Assimilation of SMOS Retrieved Soil Moisture into the NASA Land Information System

C. B. Blankenship¹, B. T. Zavodsky², J. L. Case³, <u>G. J. Jedlovec²</u> ¹Universities Space Research Association, Huntsville, Alabama, USA ²NASA-Marshall Space Flight Center, Huntsville, Alabama, USA ³ENSCO, Inc., Huntsville, Alabama, USA

Goals Soil Moisture Data Assimilation

Forecast Challenge

 Available moisture affects humidity, sensible/latent heating, diurnal heating rate, and convection

Objective

- Improve soil moisture estimates for regional NWP applications and situational awareness
 - Improve LIS soil moisture by assimilating satellite retrievals
 - Use LIS output to initialize NWP

Impact of using high-resolution LIS boundary conditions in WRF (rather than NAM fields). From Case et al. 2008

Other Applications

- Drought Monitoring
- Flood Forecasting
- Streamflow prediction
- Public health

SMOS and SMAP

- L-band radiometers (and radars) can be used to estimate soil moisture in the top layer (~5 cm) of soil.
 - -L-band (1.4 GHz) sees deeper in the soil, and performs better in dense vegetation than higher frequency instruments like AMSR-E (6-10 GHz).
- Currently assimilating retrievals from European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite
- Preparing for assimilation of NASA Soil Moisture Active/Passive (SMAP) retrievals
 - Launch in early 2015
 - Combined (radar/radiometer) product available at a higher resolution (9 km)
 - We are members of the SMAP Early Adopters team

Soil Moisture Instruments

Name	AMSR-E	SMOS Soil Moisture and Ocean Salinity	SMAP Soil Moisture Active/Passive		
	AMSP-E				
Agency	NASA/JAXA	ESA	NASA		
Launch		2009	Nov. 2014		
Orbit	Polar	Polar	Polar		
Sensor Type	Passive	Passive	Passive	Active	Combined
Frequency	6.9 GHz (C-band)	1.4 GHz (L-band)	1.41 GHz	1.2 GHz	
Resolution	56 km	35-50 km	36 km	3 km	9 km
Accuracy	6 cm ³ /cm ³	4 cm ³ /cm ³	4 cm ³ /cm ³	6 cm ³ /cm ³	4 cm ³ /cm ³

Soil Moisture Assimilation in LIS

- Noah LSM (in LIS) produces "operational" soil moisture/temperature states and surface fluxes of water and sensible/latent heat.
- Use data assimilation of SMOS/SMAP soil moisture retrievals to improve model states
- We plan to implement this in near-real-time SPoRT LIS to improve product for end users

Data Assimilation with EnKF

- LIS has a built in Ensemble Kalman Filter
- EnKF combines the model background and observations to make analyses
 - Relative weighting is controlled by the specified **observation error** and by the **ensemble spread**
- Implemented EnKF assimilation of SMOS data
 - -Read SMOS data files
 - -QC based on model state and data flags for precipitation, RFI, data quality, frozen soil, snow cover, and high vegetation
 - Ongoing experiments to tune run-time settings including perturbations, number of ensemble members
 - -Bias correction by CDF Matching
 - -Capability of implementing landcover-dependent correction.

Bias Correction

- Initial tests had large dry bias in observations, so that only extreme rain events had correct sign.
- Discussions with other researchers confirmed need for bias correction

Uncorrected innovations (observations minus model) and increments. Red=dry bias in retrievals.

- Implemented CDF matching correction for SMOS retrievals.
- Assimilating retrievals (not radiances) lets us use established methodology

Bias Correction Correction Curves for 3 vegetation categories CDFs of Soil Moisture Observations and Model Modeled vs. Observed Soil Moisture CDFs 100 0.6 80 0.4 Obs Model 60 Background Percentile (%) 40 0.2 20 0.0 0.0 0.2 0.4 0.6 0,2 0,0 0.4 0,6 8,0 1,0 Observed Value

• LIS can apply point-by-point correction curves. To increase the background dataset size, we are aggregating points by landcover type. We will also explore correction at each point and aggregating by soil type.

9

Irrigation Case Study

Map of Irrigation Areas

• Test Impact on NWP using coupled LIS-WRF

- Implications for regional climate modeling
 - Impacts of changing landuse, precipitation patterns

10

Current and future plans

- Testing DA for higher resolutions (grid cells << observation size)
 - -Use in SPoRT high-resolution LIS runs.
- Validate analyses
 - -TAMU North American Soil Moisture Database
- Test Impact of assimilating SMOS retrievals on NWP using coupled runs in NU-WRF
 - -Impact on boundary layer for a quiescent day
 - -Active convection case
 - -Validation over a longer time period
 - -Look at both sensitivity and forecast accuracy
- Implement with SMAP retrievals

Questions?

Perturbation Tests

Increment (pert=.02)

Background 12Z 1 Apr 2013 (pert=.02)

^{0.15 0.18 0.21 0.24 0.27 0.3 0.33 0.36 0.39} DADS: COLARDS

Innovation 12Z 1 Apr 2013 (pert=.04)

-0.25 -0.2 -0.15 -0.1 -0.05 -0.01 0.01 0.05 0.1 0.15 0.2 0.25

Analysis 12Z 1 Apr 2013 (pert=.02)

Analysis 12Z 1 Apr 2013 (pert=.04)

12