f (xexp <= (IEEE BIAS − IEEE MANT − 2))
return x − x∗x ; // x i s v e r y s m a l l

else i f (xexp <= (IEEE BIAS − IEEE MANT/4))
return x − x ˆ3/6; // x i s s m a l l

}
i f (x < 0) {

s e t s i gn to 1 ; // n e g a t i v e
x = − x ;

}
// map t o r a n g e o f a r g umen t t o x <= p i /2
i f (xexp < IEEE BIAS) { // 2 ˆ 5 2 / 4 < x < 1

sk ip ; // x a l r e a d y < p i /2
else i f (xexp <= (IEEE BIAS + IEEE MANT)) {

xm = b ∗ 2 p i h i + 1/2 c
xn . d = xm + mag52
bot2 = xn . b .m2 & 3u
// s p l i t xm i n t o t o p 26 and b o t t om 26 b i t s
s p l i t (a1 , a2 , xm) ;
exactmul2 (x3 , x4 , xm, a1 , a2 , p i2 h i , p i 2 h i h i , p i 2 h i l o) ;
exactmul2 (x5 , x6 , xm, a1 , a2 , p i 2 l o , p i 2 l o h i , p i 2 l o l o) ;
x = ((((x − x3) − x4) − x5)− x6) − xm∗ p i 2 l o 2 ;

// r e d u c e t o 0 <= x <= p i /2

switch (bot2) {
case 0 : i f (x < 0 . 0) { x = −x ; s i gn ˆ= 1 ; } break ;
case 1 : i f (x < 0 . 0) { x = p i 2 h i + x ; } else { x = p i 2 h i − x ; } break ;
case 2 : i f (x < 0 . 0) { x = −x ; } else { s i gn ˆ= 1 ; } break ;
case 3 : s i gn ˆ= 1 ; i f (x < 0 . 0) {x = p i 2 h i + x ;} else {x = p i 2 h i − x ;}break ;
default : ;
}

} else { // 2ˆ53 <= x
return LOSS ;

}
x = x∗ 2 p i h i ; // map t o r a n g e 0 <= x <= 1
i f (x > X EPS) {

x2 = x∗x ;
x = POLYNOM(x2) ; // Horn e r 7 t h d e g r e e
} else {
x = x ∗ p i 2 h i ;
}

i f (s i gn) x = −x ;
return x ;
}

P [.]

P [0] 0.15707963267948963959e1
P [1] -0.64596409750621907082
P [2] 0.7969262624561800806e-1
P [3] -0.468175413106023168e-2
P [4] 0.16044116846982831e-3
P [5] -0.359880911703133e-5
P [6] 0.5688203332688e-7
P [7] -0.64462136749e-9

Table 2. Coefficients for the 7-the degree polynomial used within the sin algorithm.
The polynomial is evaluated using a Horner schema.

Listing 1.3. Simplified Pseudo-Code for Table Lookup.

double lookup (double ∗x , double ∗ f ,
int len , double u){

i f (u <= x [0]) // ou t s i d e the t a b l e (l e f t)
return f [0] ;

else i f (u >= x [len −1]) // ou t s i d e (r i g h t)
return f [len −1] ;

else
for (; ;) { //do b inary search

a s s e r t ((x [bot] < u) && (u < x [top])) ;
ind = (bot + top) / 2 ;
i f (. . .

top = . . .
bot = . . .

else
return f [ind] ;

. . .
}

}

Listing 1.4. KLEE test driver for 1D table lookup

main (){
const stat ic int x [] = {−2 ,−1 ,0 ,1 ,2} ;
const stat ic int F [] = {0 , 1 , 2 , 3 , 4} ;
const int l en = 5 ;
int u , va l ;

k l ee make symbol i c (&u , s izeof (u) , ”u”) ;
va l = lookup (x ,F , len , u) ;

}

Listing 1.5. Code fragment for monotonicity constraint

i f (x [0] < x [1] && x [1] < x [2] && . .)
r=lookup (. .) ;

else
r=−1;

n xn Eref

1 0.0488281250 1.9e-11
2 0.048828145354091221 1.9e-11
3 590295810358705651712.0 N/A
4 137438954176.75451660156250 0
5 131072.02110725082457065582 1.1e-16
6 1.021675541361788 0
7 2048.0 5.6e-17
8 2097152.28180931787937879562 1.1e-16
9 1048576.0440363052263855934 1.1e-16

10 512.011448051895968092 0
11 8192.0103308404868585058 1.1e-16
12 8192.0195236411855148617 0
13 2097152.13230490731075406075 0
14 68719477974.53822326660156250 0
15 68719484038.4492340878906250 1.1e-16
16 1.022142187527940 0
17 8192.0189697450514358934 0
18 137438958099.9297790527343750 3.5e-18
19 32.070940668450703 1.1e-16
20 -0.0488281250 1.9e-11
21 -0.048828146286775316 1.9e-11
22 -590295810358705651712.0 N/A
23 -1.017512665761998 1.1e-16
24 -4096.026914338559436146 1.1e-16
25 -2199023747489.17871093750 1.1e-16
26 -137438977261.382751464843750 0
27 -2097152.39780779741704463959 2.2e-16
28 -2097152.28940287604928016663 1.1e-16
29 -2097152.37323756702244281769 0
30 -524288.0 0
31 -137438963969.7497253417968750 3.4e-06
32 -68719489512.50517272949218750 3.8e-06
33 -1.01257808057709 0
34 -1.017452079403846 1.1e-16
35 -33554434.43163714557886123657 0
36 -32.0541842897661127 1.1e-16
37 -524288.05263395013753324747 5.6e-17
38 -1.0749030579782 1.1e-16
39 0.044409 0
40 0.0 0
41 0.0 0
42 inf NaN
43 NaN NaN
44 NaN NaN

Table 3. Generated Testcases for the sin support routine with d = 7. n is the testcase

number, xn the test stimulus, and error Eref =
√

(sinxn − ˆsinxn)2 with respect to

reference implementation ˆsin on a Macbook Pro (Mac OSX 10.6.8).

Given x = 〈x0, x1, ..., xn−1〉 monotonically increasing and
F = 〈f(x0), . . . , f(xn−1)〉

1. if u is outside the range of x, return f(x0) or f(xn−1),
2. otherwise, determine the index 0 ≤ i < n such that xi ≤ u ≤ xi+1, and
3. calculate the table lookup value as (f(xi) + f(xi+1))/2 or by linear inter-

polation.

Table 4. High-level description of 1D table lookup

u x̂

1 0 -2147483648, -2147483647, -2113929216, 0, 1
2 4098 4, 6, 7, 4096, 4099
3 264 64,265,291,8481,131337
4 10 -1610612732, -1610612730, 10, 536870920, 536870922
5 -2147483639 -2147483648, -2147483646, -2147483639, -1610612728, -1610612727
6 -2147483643 -2147483648, -2147483646, -2147483645, -2147483644, -2130706427
7 -2147479552 -2147483648, -2147483646, -2147483645, -2147479552, -2147479551
8 -2147481472 -2147483136, -2147481471, -2147481464, -1610602368, 262273
9 -2147483647 -2147483648, -2147483647, 0, 4, 6

10 6 0, 1, 2, 3, 6
11 0 0, 1, 4, 6, 7

Table 5. Generated stimuli for n = 5. All paths of the code are fully covered by this
test set.

n C0 C t[s]

5 15 11 0.3
10 32 9 1.2
20 66 19 4.6
30 96 29 10.2

100 330 231 130

Table 6. The number of test cases generated for different lengths of the lookup table.
C0 is the number of test cases generated by KLEE, C is the number of valid test cases
(i.e., vectors with increasing values), and run-time t for their generation.

