
Fluid Dynamics and Propulsion at Marshall Space Flight Center

Marshall Technology Exposition
U.S. Space and Rocket Center
Davidson Center for Space Exploration
October 27, 2014

PROPULSION SYSTEMS DEPARTMENT

FLUID DYNAMICS BRANCH STRUCTURE

Fluid Dynamics Branch

Branch Chief – Lisa Griffin
Assistant Branch Chief – Tom Nesman
Technical Assistant – Denise Chaffee
Technical Assistant - Kevin Tucker
Computer System Administrator – Dennis Goode

Computational Fluid
Dynamics
Team Leader: Jeff West

Unsteady Flow
Environments
Team Leader: Tom Zoladz

Acoustics and
Stability
Team Leader: Jeremy Kenny

ER42 is comprised of three teams with a total of approximately 50 employees

FLUID DYNAMICS BRANCH APPLICATIONS

The Fluid Dynamics Branch (ER42) is a discipline centric branch responsible for all aspects of the discipline of fluid dynamics applied to propulsion and propulsion-induced loads and environments.

- ER42 work begins with design trades and parametric studies and continues through hardware development and flight.
- Project support also includes risk assessment, anomaly investigation and resolution, and failure investigation.

Main Propulsion System

- Tank Dynamics
- Cryofluid Management
- Feedline Flow Dynamics
- Valve Flow and Dynamics

Turbopumps

- Pump Dynamics
- Turbine Dynamics

Liquid Combustion Devices

- Injection Dynamics
- Chamber Acoustics
- Combustion Stability
- Nozzle Dynamics

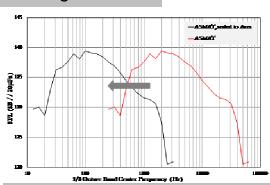
Solid Rocket Motors

- Motor Dynamics
- Nozzle Dynamics
- Combustion Stability

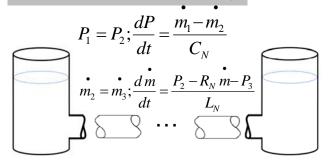
Coupled Systems

- Feed System Dynamics
- Coupled Pump/MPS Dynamics, e,g,, Pogo
- Thrust Oscillations and its Impact on the Vehicle
- •Tank Slosh and its Impact on Vehicle Stability and GN&C

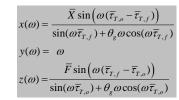
Launch, Separation, and Plume-Induced Environments and Debris

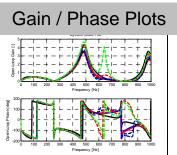

- Liftoff Acoustics
- Separation Acoustics
- Overpressure
- Inflight Plume Generated Noise
- Noise Mitigation
- Hydrogen Entrapment
- Liftoff Debris Transport

FLUID DYNAMICS ANALYSIS

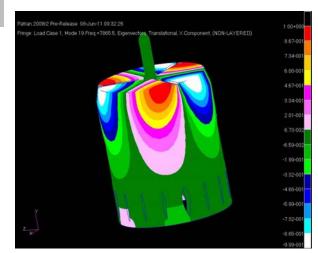


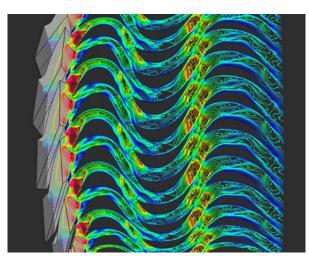
Scaling Methods




ER42 conducts all levels of fluid dynamics analysis from scaling methods through 3D Unsteady CFD

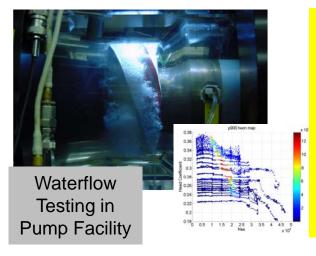
Lump Parameter Modeling


| Commercial products | Commercial products

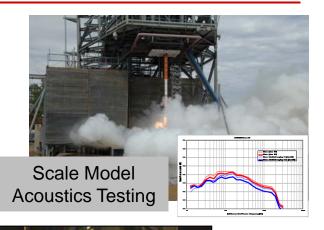


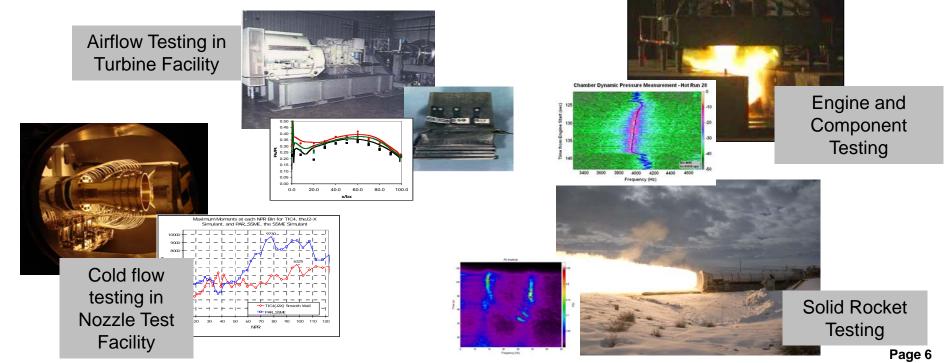
System Stability Modeling

Finite Element Modeling



Computational Fluid Dynamics


FLUID DYNAMICS TESTING



ER42 conducts and supports testing for hardware and technology development and verification, and analysis validation

- Primary responsibility for cold flow and scale model acoustics tests
- Secondary responsibility for hot system and component testing

FLUID DYNAMICS BRANCH TECHNOLOGY

The Fluid Dynamics Branch is continually improving the state-of-the-practice for fluid dynamics support for propulsion system design & development

Why?

- To enable development of robust propulsion hardware that fully meets design requirements
- To facilitate reductions in the cost of access to space by—
 - Lowering design and development costs
 - Lowering production costs (via evaluation of fluid dynamic impacts of advanced manufacturing techniques)

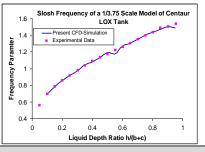
How?

- Increasing tool/test fidelity via appropriate technology pull from the state-of-the-art
 - Across the entire spectrum of fluid dynamics analysis
 - · Tests-cold flow/hot fire, subscale/full scale
 - Test and flight data acquisition capabilities
- Validation of new capabilities
- Integration of validated, high-fidelity capabilities into fluid dynamic support for programs

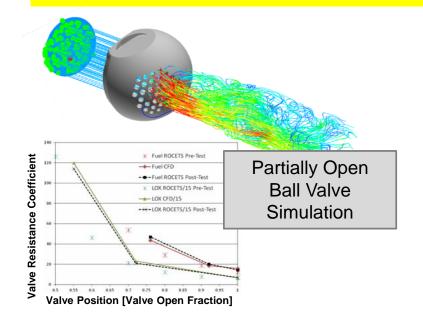
By what means?

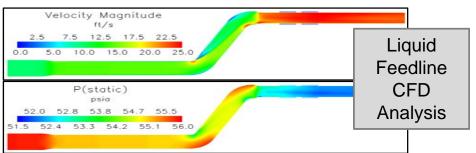
- Strategic partnerships with small business and universities
- Active participation in the NASA SBIR/STTR program
- Internal funding from projects and technology opportunities (e.g. CIF, TIP, Tech Excellence, etc.)

MAIN PROPULSION SYSTEM



Main Propulsion System (MPS) design & development support encompasses:


- Tanks (including internal components)
 - ✓ Propellant Tank Slosh
 - ✓ Pressurization
 - ✓ Drain
- Valves
 - ✓ Flow Patterns & Mean Pressure Drop
 - ✓ Unsteady & Transient Fluid Environments
- Feedlines (including internal components)
 - Pressure Drop and Flow Uniformity
 - ✓ Unsteady Pressure Environments

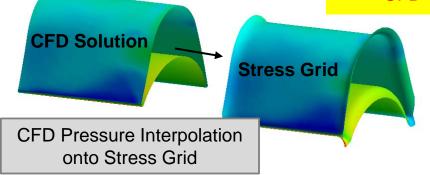


Earth to Orbit Tank Simulation

Improvement to Classic Mass-Spring Model

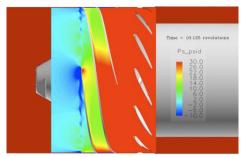
TURBOPUMPS Turbines

Turbine Unsteady CFD Analysis


Turbine design & development support includes:

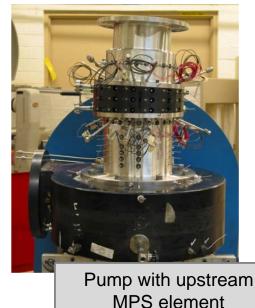
- High-fidelity, unsteady, 3D, full 360° turbine CFD simulations
 - ✓ Quick turnaround design parametrics
 - ✓ All flow features impacting fluid forcing functions are modeled
 - ✓ Unsteady pressure histories delivered in temporal or frequency domains
- Airflow testing of highly instrumented turbine models in scaled air conditions
 - ✓ Steady & unsteady pressure loadings
 - ✓ Interstage cavity pressures
 - ✓ Wide range performance mapping
 - ✓ CFD validation

Turbine Airflow Rotating Assembly


Frequency {Hz} 2 x IGV 3 x IGV 4 x IGV 5 x IGV Page 9

TURBOPUMPS Pumps

Pump Unsteady CFD Analysis



Unsteady pump **CFD** simulations capture inducer tip vortex dynamics

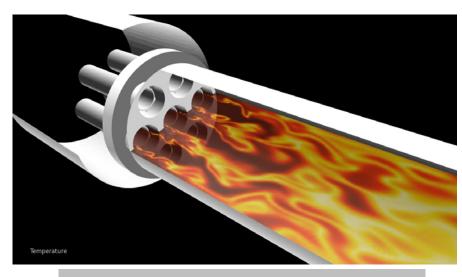
Pump design & development support includes:

- Comprehensive steady & unsteady pump evaluations
 - ✓ Done at scaled engine conditions via dense instrumentation suites
 - ✓ Cavitation trend identification
 - ✓ High speed flow visualization
- High-fidelity CFD simulations
 - ✓ Time accurate CFD simulations provide insight into cavitation
 - ✓ Used to identify critical unsteady flow interactions between inducer blades and cavitation suppression grooves

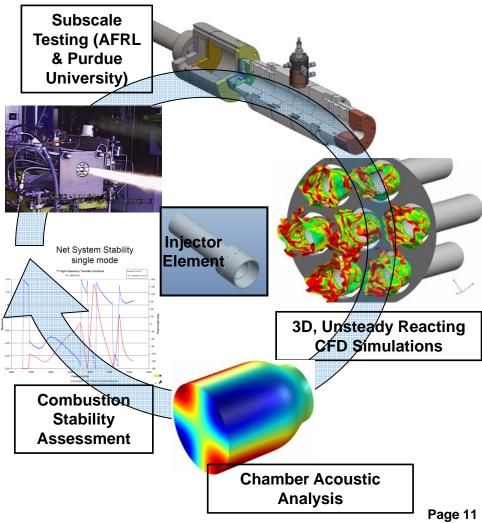
Ps_psid (inducer)

with on-rotor

2-blade inducer dynamic force measurement system



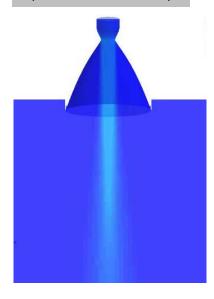
COMBUSTION DEVICES Injectors and Combustion Chambers


Branch responsibility in support of liquid rocket engine injector/chamber design & development

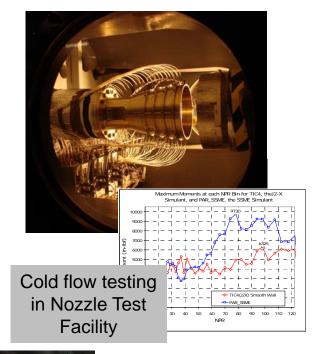
- Large and small engines
- Design, analysis & test support
 - ✓ Performance
 - ✓ Pressure, acoustic & thermal environments
 - √ Combustion stability—current emphasis

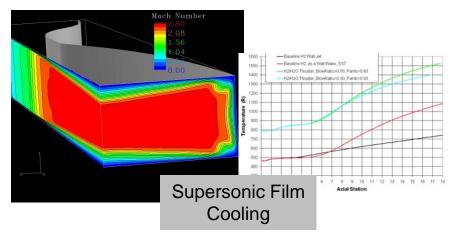
Reacting flowfield from a 7-element CFD injector simulation

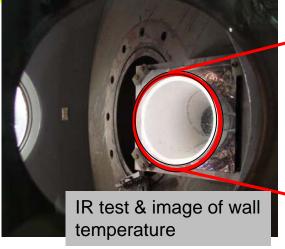
Injector Design & Combustion **Stability Assessment Process**

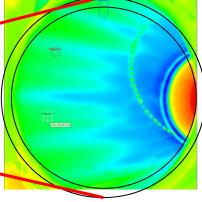


COMBUSTION DEVICES Nozzles

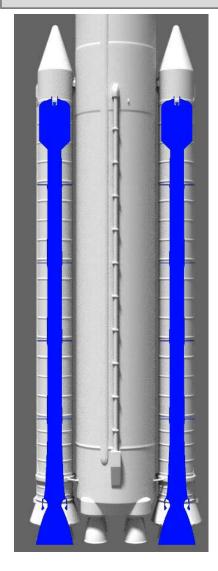



Upper stage engine transients (with stub nozzle)

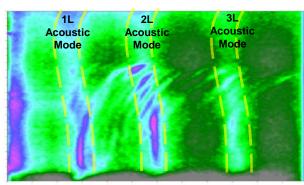



Nozzle design & development support includes:

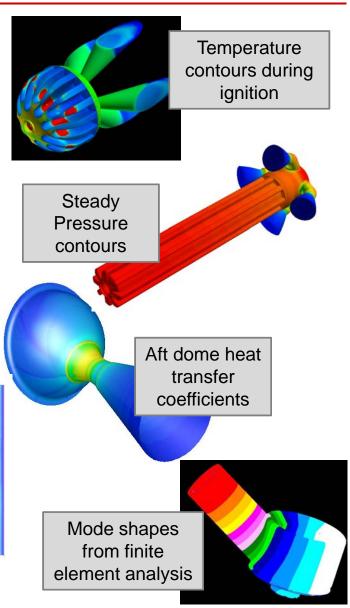
- High-fidelity, unsteady, 3D, full 360° CFD simulations
 - ✓ Performance
 - ✓ Transient side loads
 - ✓ Film Cooling
- Airflow testing of highly instrumented nozzles in scaled air conditions
 - ✓ Pressure loads & performance
 - ✓ Heat transfer
 - ✓ Evaluation of advanced nozzle concepts—dual bell, aerospike, expansion-deflection, etc.
 - ✓ Data for CFD validation



SOLID ROCKET MOTORS



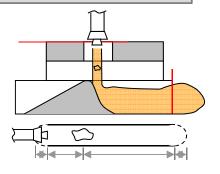
CFD simulation of booster start transient



Solid rocket motor design & development support includes:

- Large booster-class motors
- Small motorsullage settling, booster separation & launch abort
 - ✓ Performance
 - ✓ Environmentspressure, acoustic & thermal
- ✓ Stability

Hot Fire Test Oscillatory Pressure Characteristics



LAUNCH ENVIRONMENTS

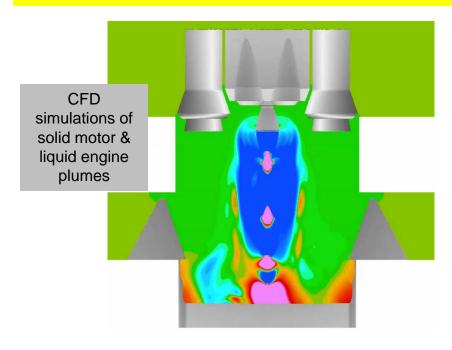
1D Linearized Physics Models

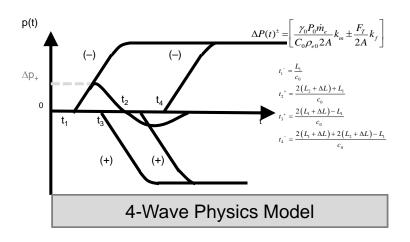
ER42 Develops the Fluid and Acoustic Environments for Launch

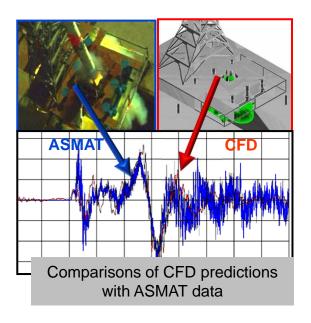
- ✓ Liftoff Acoustics
- ✓ Overpressure
- ✓ Sound Suppression
- ✓ Liftoff Debris Transport
- ✓ Hydrogen Entrapment

Multiple Levels of Analysis and Testing Used to Accomplish this Work

Scale Model Tests

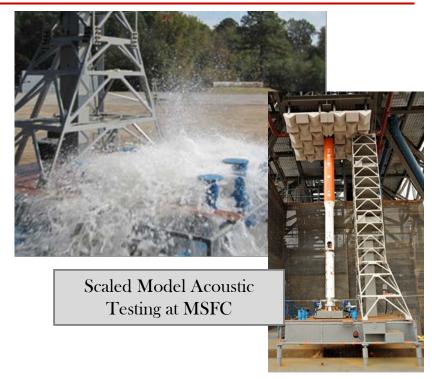


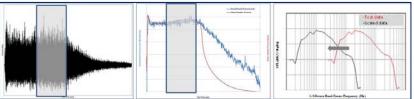

LAUNCH ENVIRONMENTSOverpressure



Overpressure Predictions

- Made by use of a combination of analytical models, CFD simulations and test/flight data
- CFD has recently shown to represent overpressure very accurately without the inclusion of water
 - ✓ Demonstrated ability to capture IOP and DOP waves at several locations for dry tests
 - √ Addresses limitations of analytical models
 - ✓ Accounts for complex flow scenarios and threedimensional launch pad geometry
 - ✓ Provides understanding where unknowns exist




LAUNCH ENVIRONMENTS Liftoff Acoustics

Liftoff Acoustics

- Liftoff noise is generated by rocket exhaust mixing with surrounding atmosphere & its interactions with surrounding launch structures
- ER42 Liftoff Environment Definition Process
 - ✓ Initial liftoff acoustic environment derived from previous/historical flight test data
 - ✓ Acoustic scale model designed and tested to validate liftoff acoustic environments and water sound suppression system design.

Typical pressure time history with

- Analysis window (a)
- Analysis window overlaid on chamber pressure measurement and RMS OASPL time history (b)
- A one third octave plot for the test data compared to the scaled data (c).

SUMMARY

- The Fluid Dynamics Branch at MSFC has the mission to support NASA and other customers with discipline expertise to enable successful accomplishment of program/project goals
- The branch is responsible for all aspects of the discipline of fluid dynamics, analysis and testing, applied to propulsion or propulsion-induced loads and environments, which includes the propellant delivery system, combustion devices, coupled systems, and launch and separation events
- ER42 supports projects from design through development, and into anomaly and failure investigations
- ER42 is committed to continually improving the state-of-its-practice to provide accurate, effective, and timely fluid dynamics assessments and in extending the state-of-the-art of the discipline