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Fuel Cells at NASA

- Gemini, Apollo, and Space Shuttle used fuel cells as main power source
for vehicle and water source for life support and thermal

PEM (Gemini) and Alkaline (Apollo, Shuttle) fuel cells were used

Ideal for short (less than 3 weeks) missions when the required O2 and
H2 can be launched with the vehicle

« New missions that might require long-duration stays in orbit or at a
habitat, cannot rely on the availability of pure reactants and should aim
to be sun-independent - a problem for which Solid Oxide Fuel Cells
might be the answer
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- Recently, NASA has investigated & developed LOX/CH,-propelled
landers (Altair, MORPHEUS). In order to preserve mission flexibility,
fuel cells are being studied as a potential power source.

« Much of NASA’s fuel cell development has been focused on creating
dead-headed, non-flow through PEM fuel cells, which would weigh less
and be more reliable than the existing Alkaline and PEM technology;
however, LOX/CH4 as a propellant introduces SOFCs as a power option
due to their ability to accept “dirty” reactants without much reforming.
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LOX/LH2 Lander vs. LOX/CH4 Lander

« Previous work at JSC has identified the volumetric and mass
benefits of LOX/CH, propelled vehicles vs LH,/LO,

9.686 m

LOX/Methane Lander Size

Abigail C. Ryan/NASA JSC 281.483.3260 abigail.c.ryan@nasa.gov 2014 Fuel Cell Seminar, Los Angeles CA



- Improved space storability

Greatly reduced spacecraft volume
Utilizes propellants that can be produced In-Situ on the Martian surface
(i.e. ISRU)
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Fuel Cells as Power Option
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Integrated Propulsion and Power System

® ; °®
O . -

L]
%
Vent / Pre-press *

SR
LO2 LO2

<
%m
! ==

op2,

Ox

;

e @)
¥ @,
¥ G Gigii
“ ook
Load Disconnect / valve LVFu2 o Load Disconnect / valve
bl FFUL FOx1
| @ @ 5 HVOx3
o \ @ @ It 1
; s hd HVFu3
: * 1 Bleed valves XD ‘||‘§‘ XD Bleed valves
j-; ] [Slkis!
¥
A

N

Ascent Engine

A Eric Hurlbert/JSC

Abigail C. Ryan/NASA JSC 281.483.3260 abigail.c.ryan@nasa.gov 2014 Fuel Cell Seminar, Los Angeles CA



SOFCs at NASA JSC

« NUWC has shown viability of air-independent
SOFCs using oxygen and a methane-rich fuel
source via PROX-reforming, which uses 25%
more of the O, required for power production

 Testing and characterizing a steam reformer
output flow is first step to creating a more O,
efficient and dead-headed SOFC system
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SOFCs at NASA JSC
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Improved Test Stand Design

CO (€O, CH, H,0

==

Dual
| — Syringe
Pumps

Steam generator

DI H,O
& gas preheater S ’

Supply

CH,
Supply

Reactor

SMR Outlet
to RGA Cart X

Abigail C. Ryan/NASA JSC 281.483.3260 abigail.c.ryan@nasa.gov 2014 Fuel Cell Seminar, Los Angeles CA



Initial Results
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Initial Results

Initial testing shows that:

 Catalyst is not sufficiently reduced

NiO + H, & Ni + H,0

* Need to increase thermal mass to heat up fluids to design temperatures

* Need to minimize hotspots that promote carbon deposition
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Switching Catalysts: Metal Foam

Heat Transfer Mass Transfer

Higher thermal condfuctivity minimizes Porous structure provides more
temperature gradients & hot spots tortuous path for gas molecules

Helps favor the reactions we want and Better dispersion of the active metals
prevent those we don’t coated on the metal foam structure

More active noble metals for better conversion efficiency:
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Future Work: SOFCs at NASA

WSTF Simulated Altitude
Testing

First demonstration of SOFC at
altitude, integration of Lox/LCH4
main propulsion and RCS
integration at altitude

All-composite
Integrated Power tank qualification
and Prop test

TA 2: Milestones to LOx/CH4
TRL 6 - Perform system-level
integration and test of the
component technologies

TA 12: Integration
of composite tank
technologies

Sea-level integrated
Main & RCS testing ECI Proposed
demonstrations

' JSC Investments

and Leveraging

SOFC Space
Power Profile

TA 3: SOFC integrated test on
space power profile is needed

*

EP-funded work on SOFC Deep Throttle Engine
reformers, SOFC system build up Development Testing
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