

Lessons Learned in the First Year Operating Software Defined Radios in Space

David Chelmins, Dale Mortensen, Mary Jo Shalkhauser, Sandra K. Johnson, and Richard Reinhart

> dchelmins@nasa.gov NASA Glenn Research Center (GRC)

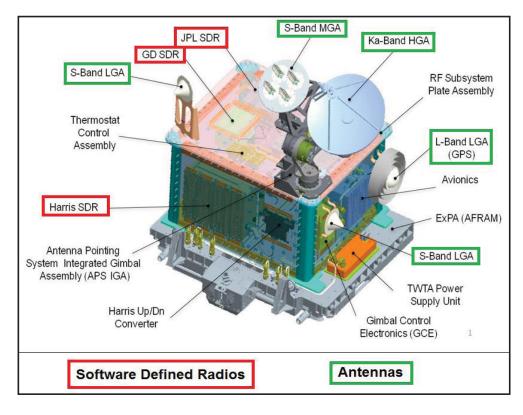
AIAA SPACE 2014, August 4-8, San Diego

SCaN Testbed and Software Defined Radio

- SCaN Testbed SDRs
- SCaN Testbed Communications Paths

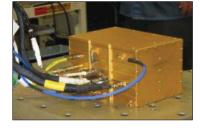
Lessons Learned

- Characterize the Platform
- Mitigate Old Hardware
- Flexible Commands
- Flexible Telemetry
- Great Engineering Models
- Help Third-Party Developers


STRS & SCaN Testbed Solicitations

• Space Communications and Navigation (SCaN) Testbed

- Software-defined radio (SDR) research testbed
- Launched July 2012 to the International Space Station (ISS)
- Space Telecommunications Radio System (STRS) architecture

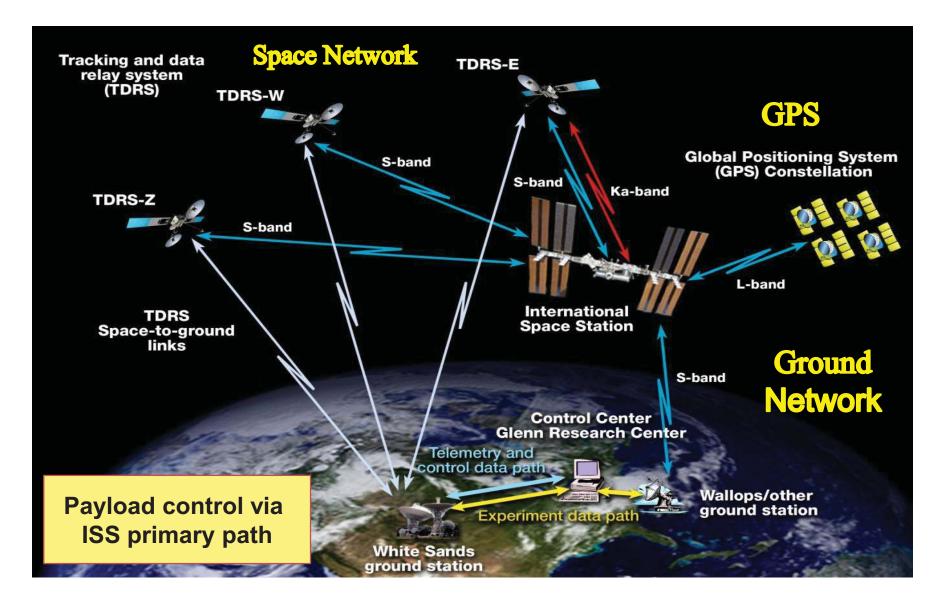

Above: SCaN Testbed

Left: SDRs and subsystems

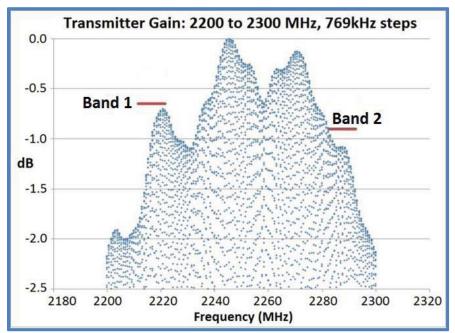

SCaN Testbed SDRs

General Dynamics (GD) SDR

- 60 MIPS Coldfire (VxWorks) and (1) QPRO FPGA
- S-Band transceiver (2.0 2.3 GHz) with 8W amp
- 1M chalcogenide non-volatile phase-change memory
- Jet Propulsion Laboratory (JPL) / L3-CE SDR
 - 66 MHz SPARC (RTEMS) and (2) Virtex2 FPGAs
 - S-Band transceiver (2.0 2.3 GHz) with 7W amp
 - L-Band receiver at L1, L2, and L5 GPS frequencies
- Harris Corporation SDR
 - 700 MIPS PowerPC (VxWorks) and (4) Virtex4 FPGAs
 - Ka-Band transceiver (22 26 GHz) with 40W TWTA
 - Texas Instruments digital signal processor (DSP)



SCaN Testbed Communications Paths


LESSONS LEARNED

• Test the SDR hardware independent of the waveform (software)

- Development of a new waveform requires knowing platform performance.
- Low-level test waveforms are necessary for platform characterization.
 - Store samples from the analog-to-digital converter
 - Transmit samples out the digital-to-analog converter
- The operational waveform often is not the best tool for platform characterization
 - Small subset of potential frequencies, modulations, and data rates
 - Performance depends on waveform implementation

Require delivery of test waveforms to aid platform characterization

• SCaN Testbed has several Xilinx Virtex 2 FPGAs

- Virtex 2 was last supported by Xilinx ISE 10.1 (~2008)
- Increasingly challenging for present-day developers
 - Old software libraries; vendors are less willing to fix bugs in old software
 - Development boards are difficult to locate and buy

Two perspectives

- **Fly newer hardware** added risk due to unproven technology, but lower size/weight/power and enhanced functionality with slower obsolescence.
- **Stay the course** use proven, low-cost, low-risk technology and find ways to accommodate future development without limiting mission duration.

Fly both new and proven hardware to mix functionality with reliability

- SDRs provide more command flexibility than traditional radios.
 - How to effectively control and command SDRs?
 - Commands single operation, multiple operation, or scripts

- Flexibility requires an operations team with some radio knowledge
 - Pre-defined command lists will grow over time, but fewer typos
 - Effects of a "wrong command" can be larger with SDRs

Minimize the amount of "Human-in-the-Loop" to reduce mistakes. Cost of flexibility is increased knowledge or training.

• Telemetry can change with each waveform update

- Pre-defined fields are rigid use name/value pairs or generic strings.
- Options to vary telemetry size, rate, contents, etc. on demand.

EE EC PWR PWR PWR CS DMP UPLD DNLD STS ERR STS STS STS STS STS TS T	Bit Position															
EE CS PWR PWR CS DMP UPLD DNLD STS MSB STS STS STS STS STS STS LSB LSB <	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
MSB LSB xml version="1.0" ? <harriswaveformpropertysettings> <property name="STRS_APP_STATE" value=""></property> <property name="APQM_DB" value=""></property> <property name="RX_CENTER_FREQ" value=""></property> <property name="RX_ATTEN_VAL" value=""></property> <property name="USE_XML_DEFAULTS" value=""></property> <property name="WF_GPP_INFO" value=""></property></harriswaveformpropertysettings>	EE	E States of the	CS	PWR	PWR	PWR	CS	the state of the state of the		C= (100000		SP	SP	SP	SP	SP
		4	Arris <prop <prop <prop <prop <prop <prop< td=""><td>Wav perty perty perty perty perty</td><td>eFor nar nar nar nar nar nar</td><td>mPro ne="; ne="/ ne="/ ne="/ ne="/</td><td>APQ RX_ RX_ USE</td><td>S_AF M_D CEN ATTE _XM _GPP</td><td>PP_S B" va FER_ N_V L_DE _INF</td><td>FREQ FREQ AL" v FAUL</td><td>" /> " value alue=" .TS" va</td><td>e="" " /> alue:</td><td>/></td><td>/></td><td></td><td></td></prop<></prop </prop </prop </prop </prop 	Wav perty perty perty perty perty	eFor nar nar nar nar nar nar	mPro ne="; ne="/ ne="/ ne="/ ne="/	APQ RX_ RX_ USE	S_AF M_D CEN ATTE _XM _GPP	PP_S B" va FER_ N_V L_DE _INF	FREQ FREQ AL" v FAUL	" /> " value alue=" . TS " va	e="" " /> alue:	/>	/>		

/ŚTRS_warning_q: gps: WF_TimedTasks

WF TimedTasks():New

Monitor Task: cl AGC

ock Detected, reaquiring <u>/STRS_</u>telemetry_q: gps:

GD SDR 1553 data

- Fixed size, rate, message
- "Bit positions" and "Words"

Harris SDR name-value pairs

- Fixed rate, variable size/message
- Defined by XML.

JPL SDR 1553 "serial" data

- Variable size, rate, message
- Text-over-1553 telemetry

Complexity (and usefulness) increases as telemetry becomes free-form

• High fidelity SDR engineering models (EMs) -> future waveforms

- Cost tradeoff: space-rated components vs commercial components
- Fidelity tradeoff: amplifiers/up-converters vs low-power baseband
- Performance tradeoff: antennas vs terminated test ports
- Case study New Ka-band waveform
 - Successful verification of command sequences on the ground
 - Waveform worked half of the time on-orbit; otherwise, it crashed
 - Traced issue to radio signal timing at temperatures below 14C

Invest in quality engineering models, but know differences/limitations

• Waveform software should not depend on a specific platform

- STRS platforms come with an abstraction layer
- Why should a platform provider support a developer?
- Show that radio documentation is sufficient for 3rd party software
- Platform developers are still involved as a service provider
 - Proprietary documentation/code requires non-disclosure agreement
 - Offer service/support agreements for 3rd party development
- Is it possible for third party developers to write effective waveform code? Can they ever match/exceed what the platform manufacturer could have delivered?

OPPORTUNITIES

• SDR Technology Request for Information

- Investigate the state-of-the-art of near-term and long-term, spaceapplicable SDR technology and concepts
- Understand the barriers to establishing a developer community to create or reuse applications for NASA communication systems
- Recommended updates to the STRS architecture: NASA-STD-4009.
- <u>http://www.fbo.gov/</u> (NNC14ZRH014L, or search "STRS")

• SCaN Testbed Experiment Opportunities

- Focus on cognitive concepts for system efficiency (data throughput, power, and spectrum)
- Funded call for university experiments
 - <u>http://nspires.nasaprs.com/</u> (NNC12ZRH002C, or search "SCaN Testbed")
- Unfunded call for Space Act Agreements
 - <u>http://www.fbo.gov</u> (Search "SCaNTestbed2014" posted in the last **365** days)

