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ABSTRACT

An approach was proposed and assessed for the high-fidelity modeling of
progressive damage and failure in composite materials. It combines the Floating
Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to
represent multiple interacting failure mechanisms in a mesh-independent fashion.
Delamination, matrix cracking, and migration were captured failure and migration
criteria based on fracture mechanics. Quasi-static and fatigue loading were modeled
within the same overall framework. The methodology proposed was illustrated by
simulating the delamination migration test, showing good agreement with the
available experimental data.

INTRODUCTION

Damage in composite materials generally occurs as a combination of different and
interacting failure mechanisms, e.g. delamination and matrix cracking. Capturing
these interactions accurately is essential to confidently model and predict
progressive damage and failure. Several approaches have recently been proposed
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that explicitly model different failure mechanisms and attempt to capture their
interaction [1-3]. The present approach combines the Floating Node Method (FNM)
[4] with the Virtual Crack Closure Technique (VCCT) [5,6] to explicitly account
for different failure mechanisms and their interaction. Delamination, matrix
cracking, and migration events are all modeled with the same FNM element using
failure and migration criteria based on fracture mechanics. Preliminary results for
quasi-static loading using this approach have been presented in [7]. The approach
was validated using recent experimental results in which a setup capable of
isolating a single complete migration event was developed [8], where migration is
defined as the transition of a delamination from its current ply interface to a new
interface via transverse ply cracking. In the present paper, some of the results
obtained in [7] will be reviewed. In addition, the approach developed in [7] is
combined with a fatigue algorithm and a novel migration criterion, and used to
simulate delamination migration under fatigue loading conditions.

FLOATING NODE METHOD (FNM)

The FNM is a recently proposed numerical method, capable of representing
multiple evolving discontinuities in solids [4]. In the present section, an overview of
the method is provided, further details and comparison with other existing methods
are given in [4].

Element formulation

The static equilibrium of a body with volume () under body forces with density f
(acting on (1) and traction t acting on the boundary I, can be expressed in the weak
form as:

f eT(v)o(u)dﬂzf
Q

vadQ+f vTitdl, (1)
Q

1)9)

where u is the displacement vector; v is the test function; € is the strain tensor
related to u through the differential operator relative to Cartesian coordinates L, as
€ = L,(u); and o is the stress tensor related to the strains through Hooke’s law as
o = De, with D being the constitutive tensor. In the Floating Node Method, each
real node “i” is characterized by its nodal coordinates X; and associated Degrees of
Freedom (DoF) q;. In addition, an FNM element contains a suitable number of
floating DoF without pre-defined associated nodal position vectors. These
additional floating nodes are used to represent discontinuities. Their number varies
with the number and type of discontinuities, weak or strong, modeled within each
element. A strong discontinuity is defined as a jump in a field quantity (e.g.
displacements), while a weak discontinuity is defined as a jump in the gradient of a
field quantity (e.g. strains). Figure 1 shows an example of such an element with
four nodes and four additional sets of floating DoF required to represent a strong
discontinuity.
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Figure 1. Overview of the Floating Node Method (FNM).
ELEMENT FORMULATION WITH WEAK/STRONG DISCONTINUITY

Once a discontinuity in the element is defined, the element is split in two or more
partitions (depending on the discontinuity). Without loss of generality, a case in
which the element is split in two partitions, 0, and g, is illustrated in fig. 1. For
each partition, Q4 and Qp, a vector of nodal coordinates, X, and Xq, is defined.

For the case in fig. 1:

X;F}A = [Xs, X¢, X3, X4] (2)

XEB = [x4, X3, X6, X5] (3)
Each partition has a separate Jacobian:

dx dN

Ja = qE ~ d X 4

dx dN

Js :d_‘g':d_ExQB (5)

The displacements u, and wug, in partitions Q, and (g, respectively, are
interpolated separately from the DoF q, and qg associated with each partition:

uy = Ng, and uy = Nqu (0)

These DoF, q, and qg, did not have an associated position beforehand, and
therefore were considered to be “floating”. As the discontinuity is defined, they are
linked to the respective position vector. In the case of fig. 1, which represents a
strong discontinuity, qA = [qs, 4,493, 94] and q = [q1, 92, 96, qs,]. Note that
there are four different sets of floating DoF: qs is different from qs, and qg¢ is
different from qg,. If a weak discontinuity were to be modeled, only two sets of



floating DoF would be included in the element, and the DoF with a prime would
coincide with those without a prime.
The strains then become:

€n = Ly(up) = Li(N)]a"'qs = Baqy (7)

€g = Ly(ug) = Lz(N)]B_1QB = BpQp 3

The stiffness matrices for partitions {1, and (p are:

K, = f B.DB,det(J,)dE ©
Kg = f BLDBgdet(Jg)dE (10)
and the force vectors:
o) Is
o) Is

Finally, the equations of equilibrium can be written as:

Kaqa = Q4 and Kgqp = Qg (13)

ELEMENT TOPOLOGY AND ASSEMBLY

To illustrate this approach, a floating node element capable of modeling two weak
interfaces with an arbitrary crack between them was implemented, as shown in fig.
2(a). The nodal position of the initial integration domain, and the real and floating
DoF are indicated in the figure. Each floating DoF is associated with either an edge
or the inner domain of the element. Once weak/strong discontinuities are detected,
the floating DoF at the edges are used to determine the solution for the nodal
positions created by the intersection of these discontinuities with the element edges
(figs. 2(b) to 2(e)). The additional inner floating DoF are used to determine the
solution for the nodal positions created by the intersection of multiple cracks within
the element (fig. 2(f)). In figs 2(b) to (f), only the floating DoF used are
represented. In each case, the floating DoF that are not used have no assigned
position, only a topological relation to an edge or to the inner domain. During
assembly, inner floating DoF can be removed from the analysis through static
condensation. The floating DoF associated with the edges are assembled with the
corresponding DoF of neighboring elements, and will therefore have a unique
position in the global DoF vector. All floating DoF are then used as required to
model weak/strong discontinuities as they evolve throughout the simulation. To



accommodate certain crack geometries while enabling the integration of the domain
of interest, the elements may need to be partitioned in triangles rather than
rectangles only, figs. 2(d) and 2(f). Nevertheless, also in this case, the general
procedure outlined in the previous section is used to integrate these elements, and
determine their stiffness.

The approach can be extended to model an arbitrary number of weak and strong
discontinuities within an element, and therefore an arbitrary number of plies and
interacting cracks, provided its topology, including the number of floating DoF, is
adequately defined [4, 7].
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Figure 2. Representation of the floating node element used in the present work, illustrating how the
different weak/strong discontinuities scenarios are accommodated.

VIRTUAL CRACK CLOSURE TECHNIQUE (VCCT)

In the present work, the FNM method has been coupled with the Virtual Crack
Closure Technique (VCCT) [5]. A comprehensive review of VCCT is provided in
[6]. Traditionally, VCCT is used to obtain energy release rates in cases where the
crack path is known beforehand and can be aligned with the elements’ edges, such
as the case for delamination. In VCCT, the Mode I and II energy release rates are
obtained from [6]:

a1)1/2 (14)

1
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where F,, and F; are the normal and tangential components of internal force vector F
at the crack tip; [q,] and [q;] are the normal and tangential components of the
displacement jump [q] between the nodes immediately behind the crack tip; and a,
and a, are the lengths of the crack in the elements behind and ahead of the crack
tip, respectively (fig. 3). When combining VCCT with FNM, the forces and
displacements needed to obtain the energy release rates, Eqs (14) and (15), are
computed at the floating DoF as the crack develops (fig. 3). Additionally, floating
DoF can also be added along a virtual crack plane up to a distance r, named the
‘enrichment radius’, 7,,,,. The associated floating nodes provide additional degrees
of freedom along this path, which enable the accurate modeling of the deformations
near the crack tip [4]. At the end of the enrichment radius, the displacements of the
floating DoF are interpolated from the displacements of the real DoF. In the present
work, the enrichment radius was chosen to be equal to the largest in-plane
dimension of the numerical model.

>
>
>
>

A
p— Q

¥ Interpolation

F—

1

1

1

1

e

e a
D "" <

©
A

b ent

Figure 3. Virtual Crack Closure Technique and Floating Node Method for arbitrary crack
propagation.

DELAMINATION PROPAGATION
Quasi-static loading

In this paper, delamination is modeled using VCCT to compute the energy release
rates G; and Gy; at each delamination front position. These are then used in a failure
criterion:

Gr
f(G,Gy) = o 1=0 (16)
Cc
where Gy = G; + Gy, and G, is the critical energy release rate given by [9]:
Gir\"
Ge = Gie + Gue — Gio) () (17)
T

For delamination growth according to this criterion, G. is assumed to equal the
critical energy release rate of the interface, GI™*. The delamination front is
advanced by one element along the interface when Gy = GI™.



Fatigue loading

Under fatigue loading, the delamination growth rate is determined using a Paris

Law type relationship:

da

ﬁ = A(GTmax)n (18)

where Grmax = Gimax + Grrmax- Since delamination is growing under mixed mode
conditions, both A and n are assumed to vary with mode mixity. Several
expressions have been proposed for characterizing the propagation rate under mixed
mode conditions [10]. However, no general expression has yet found widespread
acceptance. In the present work, a first order approximation is used to characterize
the variation of A and n with mode mixity:

G
A=A+ (4 - ) (o) (19)
T
G
n= o+ (g =) () (0)
T

where pairs A;, n;, and A;;, n;; were obtained from fatigue testing under Mode 1
and Mode II conditions for the material being used, respectively [11, 12]. Recent
experiments indicate that a higher order approximation can possibly improve the
representation of the variation of A and n with mode mixity [13]. Experimental
results also confirm the monotonic behavior assumed in a first order approximation.
Therefore, for simplicity, Equations 19 and 20 will be used in this study.

The growth rate obtained from Equation 18 is then used to determine crack
propagation using the fatigue algorithm implemented, which is discussed in a
subsequent section. Note that Equation 18 does not account for the effects of
loading ratio, and frequency. Therefore, its use is currently only recommended to
predict the growth rate for R-ratios and frequencies that correspond to those used to
generate the delamination fatigue characterization data.

MATRIX CRACK PROPAGATION
Quasi-static loading

In the present study, matrix crack propagation is also modeled with VCCT.
However, unlike delamination, the matrix crack is assumed to propagate following
a Mode I path in the through-thickness direction, as supported by experimental
evidence [8]. Therefore, the failure criterion is assumed to be given by:

Gr
fGr)=——-1=0 (1)

Ic

where G, is assumed to be identical to the Mode I delamination fracture toughness,
as demonstrated in [14]. At each crack growth increment, the Mode I crack path
orientation is approximately determined using a maximum tangential stress
criterion. This criterion, typically written in terms of the Mode I and II stress
intensity factors [15], can also be written in terms of energy release rates G; and Gy,



where the angle 6 that maximizes the tangential stress ogyg is obtained by
evaluating:

0= zean | 2|(2) 1 [(&) s @)
4 GII B GII

and for the two solutions obtained choosing the one that maximizes dgy given by:
0 36
Ggp = \/E{3 cos <E> + cos <7>} +
0 36 (23)
G Sgn(Fy) {—3 sin <E> — 3sin <7>}

where F, is the tangential component of the internal force vector F at the crack tip.
The tangential stress ggg relates to Ggg by:

1 | E*
== /— 7T 24
Ogg 4 |27r Ogp ( )

{E plane stress

where,

E-=] E (25)

plane strain

1—v2

E is the Young’s modulus; and v the Poisson’s ratio. Once the angle is determined,
the criterion given by Equation 21 is assessed. If the criterion is met, the crack
advances by one element along the projected crack path.

Fatigue

Matrix cracks are assumed to follow a Mode I path in the through-thickness
direction, also in fatigue. In this case, the growth rate is simply obtained by:

da

dN = A;(Grax)™ (26)
and used to determine crack propagation in the fatigue algorithm implemented,
which is discussed in a subsequent section. The growth rate of a matrix crack under
Mode I loading is assumed to be well approximated by the growth rate of a
delamination growing under the same loading conditions. This approach represents
an extrapolation of the observations made in [14] for quasi-static loading conditions
to the fatigue regime, and requires further experimental validation. Similar to
Equation 18, Equation 26 does not account for R-ratio or frequency effects, and
therefore its use is currently only recommended for R-ratios and frequencies that
correspond to those used to generate the delamination fatigue characterization data.



MIGRATION
Criterion for delamination to matrix crack migration
STATIC

In the present work, the criterion for delamination migration proposed in [7] will be
used. In this criterion, all variables needed to determine whether migration occurs,
can be directly obtained from the FNM results at each interface crack position.
Delamination migration is observed to be preceded by the creation of local micro
cracks, oriented as a function of the principal stresses ahead of the crack tip, as
discussed in [16]. If energetically favorable, these micro cracks can accumulate,
propagating through one of the bounding plies (matrix crack), rather than
accumulating and propagating along (or near) the interface (delamination), and
migration is obtained [8]. The criterion proposed in [7] uses the sign of the
tangential component of the internal force vector F;, associated with Mode II shear
displacement, to determine the direction of the micro cracks and therefore the
material into which the interface crack would tend to migrate. Additionally, it
assumes that migration can only be completed if it is energetically favorable. The
criterion is given by My: {G/*, GI", F,} - {—1,0,1} as:

( Glnt Glnt
Sgl’l( GTA - G?nt) +1
— Sen(F,),  Sgn(F,) <0
M = < G{_nt G%‘nt (27)
\ - 2 < Sgn(Ft)' Sgn(Ft) 2 0
where M; = 0 if the interface crack does not migrate, and Mg = —1or Mg =1

if the crack migrates into material A or B, respectively (see fig. 4). In the present
form, Equation 27 assumes that the internal force vector is computed at the lower
surface (Material B). If the internal force vector is computed at the upper surface
(Material A), the signs of the inequalities in Equation 27 need to be reversed.
Depending on the sign of F;, the ratio between the energy release rate determined at
Glnt Glnt

T T
4 Or
c

the interface, and the critical energy release rate of Material A or B, - R is

compared to the ratio between the energy release rate determined at the interface
Int G%nt Glnt

. . G .
and the critical energy release rate of the interface, ——. If the ratio o1 Of L

) i
Gt GE

Gt .. . . .
reater than L the necessary condition for migration is met, and M. = —1 or
Yy
Gént’ S

M; = 1. Note that although this criterion is necessary, it is not sufficient for
migration to occur unless the ratio being assessed is greater than one, i.e. the failure
criterion for delamination or matrix cracking need to be met. Figure 4 illustrates
how the migration criterion interplays with the failure criteria for delamination and
matrix cracking, to determine whether delamination, migration or neither will
occur. Figure 4 also shows the principal stress resultant for positive and negative
applied shear, see fig. 4a and 4b, respectively.
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Figure 4 Illustration of the combination between failure and migration criteria used to determine
delamination migration, Equations 16 and 21, and Equation 27, respectively.

FATIGUE

The criterion used to predict migration under fatigue shares the same basic premises
as the migration criterion used in the quasi-static case. The shear sign dictates the
direction towards which the delamination will tend to migrate. To determine
whether migration will occur, the fatigue crack growth rate in the material into
which the delamination will tend to migrate is compared to the fatigue crack growth
rate of the delamination. Similar to the static case, the criterion is given by
Me:{G{]*, G, F} -» {=1,0,1} as:

sn((88), - (), )+
My day _ (da
Sgn ((dN)B (dN)mt) +1

2

Sgn(F,), Sgn(F,) <0
(28)

Sgn(F;), Sgn(Fy) =0

If My = 0, the interface crack does not migrate, and if My = —1or My =1, the
crack migrates into material A or B, respectively. The criterion is illustrated in
Figure 5, for positive and negative shear sign applied. In the present work, the
interfacial crack, or delamination, propagates between a 0° and a 90° ply.
Assuming Material A is the 0° ply, and Material B is the 90° ply, the growth rate of



a crack growing into a 0° ply is considered to be much lower than the growth rate
for a crack to propagate at the interface, since fiber fracture is required for that

da . da
process to occur. Thus, (ﬁ) is always much smaller than (ﬁ) . Therefore, even
A Int

if the sign of F; favors migration into Material A (0° ply), according to Equation 28,
migration will not occur. This criterion translates the hypothesis that, due to the
difference in growth rates, the crack will advance along the interface before enough
cycling has occurred for it to migrate towards Material A. In the present study, it is
considered that the growth rate of a Mode I matrix crack can be characterized by

. . o d . .
Equation 26, while the delamination growth rate, (ﬁ) , 1s assumed to be given
Int

by Equation 18. Since both are of the same order of magnitude, if the sign of F;
favours migration into Material B (90° ply) depending on the relative magnitude of

da da . .
— and | — , mlgratlon can ocCcur.
dNJ 4 dN/ int

M= 0, interface crack
| prfopagation

[ | M,= 1, migration

° da
dN Int

a) positive shear

M,= 0, interface crack
. pllz)pagation

———
] [

M,= 1, migration

b) negative shear
Figure 5 Illustration of the fatigue migration criterion, Equation 28.

Matrix crack to delamination transition

When a matrix crack reaches a weak interface, it is assumed to trigger
delamination, both under static and fatigue loading conditions. This delamination is
at first contained within the FNM element, as illustrated in fig. 2(f). In the
following steps, the delamination will propagate, or migrate, as detailed in the
previous sections.



FATIGUE ALGORITHM

The algorithm used to propagate fatigue cracks in the present work is illustrated in
fig. 6, and is described next.

For each crack tip,i ,calculate maximum Mode I (@)
and Mode II energy release rates.

Glmam|i 9 GIImamli

I
Using @), determine the growth rate for each crack @ da \ |’
tip from the Paris Law, Egs. 18, or 26. AN
l
Using @), determine the cyclesﬁN\Zm , needed to 9\”2 _ daly, B |l
propagate each crack, i, by one element, dal7,,. ine T ( da ) |i acc
dN
|

From @), determine the minimum number of cycles %) :
required to propagate a crack over one SN|? = min { ON |an}
element,0N|" , and the correspondent crack tip n. l

n

al” = a|" + dal},,
Update the cycle count: increase the total cycle NN l n
count, N, by dN | ; accumulate SN |; _cycles to © e
all cracks that did not propagate in this increment;
initialize the number of accumulated cycles for the SN =0

acc
crack tip,n, that propagated in this increment.

Propagate the crack tip,n, determined in @ by )
one element.

SN[ = 6N|. + 6N|}

acc acc nc

I:l Finite element analysis

[ ] Post-processing
Figure 6 Fatigue algorithm implemented.

In the first step, Gimax|® and Gimayx|t are determined for each crack tip, i. In the
present work, only the maximum energy release rate is used to obtain delamination
and matrix crack growth rate, Equations 18, and 26. Often Paris Law equations,
accounting for R-ratio and frequency effects, require the calculation of both Gjin
and Gpmin, Oor AG. In the context of the present algorithm, Gpnin, Grymin could be
obtained through an additional finite element analysis per increment. Having
determined Gy’ and Gipmax ', the number of cycles, SN|., ., that are needed to
propagate each crack i by the length correspondent to the next element are obtained
from:

. da

0N\, =

inc i
d

(29)

where 8all,; is the length of the element ahead of the crack i, and 6N |} is the
number of cycles accumulated by the crack tip before it grows to the next element.
Subsequently, the minimum number of SN|%,. and the correspondent crack tip are
determined, §N|7,. and n, respectively. This determines the cycle increment in this



iteration. The crack tip n is advanced by the correspondent §a|7,;. The accumulated
cycle count of all crack tips (except n) as well as the total cycle count, are
incremented by dN|%,.. Finally, the accumulated cycle count for the crack tip n is

set to zero, and a new increment starts.
SIMULATION OF DELAMINATION MIGRATION SPECIMENS
Delamination migration test configuration

In reference [8], a test aimed at investigating delamination migration was proposed.
The Delamination Migration (DM) test configuration is illustrated in fig. 7. The
specimen has three key features that enable the controlled observation of
delamination growth followed by migration to another ply interface. First, the
specimen geometry is in the form of a beam with the intent of promoting uniform
delamination growth and migration across the specimen width. Second, the
specimen contains a Teflon insert (acting as an artificial delamination) at an
interface between a 0° ply (specimen span direction) and a stack of four 90° plies
(specimen width direction) (fig. 7). This provides an opportunity for the
delamination to migrate to another ply interface by kinking through the 90° ply
stack. Third, the specimen can be loaded in a manner to cause delamination growth
from the Teflon insert that eventually migrates to another ply interface. This
sequence of fracture events is made possible by the way in which specimen loading
affects shear stresses acting across the delamination front.

All units in mm. Not drawn to scale
Specimen width, B=12.7 mm l
900 - specimen width direction
0° - specimen span direction

L

&

Baseplate

All units in mm
Figure 7 Delamination Migration (DM) test configuration [8].

Finite Element Model

The simulations presented in this work were all performed using the finite element
solver Abaqus/Standard® 6.13 (Implicit). Plane-strain and a small-displacement
formulation were used. The floating node element (fig. 2) was developed and
implemented as a user defined element (UEL) in Abaqus/Standard®, and applied in
the center region of the model, as shown in fig. 8. The specimen layup used in the
experiments and in the model, is also given in fig. 8. In the layup description ‘T’
represents the Teflon insert. Each block of plies of the same orientation was
modeled with a separate element CPE4 (through-thickness), except for the
highlighted plies at the center of the model (fig. 8). These plies were modeled



within a single FNM element, as illustrated in fig. 2. Rigid contact with friction is
assumed between the bottom surface of the specimen and the baseplate, and the top
surface of the specimen and the clamps. All the material properties used, including
the friction coefficient, are given in Tables I, II and III. A displacement was applied
at a single node, at different load offsets L, to simulate a displacement-controlled

test, see fig. 8. All tests were performed under ambient laboratory conditions.
FNM elements
Jo

n

Clamp
5.5 mm

Baseplate

Stacking sequence:
[90,/05/(90/0),,/0,/0/90,/ T /0/90,/0/0/(90/0),,/0/0/90,/0/90]
\_‘_I

Plies modeled within the FNM
element

Figure 8 Finite element model used.

TABLE I. ELASTIC PROPERTIES, IM7-8552 [17]
Ey; = E33 Gip = Gq3

11.38 (GPa) 5.17(GPa)

Eqq
161.0 (GPa)

G23
3.98(GPa)

V23

0.44

V12 = Vi3
0.32

TABLE II. FRICTION COEFFICIENT CARBON/EPOXY TO ALUMINUM [18] AND
CRITICAL ENERGY RELEASE RATES FOR DELAMINATION OF IM7-8552 [19].

U

Gic

GIIC

n

0.23

0.21 (k]/m?)

0.77(k]/m?)

2.1

TABLE III. PARIS LAW COEFFICIENTS FOR MODE I AND MODE II OF IM7-8552 [11,12].

A ny Ay nyp
8.757E-6 | 6.71 | 6.84E-7 | 5.45
BOUNDARY CONDITIONS

As illustrated in fig. 7, the DM specimen is clamped at both ends. Each clamp was
tightened using three screws at a fixed applied torque. The clamping conditions
were simulated in a first step, by applying the clamping force, estimated to be 1700
N, via two reference nodes coupled to the top surface of each clamp through a
displacement constraint. Finally, and as was mentioned previously, rigid contact
with friction was used to model the interaction between clamps, specimen and
baseplate. To assess the adequacy of the boundary conditions applied, the deflection
of a DM specimen was measured using Digital Image Correlation (DIC) and
compared to the numerical results. Figure 9 compares the DIC results with
deflections obtained from three different numerical models. The curve labeled
‘FIXED’, was obtained using a numerical model with nominal dimensions, and



where the clamping conditions were idealized by fixing the displacement at the top
and bottom surfaces of the specimen in the clamped region. It is evident that this
model under-predicts the deflection. Furthermore, the maximum load is also not
aligned with the maximum deflection observed experimentally. Measuring the exact
load-application point and crack-tip position of the specimen tested, it was observed
that both deviated from the nominal values. Including this correction in the model
the curve ‘FIXED-CORR’ was obtained. The maximum deflection in this curve is
now aligned with the observed experimentally, but the magnitude is still
underestimated. Finally, the third curve, ‘CLAMP’, is obtained by applying the
clamping force to the model in an initial step (including the corrected crack length
and load-application point), and modeling the contact between clamps, specimen
and baseplate, as described above. It is evident that these boundary conditions lead
to the best agreement with the experimental data. However, the deflection seems
slightly overestimated, near the left-hand-side clamp, which could be caused by an
underestimation of the local clamping force, or friction coefficient.

0.7

0.6

0.5

U, o4

0.3

® EXPERIMENT
=—FIXED
FIXED - CORR
—CLAMP

0.2

0.1

-15 5 25 45 65 85 105 125 145
X, mm

Figure 9 Comparison between a specimen deflection measured using DIC and the simulations.
Results
QUASI-STATIC LOADING

Overall, the framework proposed is capable of predicting and simulating
delamination migration in cross-ply laminates under quasi-static conditions. Fig. 10
compares the computed load-displacement curves obtained, for two values of L,
with experiments illustrating the accuracy of the approach. Overall, the maximum
load is well predicted for both cases. For L = a,, the simulations predict unstable
delamination after the peak load (fig. 10(a)). This unstable delamination stops just
before migration. After the migration event, delamination arrests, and upon further
loading it continues propagating stably along the next 0°/90° interface. A similar
sequence of events was observed experimentally [7]. However, in the experiments,
after the first unstable event, further loading was necessary before migration
occurred. For the case L = 1.3a,, the simulations predict that the first peak in load
is followed by a region of stable delamination growth. A region of unstable



delamination, corresponding to the load-drop follows as shown in fig. 10(b). The
migration event is predicted to occur in this region. After the migration, unstable
delamination continues propagating along the next 0°/90° interface. Loading the
specimen further eventually leads to a transition from unstable to stable
delamination propagation. This sequence of events is identical to what was reported
experimentally [8]. The only difference observed is that in the experiments, after
the peak load, delamination propagates through a series of unstable events, rather
than stably, as predicted by the simulations. Further simulations for other load-
offsets, namely L = 1.1a, and L = 1.2a, were performed and compared to the
experimental results, showing a similar agreement.
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Figure 10 Load displacement curves for (a) load-offset L=ay and (b) L=1.3a,
FATIGUE LOADING

Constant amplitude fatigue conditions were simulated. A maximum displacement
corresponding to Grmax = 0.8G. was applied, where G, was determined from the
quasi-static simulations. This G, corresponds to the critical energy release rate to
initiate delamination for each load-offset L. The frequency of the fatigue loading
was assumed to be SHz, and the ratio of minimum to maximum displacement, R-

(Uz)min —

ratio, 0.1. Both R-ratio and frequency are the same used to obtain the

(Uz)max
fatigue characterization data summarized in Table III.

Overall the predicted damage morphology was similar in both quasi-static loading
and fatigue, only fatigue results are shown here for brevity. Figure 11(a) provides
an illustration of a typical crack path predicted by the simulations. Figure 11(b)
shows the distance from the load-application point to migration, Ay, as a function of
the normalized load offset, L/a,. The simulations predict a decreasing trend in Ag
with L/a,, which is similar to what was observed in the static case [8].

Figure 12(a) shows two curves corresponding to the number of cycles to migration
onset and to da = 3 mm past the completed migration as a function of the load-
offset, labeled ‘MIGRATION - INI’, and ‘MIGRATION + da’, respectively.
Comparing ‘MIGRATION - INI’ to ‘MIGRATION + §a’, it is clear that they only
differ noticeably for L = a,. Overall, simulations predict a significant increase in
cycle count to migration as the load-offset increases. This trend can be further
examined by analyzing the crack growth as a function of number of cycles. Figure
12(b) presents delamination growth up to migration for two different load-offsets



L =ay and L = 1.3a,. Comparing the results obtained for the two offsets, it is
possible to see that for L = 1.3a, a significant decrease in crack growth rate can be
observed, between N=50000 and N=150000, before it increases again leading to
further delamination and migration.
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Figure 11(a) typical crack path, (b) distance from the migration location to the load-application
point, Ak, as a function of load-offset L.
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Figure 12 (a) number of cycles to migration onset, and to migration onset + da = 3 mm, and (b)
delamination growth prior to migration as a function of number of cycles.

DISCUSSION

The detailed analysis of the specimen deflection using DIC has helped in assessing
the adequacy of the boundary conditions applied. Nevertheless, the clamping force
and friction coefficient are likely to vary slightly from specimen to specimen.



Therefore, further sensitivity studies are recommended to characterize fully the
effect of the boundary conditions on the overall response of the specimens.

Overall, the sequence of events, failure morphology and load-displacement curves
are in good agreement with the experimental results. However, for the case L = a,,
experimental results show an increase in load at the end of the first unstable event,
before migration, not predicted by the simulations. Also, for L = 1.3a,, the
simulations predict stable delamination, prior to the final load-drop, while
experiments show that the delamination propagates through a series of unstable
events. One of the main differences between simulations and experiments, is the
assumption that the delamination propagates at the interface between the 0° and 90°
ply. However, in the experiments, it is often observed that delamination delves
slightly into 0° ply propagating just within it, and leads to the development of
bridging fibers. This mechanisms is thought to be caused by the applied shear force
that tends to drive the delamination into the 0° ply in the first part of the test (for the
load offsets tested). Delamination delving, and the associated fiber bridging, leads
to local variations in G, not accounted for by the model, and likely to lead to some
of the discrepancies observed.

The predicted damage morphology under fatigue loading conditions is similar to the
one obtained under quasi-static loading, including migration location [8]. Overall,
simulations predict an increase in cycles to migration as a function of the load-
offset. For the L = 1.3a, case the delamination growth rate decreases substantially
before it increases again and migration occurs. This decrease indicates that for
lower displacements applied, a fatigue threshold may be reached, before migration
is obtained. Further, also the delamination delving mechanism observed in the static
tests might occur in fatigue, since it is a function primarily of the shear sign applied.
The delving may alter (decrease) the growth rates obtained in the characterization
tests. Hence, threshold values might be reached even for high-applied loads, and
overall the results obtained with the present approach, may be overly conservative,
i.e. more crack growth is predicted for the same number of applied cycles. In the
present work, the fatigue loading simulated was chosen to be consistent with the
characterization data available, i.e. same R-ratio, and frequency. A more general
fatigue loading scenario would require either further characterization data, or the
use of a modified Paris Law that can potentially account for these effects [20].
Furthermore, the first order approximation used to determine the variation of
delamination growth rate with mode-mixity, Equations 19 and 20, can potentially
be improved given the recent experimental data obtained [13]. Finally, although the
fatigue algorithm and overall approach has been demonstrated, experimental
validation is needed.

CONCLUSIONS

The FNM (Floating Node Method) was combined with VCCT (Virtual Crack
Closure Technique) and used to model delamination migration in cross-ply
laminates under quasi-static and fatigue loading conditions. Delamination, matrix
cracking, and migration, are all modeled with the same FNM element using failure
and migration criteria based on fracture mechanics. As a result, the present
approach only uses material properties, the majority of which can be obtained using



well established standard characterization tests. For quasi-static loading, the results
obtained compared favorably with experimental results available. Regarding
fatigue, the algorithm and migration criterion have been demonstrated. However,
experimental validation is still required.
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