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Improving Free-Piston Stirling Engine Specific Power 

Maxwell H. Briggs1 
NASA Glenn Research Center, Cleveland, Ohio,44135 

This work uses analytical methods to demonstrate the potential benefits of optimizing 
piston and/or displacer motion in a Stirling Engine.  Isothermal analysis was used to show 
the potential benefits of ideal motion in ideal Stirling engines.  Nodal analysis is used to show 
that ideal piston and displacer waveforms are not optimal in real Stirling engines.  
Constrained optimization was used to identify piston and displacer waveforms that increase 
Stirling engine specific power.   

I. Introduction 
ree-piston Stirling devices are closed-cycle regenerative devices that can achieve high efficiencies (>50% of 
Carnot efficiency is achievable in well-made engines).  Applications include cryo-coolers, natural gas co-

generation units, solar-dynamic power conversion, and nuclear dynamic power conversion.  They are typically used 
in applications which benefit from high efficiency or in systems that require closed cycle operation.  High efficiency 
and closed-cycle operation are both requirements of many space power systems, making free-piston Stirling engines 
excellent candidates for these applications.   They are being considered for power conversion in NASA missions that 
require Radioisotope Power Systems because their high efficiency allows NASA to use less of the limited supply of 
plutonium-238 per mission.  They also trade favorably in some fission power applications because their high 
efficiency requires less heat input from the reactor and reduces heat rejection requirements, which reduces the mass 
of the reactor shield and the radiators1. Stirling engines have been considered for use in several terrestrial 
applications including automotive engines, solar dish-Stirling power plants, and residential co-generation systems, 
especially when rising fossil fuel costs increase the cost benefit of their high efficiency.  However, the low specific 
power of Stirling engines typically prevent them from competing with internal combustion engines when fuel costs 
are low and open-cycle engines are viable.   
 One potential method 
of increasing Stirling 
engine specific power, 
and therefore its range of 
application, is to enforce 
piston and/or displacer 
motion that more closely 
approximate those of the 
ideal Stirling cycle.  The 
ideal Stirling 
thermodynamic cycle 
consists of isothermal 
compression and 
expansion processes and 
constant volume heat 
addition and heat removal 
processes (Fig. 1).  
Achieving the ideal cycle requires that the piston and displacer dwell and abruptly change direction throughout the 
cycle, which has been difficult to achieve in both kinematic and free-piston configurations.  Designers typically 
choose more practically achievable motion, most often converging on a mechanical linkage or electrical control 
scheme that imposes sinusoidal motion.  While there are certainly benefits to sinusoidal motion, it is not necessarily 
the optimal choice from a performance perspective since sinusoidal motion may reduce specific power.  

                                                           
1 Mechanical Engineer, Thermal Energy Control Branch, 21000 Brookpark Rd MS 301-1, AIAA Member 
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Figure 1. Ideal Stirling P-V and T-S Diagrams.  
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 Figure 2 illustrates the ideal piston and 
displacer motion of a Stirling engine in the beta 
configuration, as well as a plot of ideal piston 
and displacer position.  Process 1-2 shows 
constant temperature compression, in which the 
displacer remains still and the piston compresses 
the gas as heat is removed through the cooler.  
Process 2-3 shows constant volume heat 
addition, in which the displacer moves gas from 
the cold side to the hot side, through the 
regenerator, while the piston remains still.  
Process 3-4 is a constant temperature expansion 
process, in which the expansion of the gas 
moves the piston and the displacer moves along 
with it to maximize the amount of gas in the 
expansion space.  The work done during the 
expansion process minus the work done during 
the compression process is the usable power of 
the Stirling cycle.  In free-piston engines this 
power is extracted through the linear alternator.  
Process 4-1 is a constant volume heat removal 
process in which the displacer moves gas from 
the hot to the cold side, through the regenerator, 
while the piston remains still. 
  

II. Isothermal Analysis of Highly Idealized Engines 
 

The classical analysis of Stirling engines resulting in a closed-form solution assumes the following: 
 

1. Gas volumes are isothermal at either the hot-end temperature or the cold-end temperature or the regenerator 
temperature (No unswept volume). 

2. The instantaneous pressure is constant throughout the working space 
3. Working fluid behaves as an ideal gas with constant specific heat 
4. No leakage of working fluid between gas volumes 
5. The regenerator has a linear temperature profile that is constant in time 

 
The more often used Schmidt analysis adds the additional assumption that the expansion and compression 

pistons move sinusoidally, with a phase shift, α, and also results in a closed form solution.  A complete derivation of 
the ideal Stirling and Schmidt cycle work can be found in Ref. 2, and is widely available in the literature. The 
relavent conclusions of the ideal Stirling and Schmidt cycle analysis appear below:  

 

  (1) 

 

 

 

 
 

Figure 2. Schematic and plots of ideal piston and displacer 
motion. Figure from Ref. 2 
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(2) 

         

 

 

In general, ideal Stirling cycle work is a function of the temperature ratio, volume ratio, and dead volume ratio.  
Schmidt cycle work is a function of temperature ratio, phase angle, swept volume ratio (not to be confused with the 

volume ratio), and the parameter .  In order to compare the specific power of the ideal cycle and Schmidt 

cycle it is useful to take the work ratio of the two cycles.  In the most general case the work ratio is a function of six 
independent dimensionless parameters.  To simplify comparisons, this analysis considers the special case of zero 
dead, unswept, and clearance volumes.  The assumptions used for this analysis are not representative of real engines 
and the shortcomings of these assumptions will be discussed in later sections, but starting from a generalized closed-
form solution on an idealized engine provides a useful illustration of the fundamentals of the relationship between 
Stirling engine specific power and piston/displacer motion.   

A choice must also be made about how relate the sinusoidal piston motion of the Schmidt cycle to the ideal 
Stirling piston motion in a way that gives useful comparisons.  The appropriate choice of constraints depends on the 
operational constraints of an individual engine.  One can argue that the ideal and Schmidt engines should be 
constrained to have common maximum and minimum working space volumes, so that power differences are not the 
result of differences in working space volume amplitude.  Using this approach, increased specific power of the ideal 
cycle is solely the result of holding the working space at constant volume during heat addition and removal.  It does 
not take into account the fact that, for the same limits of piston motion, the ideal cycle can achieve higher working 
space volume amplitude.  Alternatively the Schmidt and Stirling cycles could be constrained to have common limits 
of piston and displacer motion, allowing the ideal cycle to achieve higher working space volume amplitude.  Note 
that there are several other possible choices for constraints which are not considered (i.e. setting maximum pressure 
of the Schmidt and ideal cycles equal or constraining the out limits of piston and displacer motion and leaving the in 
limit unconstrained). 

Using common values for the working space volume amplitude and forcing the ideal cycle to operate at lower 
expansion and compression volume amplitude than the Schmidt cycle gives the following relationship for the ideal 
working space volume ratio, r, in terms of k and α: 

 

  ( 3 ) 

Substituting Eq. 3 into Eq. 1 and taking the ratio of ideal cycle work to Schmidt cycle work shows the increase in 
specific power for engines operating with ideal piston.  These results are plotted in Fig. 3 for several values of k, τ, 
and α. 
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The specific power improvement ranges from 28% to infinity depending on the operating conditions of the 
engine.  The largest increases in specific power occur at impractically high or low phase angles where both the ideal 
and Schmidt cycles produce very little power.  Figure 3 calls out two more typical Stirling engine operating points 
with a temperature ratio of 2, swept volume ratio of 1, and phase angle between 45 and 90 degrees.  At these 
conditions the potential increase in specific power is between 37% and 56%.   
 Another method of comparing specific power is to require the ideal cycle and Schmidt cycle to share common 
limits of piston and displacer motion, allowing the ideal cycle to run at higher working space stroke.  Under this set 
of constraints the swept volume ratio of the Schmidt cycle, κ, is forced to unity and the ideal working space volume 
ratio, r, remains an independent variable, so work ratio becomes: 
 

 
Figure 3. Ratio of ideal cycle work to Schmidt cycle work assuming both cycles 
have equal maximum working space volume and equal minimum working space 
volume.
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  ( 4 ) 

This shows that the work ratio is 
proportional to ln(r), in theory ranging from 
negative infinity to positive infinity.  However, 
running an ideal Stirling at a lower working 
space volume ratio than that of the equivalent 
Schmidt cycle would be counterproductive, so 
the Schmidt cycle working space volume ratio 
is the practical lower limit for ideal cycle 
volume ratio.  Figure 4 shows the ratio of ideal 
work to Schmidt work as a function of r for 
several values of τ and α where the minimum 
ideal cycle swept volume ratio is equal to the 
Schmidt cycle swept volume ratio.  Figure 4 
shows a specific power improvement of 32% at 
low volume ratios and shows the specific 
power improvement increasing without bound 
according to ln(r) as the volume ratio increases.   

These two comparisons illustrate the 
differences in specific power that result from 
approximating ideal piston motion with 
sinusoidal piston motion.  The ideal cycle has 
three advantages over the Schmidt cycle:  1) 
Constant volume heat addition/rejection in the 
ideal cycle increases the pressure ratio which 
increases specific power  2) dwelling periods of 
the ideal cycle allow it to achieve larger 
working space strokes, even when operating 
within the same limits of piston and displacer 
motion as the Schmidt cycle  3)  dwelling 
pistons results in the minimum amount of hot 
gas being compressed and the minimum 
amount of cold gas being expanded.  Using 
common working space volumes for the ideal 
cycle and Schmidt cycle eliminates the effect 
of benefit number two resulting in a specific 
power improvements ranging from 28% to 
infinity.  Analyzing the effects of both constant 
volume heat addition/rejection and higher 
working volume ratios shows specific power 
improvement ranging from 32% to infinity, 
depending on the sorking space volume ratio of 
the ideal engine. These results show that using 
ideal piston motion could potentially increase 
specific power open a new trade space for 
engine designers.  However,  this analysis is highly idealized and does not account for many aspects of real engines 
including dead volume, heat exchanger pressure drop, seal leakage, conduction losses, and other parasitics.  The 
conclusions of this analysis are meant to show potential benefits in a simple and general way and should not be 
interpreted as an accurate prediction of specific power improvement on real engines.  However, it is an encouraging 
first step to see that theory predicts the potential for large increases in specific power when going from the Schmidt 
cycle to the ideal cycle. 
 
  

 
Figure 3. Ratio of ideal cycle work to Schmidt cycle work 
assuming equal maximum and minimum swept volumes.  
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III. Nodal Analysis of Ideal Waveforms on a Realistic Geometry 
 
 The preceding analysis considered a general and highly idealized Stirling engine to illustrate, as simply as 
possible, the potential advantages of using piston motion that more closely approximates ideal piston motion.  
However, several of the assumptions used in the preceding section depart from reality and undermine the usefulness 
of the results.   The assumption of no dead volume allowed the ideal cycle to achieve unrealistically high pressure 
ratios when the volume ratio was treated as an independent variable.  Real Stirling engines require dead volume in 
the heat exchangers and regenerator to achieve the required heat transfer.  This dead volume limits the pressure ratio 
and specific power of the ideal cycle, but was not considered.  Isothermal analysis also assumes that heat transfer 
rates in the expansion and compression spaces are so high that the temperature of the gas within those volumes can 
be considered isothermal.  Under these conditions there is no need for a distinct heater or cooler, because all of the 
necessary heat transfer takes place in the expansion and compression spaces.  Real engines lack sufficient surface 
area in the compression and expansion spaces to accomplish this, so high surface area heaters and coolers are added 
along with their associated dead volume.  The assumptions of isothermal (and adiabatic) analysis both inaccurately 
model heat transfer in the the heater, cooler, expansion and compression spaces.  The actual heat transfer in each gas 
space is a function of heat exchanger geometry and flow conditions and must be calculated to obtain accurate 
results.  In addition, isothermal analysis does not take into account several potentially substantial loss mechanisms 
including pressure drop through the heat exchangers, leakage between the compression and expansion spaces, 
leakage between the working space and bounce space, and conduction from the hot end to the cold end.    
 Rectifying these shortcomings requires nodal analysis and detailed knowledge of engine geometry and a 
corresponding loss of generality in the solution.  The nodal analysis tool used in this section is the commercially 
available Stirling analysis program Sage©.  Sage is commonly used for Stirling engine optimization in the design 
phase and performance mapping of engines once the design has been finalized.  The engine chosen for analysis in 
this section is a 1-kW Stiurling engine designed for use in European cogeneration systems.  The Sage model of the1-
kW engines is a nodal, one-dimensional, cyclic steady-state model that couples the equations of motion of the piston 
and displacer with the Navier-Stokes equations, and energy equations.  Sage can also be used to calculate the 
reduction in available energy which is ignored by ideal, isothermal, and adiabatic analysis.   

The Sage model of the 1-kW engines assumes an isothermal boundary condition on solid surfaces within the 
engine; it then calculates temperature gradients in the rest of the solid and the gas based on solid conduction and 
calculated convection coefficients.  The base temperature of the finned hot-end heat exchanger (acceptor) is set as an 
input.  These temperature inputs typically come from heat transfer analysis done outside of Sage.  Sage then 
iteratively solves for gas temperatures and pressure drops by guessing and checking fin temperature profiles and gas 
velocities, and the resulting displacer 
motion (piston motion is typically a 
user input).     Figure 4 shows a P-V 
diagram generated by Sage for the 1-
kW P2A engines.  The P-V diagram 
generated from isothermal sinusoidal 
analysis is included for reference.  
The predicted power output for 
isothermal analysis is 40% larger 
than the Sage predicted power 
output.  Isothermal analysis predicts 
an engine efficiency equal to the 
Carnot efficiency, which in this case 
is 0.550 (Th = 779 K and Tc = 350 
K) which is 80% higher than the 
efficiency of 0.307 predicted by Sage, suggesting that isothermal analysis inaccurately predicts the heat transfer 
requirements of real engines. 
 Sage requires all non-sinusoidal time-dependent inputs to be entered as sums of harmonic sinusoids.  As higher 
harmonics are added the solver time step must be reduced to resolve the higher frequencies, increasing 
computational time.  Ideal piston and displacer motion was approximated using 7-term truncated Fourier series.  
There is some overshoot (ringing) associated with using truncated Fourier series, but this effect was usually small 
since the quality of fit was high in all cases (R2 values for all cases run were above 0.995). 

 
Figure 4. Comparison of P-V diagrams for a 1-kW Stirling engine using 
nodal analysis and Schmidt analysis 
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One inherent problem in modeling ideal 
piston and displacer motion in Sage, or any 
other high fidelity Stirling model, is that there 
are an infinite combination of piston and 
displacer motions which are considered ideal.  
Figure 5 shows four different piston motions 
with varying piston dwell times, all of which 
satisfy the requirements of ideal piston and 
displacer motion.  The top graph shows an 
extreme case of symmetric piston motion with 
long piston dwell times and infinite piston 
velocities.   The second graph shows a cycle 
with symmetric piston motion, moderate dwell 
times, and moderate piston velocities.  The 
third graph shows another extreme case of 
symmetric piston motion with piston dwell 
times of zero and the lowest possible piston 
velocities.  The bottom picture shows a case of 
asymmetric piston motion with moderate dwell 
times and moderate piston velocities.  Each 
example of ideal motion presented in Figure 5 
is constrained to have the same minimum 
expansion volume, minimum clearance 
between the piston and displacer, maximum 
working space volume, and minimum working 
space volume as an equivalent engine 
undergoing sinusoidal motion.  In addition to 
the waveforms shown in Figure 5 others can be 
generated using other constraints and even 
more can be generated if ideal displacer and 
piston velocities are not forced to be piecewise-
constant, as they have been shown to this point.  
Since isothermal analysis assumes that heat 
transfer takes place instantaneously and does 
not take into account pressure drop or other 
loss mechanisms that are functions of piston 
and displacer velocity, predicted power output 
and efficiency each of these cycles are equal, 
regardless of dwell times or piston/displacer 
velocities.  However, in higher fidelity nodal 
analysis, insufficient dwell times limit working 
fluid temperatures and higher gas velocities 
increase pressure drop through the regenerator and heat exchangers, so different versions of the ideal waveform have 
different power output and efficiency.  

In this analysis the piston and displacer are both forced to achieve an ideal waveform.  In reality, most free-
piston Stirling engines have a free displacer attached to a spring which resonates at the engine operating frequency.  
These engines have no mechanism to impose a non-sinusoidal waveform on the displacer.  However, it is 
theoretically possible to achieve non-sinusoidal displacer waveforms using displacer alternators and/or non-linear 
springs.  The analysis in this section is intended to show the possible performance benefits of altering piston and 
displacer motion in engines designed with capability to do so.  Engines operating with non-sinusoidal piston and 
displacer motion are compared to an engine operating with a sinusoidal piston and a free displacer.   

A. Ideal Waveforms on Real Engines 
 

Ideal piston and displacer motion results in maximum specific power and efficiency in ideal Stirling engines.  In 
real engines increased piston and displacer velocities inherent to ideal waveforms can adversely affect engine 

Figure 5. Comparison of four ideal Stirling waveforms 
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performance by increasing pressure drop through heat exchangers.  The following analysis shows that the optimal 
piston and displacer motions are not necessarily a close approximation of ideal motion, and typically lie somewhere 
in between the ideal and sinusoidal waveforms.   

Analyses of ideal waveforms in this section are done assuming the maximum and minimum working volume, 
minimum expansion volume, and minimum compression volume to the same values as sinusoidal motion.  These 
constraints limit the inward travel of the piston and displacer leaving a stagnant gas volume in the compression 
space and limiting the working space stroke.  Sage-based nodal analysis of ideal motion under these constraints 
predicts lower specific power and efficiency than is predicted for sinusoidal motion in many cases.   

Since nodal analysis takes into account pressure drop through the heat exchangers and the displacer is not freely 
moving at the operating frequency the displacer work requirement is non-zero and must be accounted for.  Instead of 
using the working space P-V diagram, which would only accounts for piston work, a combination of instantaneous 
power and force-displacement (F-D) diagrams for both the piston and displacer are used to show the effect of ideal 
piston and displacer motion on performance.    

Several instances of ideal motion were analyzed using nodal anlaysis including symmetric waveforms of various 
piston/displacer dwell times and assymettric waveforms focused on minimizing viscous losses.  For the sake of 
brevity, only two cases are presented in this section.  Figure 6 shows motion, instantaneous power, and F-D 
diagrams for both the piston and displacer for a symmetric waveform with a piston dwell time of π/4 radians.  This 
motion results in 1680 W of predicted piston power, compared to 1320 W predicted for sinusoidal motion.  
However, short piston dwell times result in high displacer velocities during the cooling phase causing large pressure 
drops in the heat exchangers and large damping forces on the displacer.  This results in 1630 W of power required to 
drive the displacer.  The increased displacer power not only negates the increase in piston power output, but it nearly 
negates all of the work done by the piston, so the predicted net power of the engine is reduced to 50 W compared to 
1170 W predicted for sinusoidal motion.  The engine operating under these conditions would produce little more 
than entropy.
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The most successful version of ideal motion run in these analyses was an assymetric waveform chosen to 
minimize the RMS value of piston/displacer relative velocity, in an effort to minimize pumping losses through the 
heat exchangers.  Figure 7 shows the resulting motion, instantaneous power and F-D diagrams for both the piston 
and displacer constraining the maximum and minimum working space volume to be the same as an equivalent 
sinusoidal engine.  In this scenario the piston power was 1580 W with a displacer power requirement of 430 W 
resulting in a net power output of 1150 W at an efficiency of 21.8%.  Even in this, the best case scenario for ideal 
motion, there is no increase in specific power over the sinusoidal case and engine efficiency is reduced.     

Nodal analysis shows that ideal waveforms offer no specfic power improvements over sinusoidal waveforms for 
the geometry and operating conditions analyzed.  In both cases piston power increased beyond what was predicted 
for sinusoidal motion, but parasitic losses, most notably pressure drop through the regenerator, increased as well.  
The increase in parasitic losses was larger than the increase in piston power, rendering ideal motion useless for this 
engine. 
 It should be noted that the results in this section are specific to this engine design and should not be interpreted 
as broad conclusions.  Roughly 90% of the viscous dissipation in the cases analyzed comes from the regenerator.  If 
other engine designs use less effective regenerators with less pressure drop, or find a method of achieving equal 
effectiveness with decreased pressure drop, it may be possible for it to benefit from ideal waveforms.
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IV. Nodal Analysis of Optimal Waveforms on a Realistic Geometry 
 
 It may seem discouraging that, at least when an ideal engine is constrained to have the same maximum and 
minimum working space volume as a sinusoidal engine, there is no benefit to achieving ideal motion on the engine 
chosen for this analysis.  However, seeing that ideal motion results in increased piston power in all cases suggests 
that there may exist some optimal motion that takes advantage of the increased piston power without incurring such 
a large penalties due to increased viscous losses through the regenerator and heat exchangers.  Determining this 
optimum motion requires the use of non-linear constrained optimization.  This was done using the “fmincon” 
function in Matlab, using net power, as predicted by Sage, as the objective function.  In  each case the relationship 
between the optimal waveform and the equivalent sinusoidal waveform are turned into non-linear constraints on the 
optimization.  Independent variables passed to the solver included all seven piston amplitudes, six piston phase 
angles (the phase angle of the fundamental frequency was pinned to zero), all seven displacer amplitudes and all 
seven displacer phase angles for a total of 27 independent variables.  Using single term sinusoidal motion as the 
starting point, optimization required hundreds of iterations and thousands of function evaluations.  Each function 
evaluation required a converged Sage solution with enough time nodes to resolve a waveform with 7 harmonics, 
making the optimization a computationally intensive process.   
 Figure 8 shows motion, instantaneous power, and F-D diagrams for the piston and displacer for optimized 
motion with the maximum and minimum working space volumes constrained to be equal to those of the sinusoidal 
engine.  Figure 9 shows the difference between sinusoidal, ideal, and optimal motion under the same constraints.  
The optimal motion is a compromise between ideal motion and sinusoidal motion, using asymmetric dwell times on 
the piston to take advantage of increased power and minimizing piston and displacer losses as much as possible by 
keeping velocities moderate.  Optimal motion resulted in 1580 W of piston power and a displacer power 
requirement of 150W, resulting in an increase in net power from 1170W to 1430 W and an efficiency decrease from 
30.7% to 27.9%.  Optimal motion under these constraints could potentially offer system level benefits in 
applications that favor specific power over efficiency.  
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 A less restrictive method of constraining optimized piston displacer motion is to force optimal motion to have 
the same out-limits of piston and displacer motion and the same pitson-displacer clearance as an equivialent engine 
using sinusoidal motion.  Optimal motion in this case results in a piston power of 1730 W with 100 W required to 
drive the displacer, for a net power of 1630 W at an efficiency of 26.6%.  This is a specific power improvement of 
39% and an efficiency reduction of 13%.  Optimized piston and displacer motion under these constraints could be 
preferable to sinusoidal motion in applications that give higher weight to specific power.   
 

V. Concluding Remarks 
  
 This paper consisted of three distinct analyses.  First isothermal analysis was used to show that engines using 
ideal piston waveforms can potentially see large increases in specific power.  Next, nodal anlaysis was used to show 
that these ideal waveforms are not practical in real engines due to increases in parasitic losses, most notably pressure 
drop through the regenerator.  Finally, nodal analysis was combined with non-linear constrained optimization to 
show that piston/displacer waveforms that are compromises between sinusoidal and ideal waveforms can increase 
specific power in real engines.  The increase in specific power is typically accompanied by a decrease in efficiency, 
but this could potentially open a trade space for designers in applications that do not rely heavily on efficiency. 
 The optimum piston and displacer waveforms reported in this paper are specific to the engine chosen for 
analysis.  In general, optimum waveforms are functions of engine geometry, temperature, and pressure gradients 
within the heat exchangers, and must be determined on a case by case basis.  Also, the optimization presented above 
did not consider efficiency.  Designers could perform optimizations with different objective functions, considering 
both specific power and efficiency, or efficiency alone and arrive at a different solution tailored to their application.  
There are also several other methods of constraint that could be analyzed, including constraining the out limits of 
piston and displacer motion to be the same as the sinusoidal case, but removing the constraint on minimum 
compression space volume or constraining the maximum cycle pressure of the optimal case to equal the maximum 
cycle pressure of the sinusoidal case. 
 It should also be noted that this analysis considers only thermodynamic optimization.  In order for non-sinusoidal 
waveforms to provide a real system level benefit the increase in specific power must outweigh losses incurred from 
whatever drive mechanism is used to achieve those waveforms.  A test scheduled to take place at GRC in the Fall of 
2014 will attempt to validate the results of the analysis presented herein and quantify drive mechanism losses. 
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Figure 9. Comparison of sinusoidal, ideal, and optimal piston and displacer waveforms 
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