National Aeronautics and Space Administration

Marshall Space Flight Center

Additive Mfg for Propulsion Systems at MSFC: A Path to Flight JANNAF: Additive Manufacturing for Propulsion Applications 03 September 2014

Kristin Morgan Strategic Advisor

www.nasa.gov

Additive Manufacturing at MSFC

20+Years of Experience

1991

2000

2010

Additive Manufacturing at MSFC

Near-Term

Long-Term

Why Additive Manufacturing?

Affordability

Reduced part count Fewer critical welds and brazes Reduced tooling Schedule and cost savings Why Additive Manufacturing?

Performance

Optimized internal flow passages Minimized leak paths Lower mass

MSFC's Additive Manufacturing Laboratory

Recent AM Tests and Builds

MSFC's Role

Image Credit: Aerojet Rocketdyne

Smart Buyer Tech Transfer Anomaly Resolution

Primary Challenges in AM

Materials Characterization

Process Modeling, Monitoring, & Control

Standard Design Practices

Flight Certification

MSFC's Goals in AM

Path to Flight Establish flight certification logic

Near-term

- Interim MSFC guidelines and specifications for AM materials, processes, and design
- Provide recommendations to vendors and standard holders on allowable practices & specification limits.

Long-term

• Incorporate AM materials and processes into existing NASA standards.

Materials Characterization

- 1. Build Parameters
- 2. Powder Influence
- 3. Thermal Processing

- 4. Surface Improvement Effects
- 5. Applied Materials Characterization

Design Practices

Optimized mechanical design
Compressed development cycles
Build strategies

Process Modeling, Monitoring & Control

- Collaboration with government, industry, and academia
- Modeling with MGI, Ames, and CIMJSEA
- Monitoring with University of Alabama

Flight Certification

- 1. Part Classifications
- 2. Part performance qualification
- 3. Governing process controls
- 4. NDE requirements
- 5. Lot acceptance requirements
- 6. Fracture control requirements
- 7. Machine and Operator cert and re-cert

In Summary

- Additive Manufacturing offers tremendous promise for the rocket propulsion community.
- The ability to create customized, complex geometries on-demand is a dramatic shift in the design and manufacture of high-performance propulsion systems.
- Foundational work must be performed to ensure the safe performance of AM parts.
- Government, industry, and academia must collaborate for the characterization, design, modeling, and process control to accelerate the certification of AM parts for human-rated flight.

www.nasa.gov

