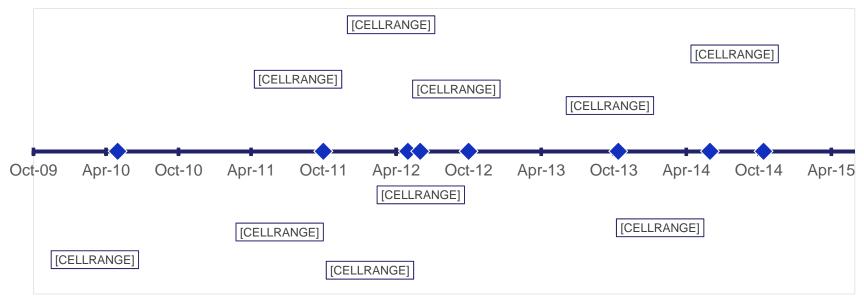
National Aeronautics and Space Administration

NASA's Core Flight Software a Reusable Real-Time Framework

Topics:

Core Flight Software (CFS) Overview Case Study: Morpheus Lander JSC CFS Development Efforts CFS Training Slides


Lorraine Prokop, Ph.D. Advanced Exploration Systems Core Flight Software Project Manager NASA – Johnson Space Center (JSC) November, 2014

Core Flight Software (CFS) Background Context

- What is CFS?
 - NASA Agency Asset for Spacecraft Flight Software Reuse (<u>http://cfs.gsfc.nasa.gov/</u>)
 - Productized real-time flight software developed over several years by Goddard Space Flight Center to serve as reusable software framework basis for spacecraft missions, test missions, real-time systems
 - Fully tested, documented, operational with LRO spacecraft, several other operational missions since
 - Published Service Layer (cFE) and open source Operating System Abstraction Layer (OSAL) for common services
 - Pub/sub message bus, time services, events, tables, file, task execution (http://sourceforge.net/projects/coreflightexec/files/cFE-6.4.0/)
 - Runs on multiple platforms and with several operating systems (<u>http://sourceforge.net/projects/osal/</u>)
 - Apps or "bubbles" for common spacecraft functions provided as government open source reuse (available source forge shortly)
 - Scheduler, commanding, telemetry, communication, data recording, limits, system health, sequences
- Why use it?
 - Proven rapid deployment -- Saves software development/test time, costs, skilled resources
 - Provides up-front architectural framework and services needed commonly across spacecraft/realtime embedded command/control applications
 - Don't have to "reinvent the wheel" every spacecraft for common functions
 - Allows ease of development and integration by supporting multiple OS's and Platforms
- In-house experiences with CFS software development
 - High software productivity achieved starting with solid architecture (~15+ SLOC/day)
 - Ease of application and hardware/software integration
 - Decreased verification needed mature code and architecture Test Readiness Level (TRL9)
 - Excellent product line support from Goddard

CFS Project Use History – Non Exhaustive

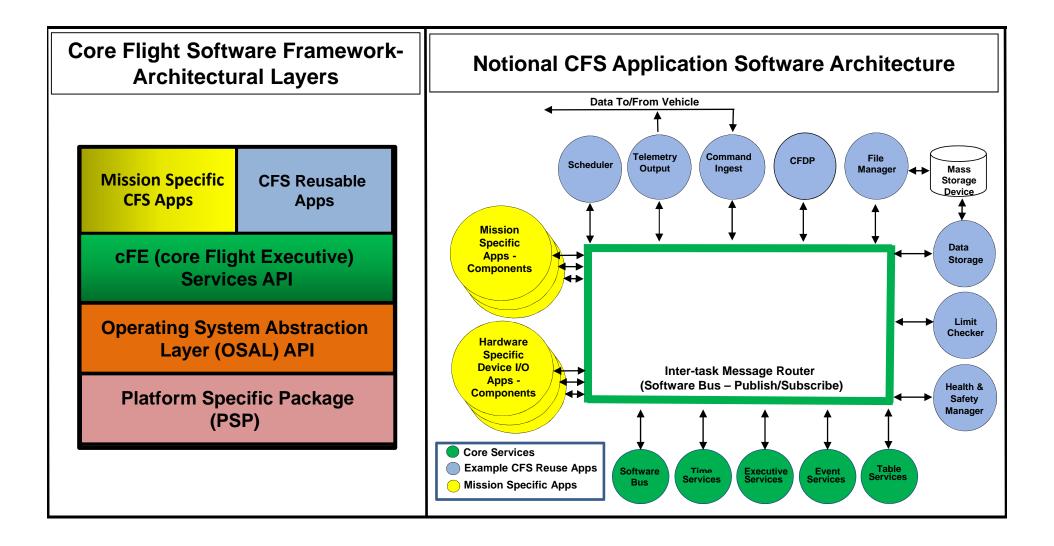
Johnson Space Center CFS Usage Timeline

CFS Use in Some Current Spacecraft

Goddard Missions:

- Lunar Reconnaissance Orbiter (LRO) (2009)
- Solar Dynamics Observatory (SDO) (2010)
- Magnetospheric Multiscale Mission (MMS) (2014)
- Global Precipitation Measurement (GPM) (2014)

Ames Research Center Missions:

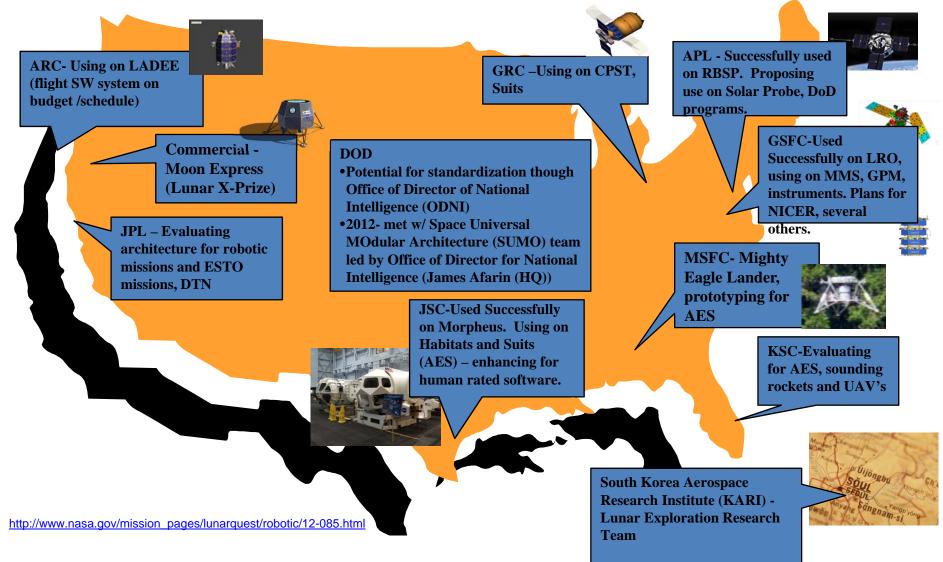

• Lunar Atmosphere and Dust Environment Explorer (LADEE) (2013)

Applied Physical Lab (APL) Missions:

- Radiation Belt Storm Probes (RBSP) (Aug 2012)
- Solar Probe Plus (SPP) (2018)

CFS Supported Platforms (non-exhaustive)

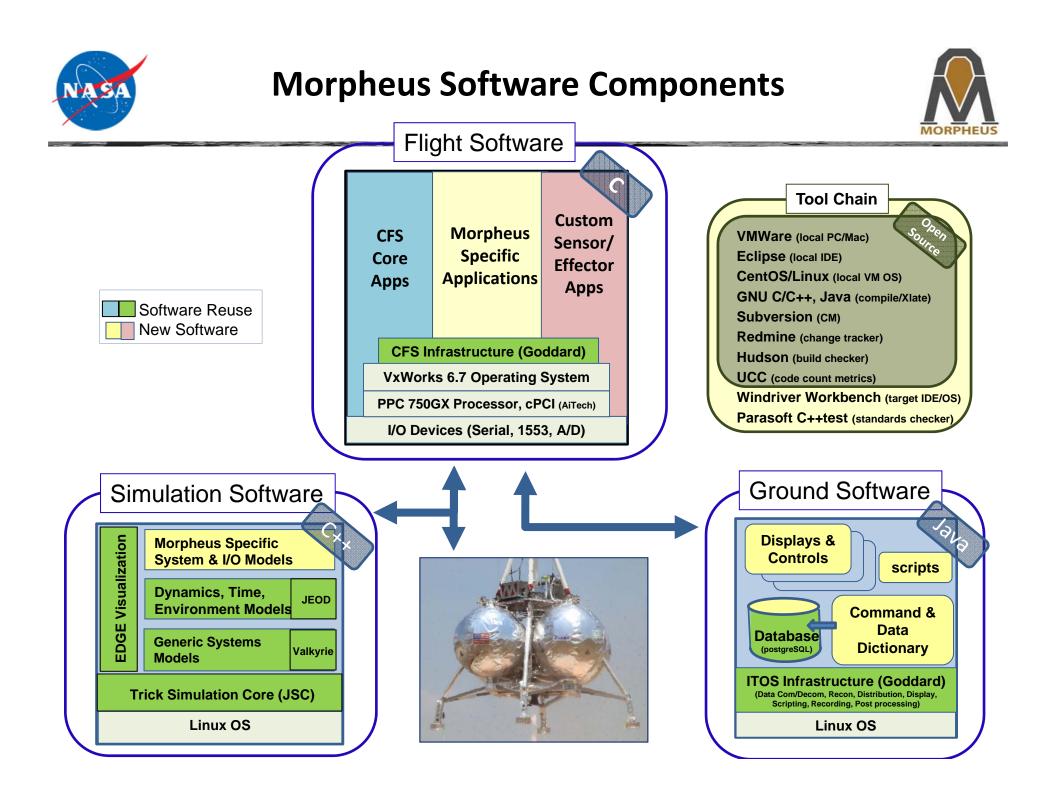
os	- · ·	
03	Project	Status / Notes
vxWorks 6.4	LRO,RBSP, GPM	Project tested.
RTEMS 4.10	ICESat- 2/ATLAS	Early in instrument test program
RTEMS 4.10	MMS	Project tested.
RTEMS 4.10	Solar Probe Plus	In Development for SPP mission
vxWorks 6.4	cFE/CFS Project	Tested. Used as baseline CFS development platform.
Linux	n/a	Not formally tested. Used by JSC.
RTEMS 4.10	n/a	Not formally tested. Used for RTEMS Development, and MMS board.
RTEMS 4.10	n/a	Not tested. Not in CFS CM. Used for LEON3 development. Can be used on LEON3 Simulator.
RTEMS 4.10	n/a	Not formally tested. Used for OSAL / cFE development
Linux	Maestro IRAD (FY12)	Not formally tested. Compatible with Desktop PC linux version.
vxWorks 6.x	Memory Protection IRAD (FY11)	Adds memory protection to standard cFE. Not formally tested. Not integrated with cFE repository.
Linux	Multi-Core IRAD (FY12)	Adds multi-core CPU capability to cFE. Not formally tested. Not integrated with cFE repository.
PikeOS	Virtualization IRAD (FY12)	Adds ability to run in partitioned OS. Prototype. Not integrated with cFE repository.
	RTEMS 4.10 RTEMS 4.10 RTEMS 4.10 vxWorks 6.4 Linux RTEMS 4.10 RTEMS 4.10 RTEMS 4.10 Linux Linux	GPMRTEMS 4.10ICESat- 2/ATLASRTEMS 4.10MMSRTEMS 4.10Solar Probe PlusvxWorks 6.4CFE/CFS ProjectLinuxn/aRTEMS 4.10n/aRTEMS 4.10n/aRTEMS 4.10n/aRTEMS 4.10n/aRTEMS 4.10n/aLinuxMaestro IRAD (FY12)vxWorks 6.xMemory Protection IRAD (FY11)LinuxMulti-Core IRAD (FY12)PikeOSVirtualization


Platform	os	Project	Status / Notes				
Aitech S950 (PPC750FX)	vxWorks 6.7	Morpheus	In JSC CM. Integration tested on real Morpheus Vehicle hardware. Flown on Morpheus test vehicle.				
RTD pc386- IDAN, PC104, Pentium M	RTEMS 4.10	ISS Downmass/ Micro Capsule	In JSC CM. Integration tested on real Micro Capsule hardware.				
Acro Virtex 5	VxWorks 6.9	AEMU	In development.				
Space Micro Proton P400k	VxWorks SMP 6.8	MMSEV, AAE	In JSC CM. In development for MMSEV FY13 work.				
Maxwell SCS750	VxWorks 6.9 RTEMS 4.10	EAM, AAE	In JSC CM. EAM about to start using.				
787FCM	Integrity ARINC	AES CFS	In development, producing ARINC653 cFE, OSAL.				
OrionSCP	Integrity ARINC	AES CFS	In development, producing ARINC653 cFE, OSAL.				
750FCR	VxWorks ARINC 6.8	AES CFS	In development, testing FTSS SW fault containment with a voting quad architecture.				
Trick (simulation environment)	Linux	AES CFS	In development, for multi-project use.				
LEON3	VxWorks 6.7	BFS	In JSC CM. BFS prototype.				
AiTech SP0	VxWorks 6.7	RPM?	In JSC CM. RPM performance analysis.				

Recently Developed largely in support of AES projects

Broad Awareness/Use of the CFS

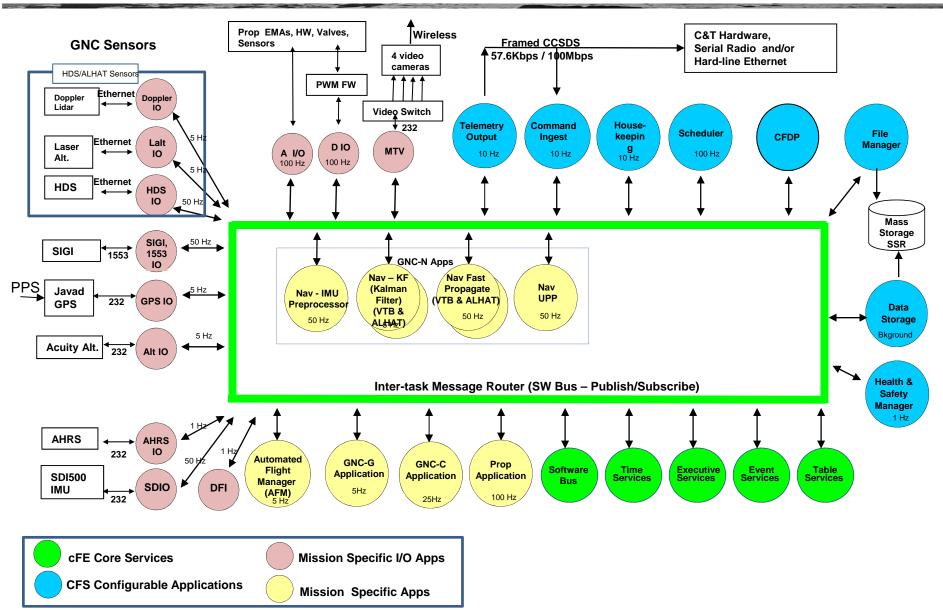
Case Study: Project Morpheus Introduction



While <u>technologies</u> offer promise, <u>capabilities</u> offer potential solutions with application for future human exploration beyond LEO. Morpheus provides a bridge for evolving these technologies into capable systems that can be demonstrated and tested – in a <u>relevant flight environment</u>.

- Morpheus is a Full Scale Robotic Lander (500kg payload) built as a risk reduction test article
 - Morpheus system includes the vehicle, ground systems, operations
 - Developed, tested and operated in-house at Johnson Space Center and KSC
 - Example Video: http://www.youtube.com/watch?v=tdrSYP2gSbg

Technologies:


- Liquid oxygen/methane propulsion (cryogenic, green, safe for ground handling and crew)
- Precision landing and hazard detection Sensors
- Leverages GSFC's modular, reusable
 Core Flight Software
- Technology incubator for advanced development efforts
- Tests complete: 12 hot fire, 34 tethered, and 14 free flights to date
- Lean Development Approach

Morpheus Flight Software Architecture

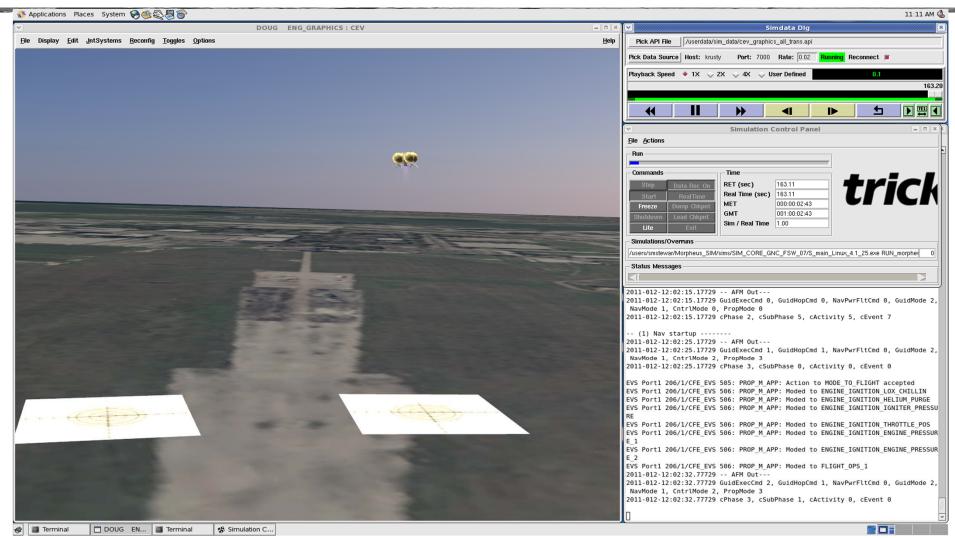
Sample CFS App Template

```
void XXX_AppMain()
{
    /* Perform application initializations */
    if (XXX_InitApp() != CFE_SUCCESS)
    {
        g_XXX_AppData.uiRunStatus = CFE_ES_APP_ERROR;
    }
    /* Application main loop */
    while (CFE_ES_RunLoop(&g_XXX_AppData.uiRunStatus))
== TRUE)
    {
        XXX_RcvMsg(CFE_SB_PEND_FOREVER);
    }
    /* Exit the application */
    CFE_ES_ExitApp(g_XXX_AppData.uiRunStatus);
}
```

int32 XXX_InitApp()

```
int32 iStatus=CFE SUCCESS;
    g XXX AppData.uiRunStatus = CFE ES APP RUN;
    iStatus = CFE ES RegisterApp();
    if (iStatus != CFE SUCCESS)
        CFE ES WriteToSysLog("XXX - Failed to register the
app (0x%08X)\n", iStatus);
        goto XXX InitApp Exit Tag;
    if ((XXX InitEvent() != CFE SUCCESS) ||
        (XXX InitPipe() != CFE SUCCESS)
        (XXX InitData() != CFE SUCCESS))
        iStatus = -1;
        goto XXX InitApp Exit Tag;
    /* Install the cleanup callback */
OS TaskInstallDeleteHandler((void*)&XXX CleanupCallback);
XXX InitApp Exit Taq:
    if (iStatus == CFE SUCCESS)
        CFE EVS SendEvent (XXX INIT INF EID,
CFE EVS INFORMATION,
                          "XXX - Application
initialized");
    else
        CFE ES WriteToSysLog("XXX - Application failed to
initialize\n");
```

Sample CFS App Template (continued)


```
int32 XXX_RcvMsg(int32 iBlocking)
```

```
default:
{
    int32
                    iStatus=CFE SUCCESS;
                                                                                 CFE EVS SendEvent (XXX MSGID ERR EID,
    CFE SB Msq t* MsqPtr=NULL;
                                                                CFE EVS ERROR,
    CFE SB MsgId t MsgId;
                                                                                                "XXX - Recvd invalid SCH msqId
                                                                 (0x%08X)", MsqId);
    /* Wait for WakeUp messages from scheduler */
    iStatus = CFE SB RcvMsq(&MsqPtr, q XXX AppData.SchPipeId,
iBlocking);
                                                                    else if (iStatus == CFE SB NO MESSAGE)
                                                                         /* If there's no incoming message, you can do something
    /* Start Performance Log entry - create initial entry */
    CFE ES PerfLogEntry(XXX MAIN TASK PERF ID);
                                                                here,
                                                                           or do nothing */
    if (iStatus == CFE SUCCESS)
                                                                    else
       MsqId = CFE SB GetMsqId(MsqPtr);
        switch (MsqId)
                                                                         /* This is an example of returning on an error.
                                                                         ** Note that a SB read error is not always going to
            case XXX WAKEUP MID:
                                                                result in an
                XXX ProcessNewCmds();
                                                                         ** app quitting, depends on the app. Changing the run
                XXX ProcessNewData();
                                                                status to
                                                                         ** CFS ES APP ERROR will cause the app's main loop to
                /* TODO: Add more code here to handle other
                                                                exit and the
things
                                                                         ** app to exit.
                   when app wakes up, like any cyclic
                                                                         */
processing */
                                                                         CFE EVS SendEvent (XXX PIPE ERR EID, CFE EVS ERROR,
                                                                                                           "XXX: SB pipe read
                /* The last thing to do at the end of this
                                                                error (0x%08X), app will exit", iStatus);
Wakeup cycle
                                                                        q XXX AppData.uiRunStatus= CFE ES APP ERROR;
                   should be to automatically publish new
output. */
                XXX SendOutData();
                                                                    /* Stop Performance Log entry */
                break;
                                                                    CFE ES PerfLogExit (XXX MAIN TASK PERF ID);
            /* TODO: Add code here to handle other command
                                                                    return (iStatus);
IDs, if needed.
               Normally, other app commands are added as
command codes
               to the app's CMD MID and processed in
XXX ProcessNewCmds().
               Adding another CMD MID would also require adding
another
               command pipe. */
```

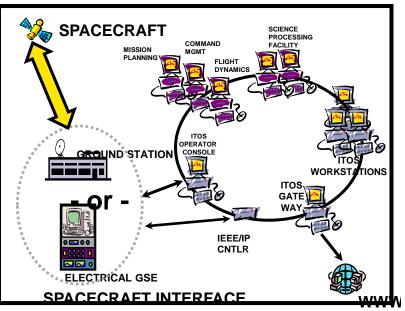

Morpheus Simulation

Morpheus Ground Systems – ITOS Control Room

ITOS Information - Introduction

What is ITOS (Integrated Test and Operations System)?

- A low-cost, highly configurable, control and monitoring system
- What are its current applications?
 - Satellite development, test, & operations
 - Science instrument development, test, & operations
 - Ground station equipment monitoring & control


Who is using ITOS?

- SAMPEX, TRACE, FAST, SWAS, WIRE,
- Spartan 201, 251, 401, 402
- HESSI, Swift, ULDB, Triana
- PiVot GPS, CIRS, Mars Pathfinder

Who is commercializing ITOS?

- Universal Space Network
- the Hammers Company
- Omitron
- AlliedSignal Technical Services Corporation

From ITOS Promo Presentation: http://itos.gsfc.nasa.gov/

14

14

ADVANCED EXPLORATION SYSTEMS (AES) HUMAN EXPLORATION & OPERATIONS MISSION DIRECTORATE

CORE FLIGHT SOFTWARE (CFS) PROJECT SUMMARY

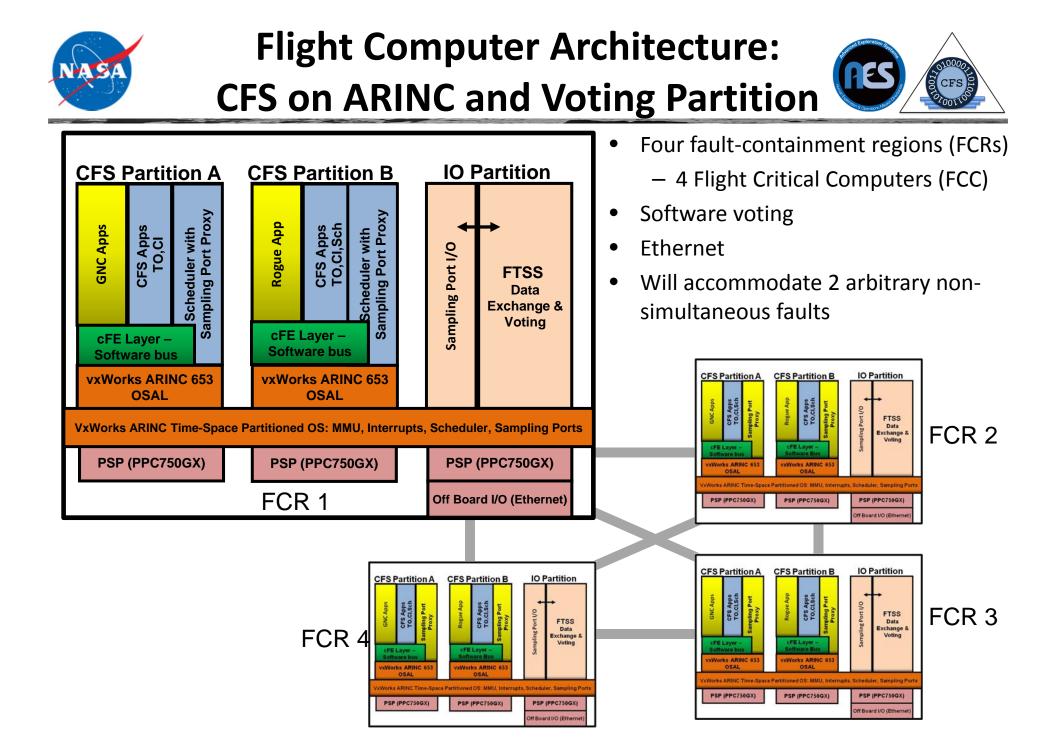
Core Flight Software Lorraine Prokop, Ph.D. / JSC

Project Objectives

- Objectives
 - Provide a *reusable* software architecture suitable for human-rated missions
 - Reduce/offset per-project software development, test, and certification costs by performing that work *once* serving multiple projects
 - Address software and hardware issues unique or typical to human-rated systems
 - Provide reusable software products, tools, and artifacts directly usable by Class A projects/programs, and for general use across NASA
 - Support Advanced Exploration Systems projects as they develop toward flight missions

Build upon reuse of existing TRL-9 uncrewed spacecraft software framework for utilization in human-rated programs.

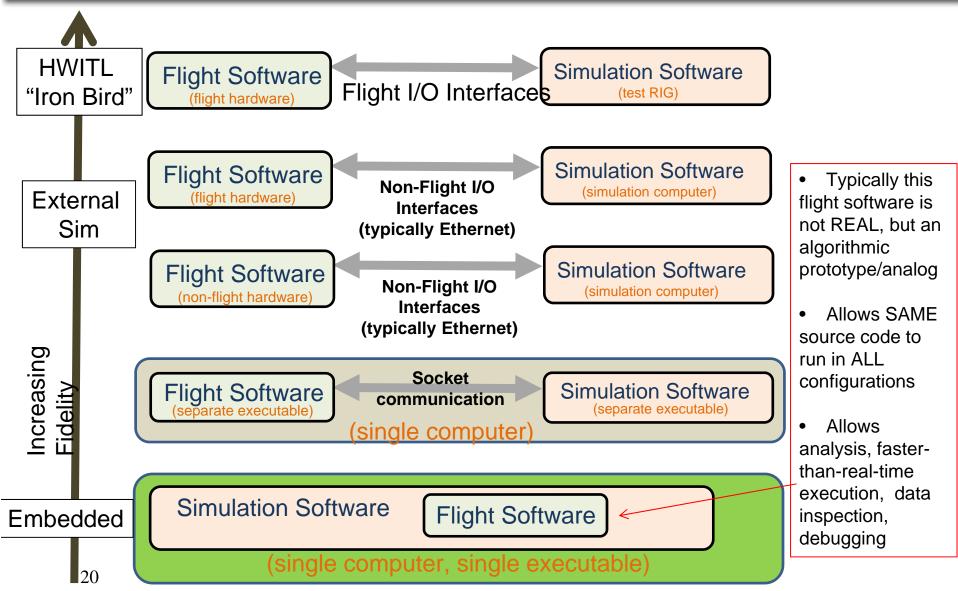
Leverage platforms, resources and skills from synergetic programs/projects for development of next generation human-rated space software systems. The Core Flight Software Project's objective is to evolve and extend the reusability of the Core Flight Software System into human-rated systems, thus enabling low cost, and rapid access to space.


Utilize these products in direct support of development and certification of future manned programs.

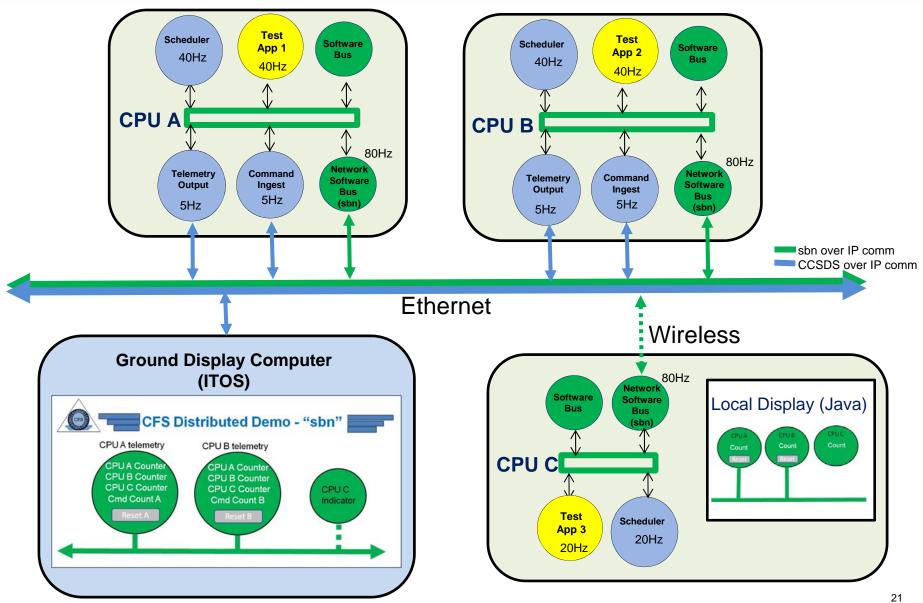
CFS AES Project Product Summary to Date

- FY13 Products
 - Quad-Voting CFS System CFS on Partitioned VxWorks RTOS, synchronizing & voting 4 computers
 - CFS within Trick Simulation
 - Distributed CFS network-based software bus
 - CFS on Orion/B787 Platform CFS on Partitioned Green Hills RTOS
 - Reusable Certification Test Suite
- FY14 Products
 - Class A CFS Certification on Orion Platform
 - Performance Monitoring Tool Development
 - CFS Synch & Voting Software Development
 - Symmetric Multicore Processor (SMP) CFS Development
 - Product Line
 - Command & Data Dictionary Ground Database Tools
 - Education/Outreach
 - Orion Backup Computer Proof of Concept Demonstration
 AES Continuation Review Sep 2013

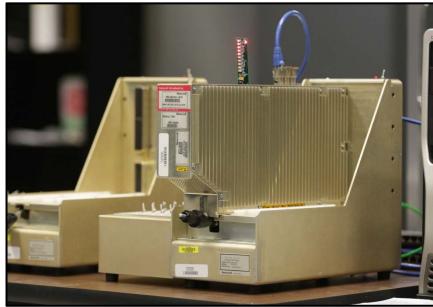
Synchronization & Voting



AES Continuation Review - Sep 2013


Embedded CFS-Trick Background Flight Software - Simulation Philosophies

Distributed CFS Demo Configuration

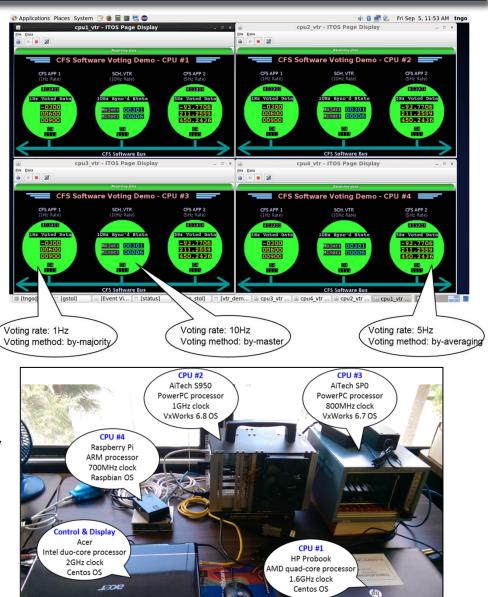

AES Continuation Review - Sep 2013

CFS on Partitioned OS/B787 Class A Product Team

PASSED [cFE.EVS.12.005] CFE_EVS_ResetAllFiltersCmd - Reset all filters - successful
PASSED [cFE.EVS.12.006] CFE_EVS_AddEventFilterCmd - Add event filter - successful
PASSED [cFE.EVS.12.007] CFE_EVS_AddEventFilterCmd - Add event filter - event already registered for filtering
PASSED [cFE.EVS.12.008] CFE_EVS_SetFilterMaskCmd - Set filter mask - successful
PASSED [cFE.EVS.12.009] CFE_EVS_ResetFilterCmd - Reset filter mask - successful
PASSED [cFE.EVS.12.010] CFE_EVS_ResetAllFiltersCmd - Reset all filters - successful
PASSED [cFE.EVS.12.011] CFE_EVS_DeleteEventFilterCmd - Delete event filter - successful
PASSED [cFE.EVS.12.012] CFE_EVS_AddEventFilterCmd - Maximum event filters added
PASSED [cFE.EVS.13.023] CFE_EVS_VerifyCmdLength - Invalid command length with clear log command
PASSED [cFE.EVS.14.001] EVS_GetApplicationInfo - Get application info with null inputs
PASSED [cFE.EVS.14.002] CFE_EVS_WriteLogFileCmd - Write log data - successful
PASSED [cFE.EVS.14.003] CFE_EVS_SetLoggingModeCmd - Set logging mode - successful
PASSED [cFE.EVS.14.004] CFE_EVS_ReportHousekeepingCmd - Housekeeping report - successful
 PASSED [cFE.EVS.14.005] CFE_EVS_CleanUpApp - Application cleanup - successful
PASSED [cFE.EVS.14.006] CFE_EVS_Register - Register application with invalid arguments
ut_cfe_evs PASSED 175 tests. ut_cfe_evs FAILED 0 tests.

Performance Monitoring Tool Screenshots

					Print	🔀 <u>C</u> lose							
Overall	5000	5000	3046.89	0.105892	1.535123	6.453	93.547	0.000000	0.000458	0.000000	1.002590	0.000002	0.002714
0×000000c9 PROP_M_APPMAIN_PERF_ID	165	165	100.55	0.011316	1.629699	0.690	99.310	0.000028	0.000308	0.007014	0.012940	n/a	n/a
0x000000bf EMA_I0_M_APPMAIN_PERF_ID	165	165	100.55	0.004131	1.636884	0.252	99.748	0.000009	0.000194	0.007197	0.012759	n/a	n/a
0×000000d0 ADI0_M_APPMAIN_PERF_ID	165	165	100.55	0.003445	1.637570	0.210	99.790	0.000009	0.000101	0.006989	0.012714	0.000002	0.002714
0x000000d7 HDSIF_M_SOCK_PERF_ID	166	166	101.16	0.008247	1.632768	0.503	99.497	0.000001	0.000408	0.000009	0.022701	0.007390	0.012701
0x00000cf DI0_M_APPMAIN_PERF_ID	166	166	101.16	0.024685	1.616330	1.504	98.496	0.000051	0.000458	0.000826	0.013286	n/a	n/a
0x00000032 T0_M_SOCKET_SEND_PERF_ID	275	275	167.58	0.003817	1.637198	0.233	99.767	0.000005	0.000072	0.000008	0.100094	n/a	n/a
0x00000038 DS_APPMAIN_PERF_ID	1492	1492	909.19	0.001509	1.639506	0.092	99.908	0.000000	0.000104	0.000001	0.012662	n/a	n/a
0x00000025 HK_M_APPMAIN_PERF_ID	1502	1502	915.29	0.001223	1.639792	0.075	99.925	0.000000	0.000094	0.000003	0.012941	n/a	n/a


AES Continuation Review - Sep 2013

CFS Synchronization & Voting Development

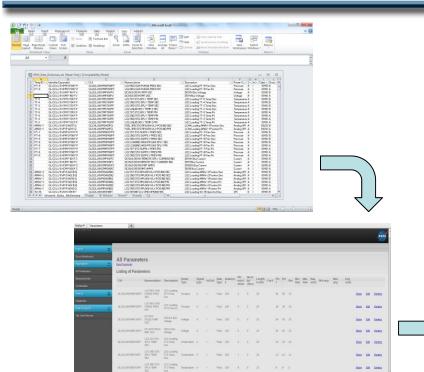
- Voting System for Fault Tolerance
 - Description
 - Provides CFS framework solution for synchronization/redundancy between flight computers
 - Accomplishments
 - Designed System, held several design Inspections, held Demonstrations
 - Implementation underway
 - Supported Heterogeneous Voting Computer Demonstration 9/17/2014
 - Remaining Work (FY15)
 - Continue development
 - Improve system robustness/reliability
 - Analyze/Improve Performance
 - Support Time Triggered Systems

AES Continuation Review - Sep 2013

Symmetric Multiprocessing CFS Development

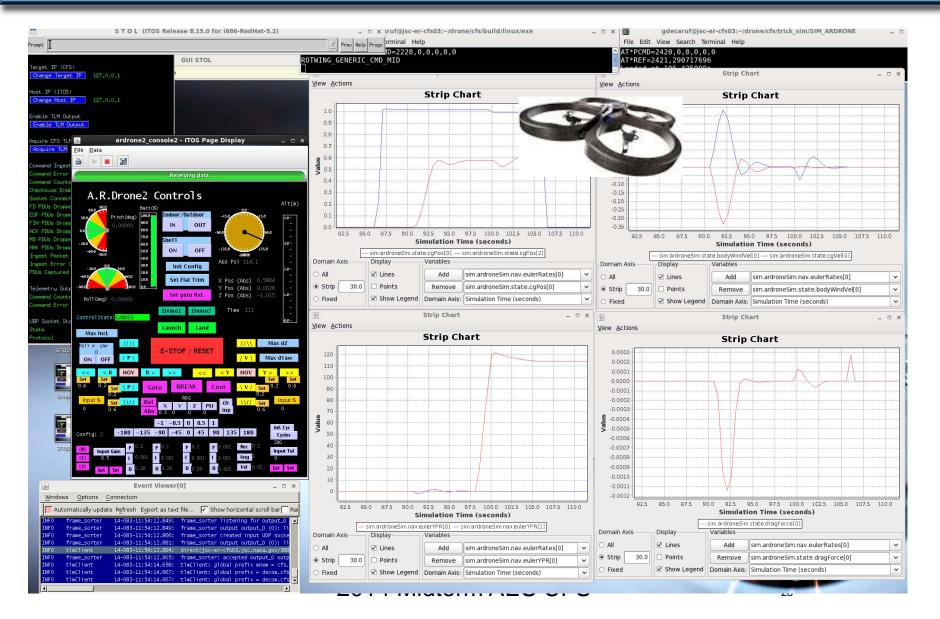
- Symmetric Multiprocessing (SMP) Support
 - Description
 - Provide a generic SMP Operating System Abstraction Layer (OSAL) supporting multi-core processor architectures
 - Accomplishments
 - Prototype implementation of CFS on dual core Space Micro Proton board and VxWorks SMP complete
 - Apps can be allocated to specific cores to deterministically balance processing load or to improve performance of certain apps
 - Remaining Work (FY15)
 - Implement on SPARC LEON 4 quad-core, Tilera 36-core
 - Merge SMP support modifications into mainline CFS

Proton



Tilera 36-core

26


	efine graph for CCSDS processing of test PLC comm	nands */
Graph	gatewayCommandGraph{	
	connections={	
	<pre>/* Connect ccsds output to echo input /* PortConnection{pl=cmd ccsds.output</pre>	
	/* Connect echo output to network tran	
	PortConnection{pl=echo.output	
	<pre>>.</pre>	pz=obr.inpucy,
	/* Echo commands before they are transmitted	*/
	itos.graph.EchoComponent.Type echo{}.	
	/* Transmit command packets out gateway */	
	itos.graph.UDPSocketComponent.Type UDP{	
	configuration(
	foreign_host	<pre>{initialValue="XXX.XXX.XXX.XXX"}</pre>
	foreign_port	{initialValue="YYYYY"},
	associate_on_start	{initialValue=1}
)	
1.1	}	
21		
}	Dsc Off {range=0, bgColor=blue, fgColor=white) Dsc On {range=1, bgColor=green, fgColor=white)	
Discr	<pre>eteConversion unknownOpenConv{ Dsc Unknown {range=0, bgColor=blue, fgColor=wh Dsc Open {range=1, bgColor=green, fgColor=whit</pre>	
}		
Discr	eteConversion openClosedConv{	
	Dsc Open {range=0, bgColor=blue, fgColor=white	
	Dsc Closed {range=1, bgColor=green, fgColor=wt	nite}
}		
Diser	eteConversion openCloseConv{	
	Dsc Open (range=0, bgColor=blue, fgColor=white	1)
	Dsc Close {range=1, bgColor=green, fgColor=whi	
}		1.52
Discr	<pre>eteConversion unknownClosedConv{ Dsc Unknown {range=0, bgColor=blue, fgColor=wt Dsc Closed {range=1, bgColor=areen, fgColor=wt</pre>	nite}
}	are closed (range 2, allocated real, ideotor-all	
/* D	efine graph entry point for PLC commands */	
	indDestination gatewayCommandDestination{ port=gatewayCommandGraph.echo.input	
}.	···· · ······	

- KSC developed general purpose data integration tool for managing command and telemetry metadata
- Intended to be generic in nature and applicable to any project using CFS or ITOS
- Web based interface built with Ruby on Rails
- Data can be ingested from a variety of formats including flat text files or Excel spreadsheets
- Imported into PostgreSQL relational database on which a wide variety of queries and reports can be run from MCTS provided GUI screens
 - Currently capable of exporting data directly into ITOS compatible data record format
 - Future enhancements include exporting data to XTCE format files as well as 'C' type data structure statements for compiling into CFS application code
- Demonstration held August 2014

Education/Course Idea: CFS on AR Drone Embedded with Trick Controls & Simulation

AES Continuation Review - Sep 2013

CFS Project "To Do List"

FY14 Work, FY15 Planned

Class A Products, Human Ratable

- Certify Class A on Orion primary Platform
- Certify Class A on Orion backup (vxWorks/LEON3) Platform

Testing

- Reusable test suite additions for vxWorks
- Cross-platform test framework
- White-box testing of OSAL layer
- Integrated unit test execution/post processing/reports
- Build interface/instrument CFS code for performance testing, monitoring, display interface
- Reusable performance test suite

Human Spacecraft Support Activities

- Support for Redundancy
 - Symmetric (same OS & shared mem) Multiprocessor Support (SMP) (Dual core, 4 core, 36 core)
 - Asymmetric Multiprocessor CFS support
 - Open source Quad CFS voting layer (continued in FY15)
- VML (virtual machine language) integration w/ CFS
- Support for Distributed Systems (sbn additions)
- User Interface Display Support OpenGL Interface
- Backup Flight Systems Architecture exploration

Development Tools - Productivity / Interoperability

- Performance Monitoring / Profiling Tool (Linux/Java)
- Data Definition / Ground Integration Tools (continued FY15)
- Autogeneration of application from a variety of tools -Matlab/Simulink/Rhapsody/sysML/Eclipse,
- Matlab/Simulink simulation of CFS layers
- Top-Coder effort to start with CodeReview Redmine Tool

- Additional Operating Systems / Hardware Platforms
 - iOS
 - Other real-time: real-time Linux, eCos
 - Additional Hypervisor prototyping- picos
 - FPGA with soft cores, PSP's for hybrid chips with hard cores
- Specific Support Needed or AES Projects
 - DTN-CFS integration development
 - AMO-CFS integration
 - AAE project platforms / chosen architectures
 - RPM development
 - Exploration Augmentation Module development
 - Advanced EVA development support
- Outreach Maturation Quad Copter
 - Develop Sim of Quad Copter, Basic GNC Apps
 - Develop product distribution for outreach (CFS, Apps & Trick)
- CFS Institutional Support/Infrastructure
 - Configuration Control, evolution, product planning
 - Website: how-to, wiki, FAQ, downloads
 - Product support & releases, training
 - SARB Recommended fixes
- Possible Flight Projects
 - ISS Flight Computer shadow
 - Orion Backup flight computer prototype, Leon3 processor
 - Software partition for Asteroid Retrieval Mission

Core Flight Software System (CFS)/ Core Flight Executive (cFE) Training Material

Jonathan Wilmot GSFC/Code 582 Jonathan.J.Wilmot@nasa.gov 301-286-2623

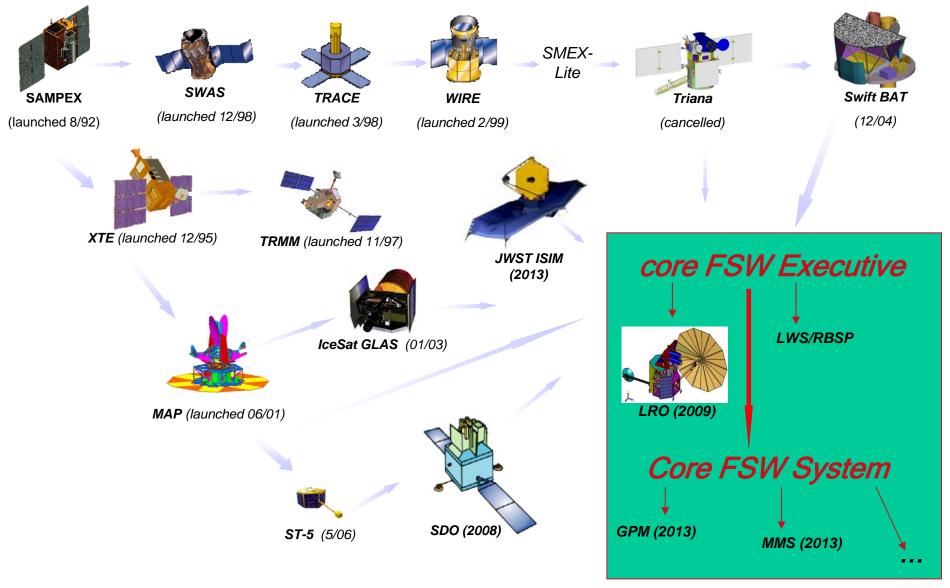
- A set of mission independent, re-usable, core flight software services and operating environment
 - Provides standardized Application Programmer Interfaces (API)
 - Supports and hosts flight software applications
 - Applications can be added and removed at run-time (eases system integration and FSW maintenance)
 - Supports software development for on-board FSW, desktop FSW development and simulators
 - Supports a variety of hardware platforms
 - Contains platform and mission configuration parameters that are used to tailor the cFE for a specific platform and mission.

• cFE services include:

- Executive Services
- Software Bus Services
- Time Services
- Event Services
- Table Services
- Layered on the Operation System Abstraction

- About six years ago GSFC was tasked two large inhouse missions with concurrent development schedules (SDO, GPM)
- GSFC was to build the spacecraft bus, both avionics and software, and integrate the whole spacecraft
- Without the staff for both, we were directed to find a better way
- So management said, "you engineers figure out how to make the schedule and keep the cost in line"
 - We had about a year to figure it out before staffing up
 - This is before full cost accounting

- Formed a team of senior FSW engineers to strategize and develop a better way
- Each had experience on a few different missions and immediately saw all the commonality we could have had
- Team then decided to:
 - Determine impediments to good flight software reuse
 - Utilize best concepts from missions ranging from Small Explorer class to the Great Observatories
 - Design with reusability and flexibility in mind
 - Take advantage of software engineering advances
 - Be Composable
 - Management helped isolate team engineers from short term mission schedules
 - Team established architecture goals



- 1. Reduce time to deploy high quality flight software
- 2. Reduce project schedule and cost uncertainty
- 3. Directly facilitate formalized software reuse
- 4. Enable collaboration across organizations
- 5. Simplify sustaining engineering (AKA. On Orbit FSW maintenance) Missions last 10 years or more
- 6. Scale from small instruments to Hubble class missions
- 7. Build a platform for advanced concepts and prototyping
- 8. Create common standards and tools across the center

Mission Heritage

- Message bus
 - All software applications use message passing (internal and external)
 - CCSDS standards for messages (commands and telemetry)
 - Applications were processor agnostic (distributed processing)
- Layering
- Packet based stored commanding (AKA Mission Manager)
 - Absolute Time Sequence (ATP), Relative Time Sequence (RTP)
- Vehicle FDIR based on commands and telemetry packets
- Table driven applications
- Critical subsystems time-triggered on network schedule
 - 1553 bus master TDMA
- Clean application interfaces
 - Component based architecture (The Lollipop Diagram)

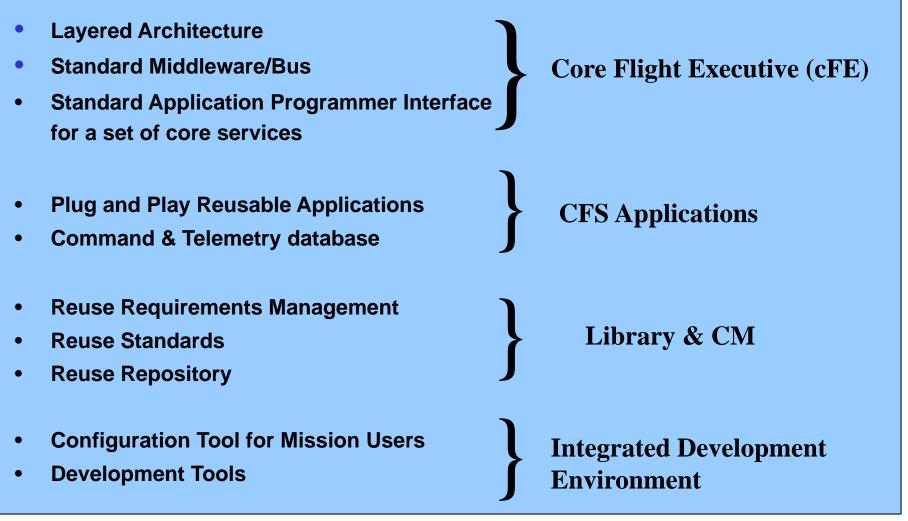
- Lots of innovation
 - Constant pipeline of new and varied missions
 - Teams worked full life cycle
 - Requirements through launch + 60days
 - Maintenance teams in-house and in contact with engineers early in development
 - Teams keep trying different approaches
 - Rich heritage to draw from

• Statically configured Message bus

- Scenario: GN&C needs a new diagnostic packet
 - Give the C&DH team your new packet definition file
 - Wait a week for a new interim build
 - Rinse and Repeat
- How do I add a new one on orbit? (FAST mission example)
- Monolithic load (The "Amorphous Blob")
 - Raw memory loads and byte patching needed to keep bandwidth needs down

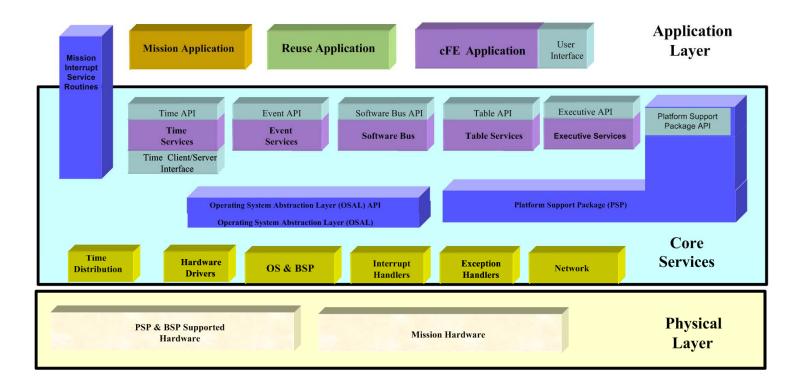
• Reinventing the wheel

- Mission specific common services ("Look, I've got a new and improved version!")
- Application rewrites for different OSes

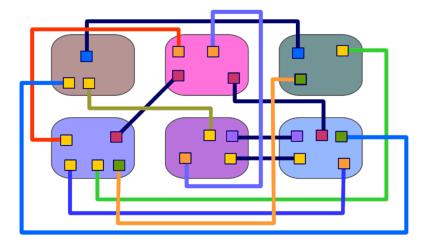


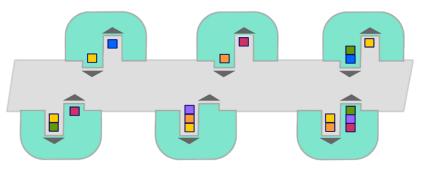
- In the past, GSFC's Flight Software Branch (FSB) has realized little cost savings via FSW reuse
 - No product line. Instead heritage missions were used as starting point
 - Changes made to the heritage software for the new mission were not controlled
 - New flight hardware or Operating System required changes throughout FSW
 - FSW Requirements were sometimes re-written which effects FSW and tests.
 - FSW changes were made at the discretion of developer
 - FSW test procedure changes were made at the discretion of the tester
 - Extensive documentation changes were made for style
 - Not all Products from heritage missions were available
 - Reuse was not an formal part of FSB development methods
 - Reuse was not enforced

Concepts and Standards



Standard Middleware Bus


Publish/Subscribe

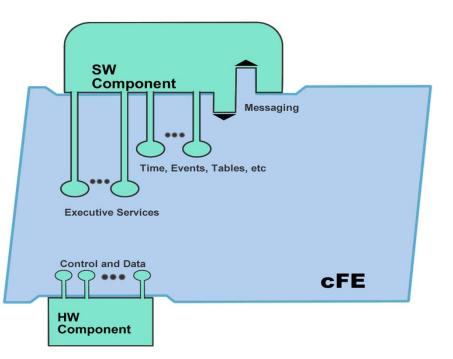

- Components communicate over a standards-based Message-oriented Middleware/Software Bus.
- The Middleware/ Software Bus uses a run-time Publish/Subscribe model. Message source has no knowledge of destination.
- No inherent component start up dependencies

Impact:

- Minimizes interdependencies
- Supports HW and SW runtime "plug and play"
- Speeds development and integration.
- Enables dynamic component distribution and interconnection.

Legacy: Tightly-coupled, custom interfaces- data formats - protocols, internal knowledge, component interdependence

Publish/Subscribe: loosely-coupled, standard interface, data formats, protocols, & component independence



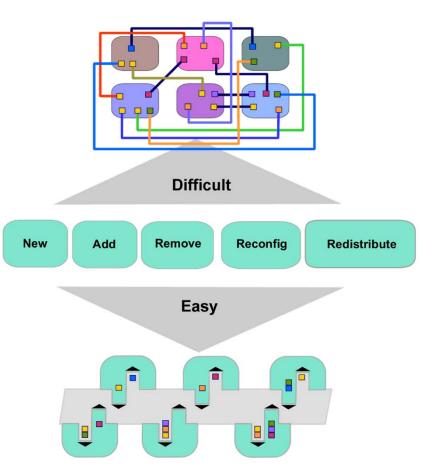
- CFS services and middleware communication bus has a standardized, well-documented API
- An abstracted HW component API enables standardized interaction between SW and HW components.

Impact:

- Allows development and testing using distributed teams
- With the framework already in place, applications can be started earlier in the development process
- Can do early testing and prototyping on desktops and commercial components
- Simplifies integration

API supplies all functions and data components developers need.

Plug and Play



Plug and Play

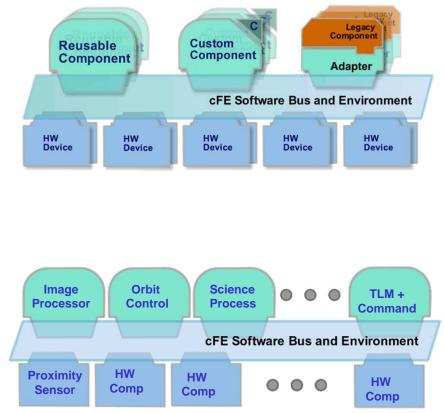
- cFE API's support add and remove functions
- SW components can be switched in and out at runtime, without rebooting or rebuilding the system SW.
- Qualified Hardware and CFS-compatible software both "plug and play."

Impact:

- Changes can be made dynamically during development, test and on-orbit even as part of contingency management
- Technology evolution/change can be taken advantage of later in the development cycle.
- Testing flexibility (GSE, test apps, simulators)

This powerful paradigm allows SW components to be switched in and out at runtime, without rebooting or rebuilding the system SW.

Reusable Components



Reusable Components

- Common FSW functionality has been abstracted into a library of reusable components and services.
- Tested, Certified, Documented
- A system is built from:
 - Core services
 - Reusable components
 - Custom mission specific components
 - Adapted legacy components

Impact:

- Reuse of tested, certified components supplies savings in each phase of the software development cycle
- Reduces risk
- Teams focus on the custom aspects of their project and don't "reinvent the wheel."

Sample CFS Reusable Applications

Application	Function		
Command Ingest	Reusable component for spacecraft commanding		
Telemetry Output	Reusable component for sending and packaging telemetry		
CFDP	Transfers/receives file data to/from the ground		
Checksum	Performs data integrity checking of memory, tables and files		
Data Storage	Records housekeeping, engineering and science data onboard for downlink		
File Manager	Interfaces to the ground for managing files		
GN&C Framework	Provides framework for plugging in ACS models and objects		
Housekeeping	Collects and re-packages telemetry from other applications.		
Health and Safety	Ensures that critical tasks check-in, services watchdog, detects CPU hogging, and calculates CPU utilization		
Limit Checker	Provides the capability to monitor values and take action when exceed threshold		
Math Libraries	Scalar, vector, matrix and quaternion functions		
Memory Dwell	Allows ground to telemeter the contents of memory locations. Useful for debugging		
Memory Manager	Provides the ability to load and dump memory.		
Scheduler	Schedules onboard activities (eg. hk requests)		
Stored Command	Onboard Commands Sequencer (absolute and relative).		

- Health and Safety App
 - Monitor Applications
 - Detect when defined applications are not running and take a defined action
 - Monitor Events
 - Detect table defined events and take a table defined action
 - Manage Watchdog
 - Initialize and periodically service the watchdog
 - Withhold periodic servicing of the watchdog if certain conditions are not met
 - Manage App Execution Counters
 - Report execution counters for a table defined list of Application Tasks

Housekeeping App

- Build combined telemetry messages containing data from applications
- Notify the ground when expected data is not received

- Data Storage App
 - Stores Software Bus messages (packets) to data storage files.
 - Filters packets according to packet filter table definition
 - Stores packets in files according to destination table definition
- File Manager App
 - Manages onboard files
 - Copy, Move, Rename, Delete, Close, Decompress, and Concatenate files providing file information and open file listings
 - Manages onboard directories
 - Create, delete, and providing directory listings
 - Device free space reporting

- Limit Checker App
 - Monitors Table Driven Telemetry Watch points
 - Each watch point compares a telemetry data value with a constant threshold value
 - Evaluates Table Driven Action points
 - Each action point analyzes the results of one (or more) watch points

• Memory Dwell App

- Samples data at any processor address
- Augments telemetry stream provided during development and debugging
- Dwell Packet Streams are Specified by Dwell Tables
- Up to 16 active Dwell Tables
- Dwell Tables can be populated either by Table Loads or via Jam Commands

- Scheduler App
 - Operates a Time Division Multiplexed (TDM) schedule of Applications via Software Bus Messages
 - Synchronized to external Major Frame (typically 1 Hz) signal
 - Each Major Frame split into a platform configuration number of smaller slots (typically 100 slots of 10 milliseconds each)
 - Each slot can contain a platform defined number of software bus messages (typically 5 messages) that can be issued within that slot

• Stored Command App

- Executes preloaded command sequences at predetermined absolute or relative time intervals.
- Supports Absolute Time Tagged Sequences
- Supports Relative Time Tagged Sequences

Checksum App

- Monitors the static code/data specified by the users and reports all checksum miscompares as errors.
- CS will be scheduled to wakeup on a 1Hz schedule
- CS will be byte-limited per cycle to prevent CPU hogging
- Memory Manager App
 - Performs Memory Read and Write (Peek and Poke) Operations
 - Performs Memory Load and Dump Operations
 - Performs Diagnostic Operations
 - Provides Optional Support for Symbolic Addressing

• CFDP App

- Implements flight portion of CCSDS CFDP Protocol

Command Uplink App

- Implements flight portion of CCSDS Command uplink
- Usually mission specific

Telemetry Output App

- CCSDS Telemetry downlink
- Usually mission specific

Memory Scrub App

- Memory Scrub Scrubs SDRAM check bits
- Usually mission specific

• CI Lab & TO Lab

- UDP sockets based uplink and downlink apps for lab testing

Component Example

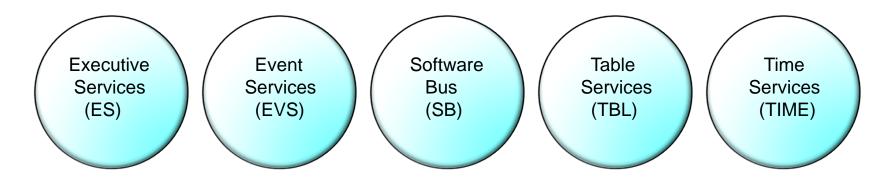
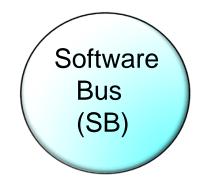

- Interface only through core API's.
- A components contains all data needed to define it's operation.
- Components register for services
 - Register exception handlers
 - Register Event counters and filter
 - Register Tables
 - Publish messages
 - Subscribe to messages
- Component may be added and removed at runtime. (Allows rapid prototyping during development)

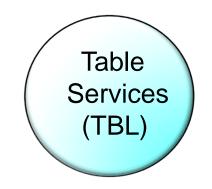

Table API Event API		SB API	Exec & Tas API
Tables Files	Messages	Application code body	
Exception Handlers	Events & Filters		

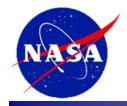
- A set of mission independent, re-usable, core flight software services and operating environment
 - Provides standardized Application Programmer Interfaces (API)
 - Supports and hosts flight software applications
 - Applications can be added and removed at run-time (eases system integration and FSW maintenance)
 - Supports software development for on-board FSW, desktop FSW development and simulators
 - Supports a variety of hardware platforms
 - Contains platform and mission configuration parameters that are used to tailor the cFE for a specific platform and mission.


- Manages the cFE Startup
- Provides ability to start, restart and delete cFE Applications
- Manages a Critical Data Store which can be used to preserve data (except in the case of a power-on reset)
- Provides ability to load shared libraries
- Logs information related to resets and exceptions
- Manages a system log for capturing information and errors
- Provides Performance Analysis support

- Provides a portable inter-application message service
- Routes messages to all applications that have subscribed to the message.
 - Subscriptions are done at application startup
 - Message routing can be added/removed at runtime
- Reports errors detected during the transferring of messages
- Outputs Statistics Packet and the Routing Information when commanded

- Provides an interface for sending asynchronous informational/error messages telemetry to ground
 - Provides a processor unique software bus event message containing the processor ID, Application ID, Event ID, timestamp, and the requestspecified event data (text string including parameters)
- Provides an interface for filtering event messages
- Provides an interface for registering an application's event filter masks, types, and type enable status
- Provides an interface for un-registering an application from using event services
- Provides an interface for enabling/disabling an application's event filtering
- <optional> Provide an interface for logging event into a local event log


- Provides a user interface for correlation of spacecraft time to the ground reference time (epoch)
- Provides calculation of spacecraft time, derived from mission elapsed time (MET), a spacecraft time correlation factor (STCF), and optionally, leap seconds
- Provides a functional API for cFE applications to query the time
- Distributes of a "time at the tone" command packet, containing the correct time at the moment of the 1Hz tone signal
- Distributes of a "1Hz wakeup" command packet
- Forwards tone and time-at-the-tone packets


- Manages all CFS table images
- Provides an API to simplify Table Management
- Table Registry is populated at run-time eliminating cross coupling of Applications with flight executive at compile time
- Performs table updates synchronously with the Application that owns the table to ensure table data integrity
- Shares tables between Applications
- Allows Non-Blocking Table updates in Interrupt Service Routines
- Provides a common ground/user interface to all tables

- A standalone project, separate from the cFE
 - The cFE is built on the OSAL to provide portability
- Available as Open Source on NASA's Open Source Website
 - http://opensource.gsfc.nasa.gov
- Allows execution of FSW on multiple Real Time OSs
 - Build Verification testing done using VxWorks 6.4
- Allows execution of FSW on simulators and desktop computers
- Support three primary targets
 - POSIX
 - OSX
 - Linux
 - Cygwin
 - RTEMS 4.10
 - VxWorks 6.x

- Supports the following Hardware Platforms/Operating Systems (non exhaustive)
 - Flight Hardware Environments
 - MCP750/vxWorks 6.x
 - BAE RAD750/VxWorks 6.x
 - Coldfire/RTEMS 4.x
 - MCP405/linux (Spacecube)
 - Desktop FSW Test Environments
 - MAC/OSX
 - MAC/linux
 - PC(x86)/linux, Cygwin