
LETTER
doi:10.1038/nature13006

Amazon forests maintain consistent canopy
structure and greenness during the dry season
Douglas C. Morton1, Jyoteshwar Nagol2,3, Claudia C. Carabajal1,4, Jacqueline Rosette1,2,5, Michael Palace6, Bruce D. Cook1,
Eric F. Vermote1, David J. Harding1 & Peter R. J. North5

The seasonality of sunlight and rainfall regulates net primary pro-
duction in tropical forests1. Previous studies have suggested that
light is more limiting than water for tropical forest productivity2,
consistent with greening of Amazon forests during the dry season
in satellite data3–7.We evaluated four potential mechanisms for the
seasonal green-upphenomenon, including increases in leaf area5–7 or
leaf reflectance3,4,6, using a sophisticated radiative transfer model8

and independent satellite observations from lidar and optical sen-
sors. Here we show that the apparent green up of Amazon forests
in optical remote sensing data resulted from seasonal changes in
near-infrared reflectance, an artefact of variations in sun-sensor
geometry. Correcting this bidirectional reflectance effect eliminated
seasonal changes in surface reflectance, consistent with independent
lidar observations and model simulations with unchanging canopy
properties. The stability of Amazon forest structure and reflectance
over seasonal timescales challenges the paradigm of light-limited
net primary production in Amazon forests and enhanced forest
growth during drought conditions. Correcting optical remote sens-
ingdata for artefacts of sun-sensorgeometry is essential to isolate the
response of global vegetation to seasonal and interannual climate
variability.
The role of Amazon forests in the global carbon budget remains

uncertain9–12. Efforts to better constrain net carbon emissions from
Amazonia have focused on the magnitude of deforestation carbon
fluxes13 and the seasonal and interannual variability of Amazon forest
productivity1,14–16. Variability in Amazon forest productivity is poten-
tially larger than deforestation emissions on an annual basis, yet remains
poorly constrained by field14,16 or atmospheric observations11,12. At the
centre of this debate is whether tropical forest productivity is more
limited by sunlight or rainfall3,4,9,14,16,17. Resolving this issue is critical
to reducinguncertainties in the contemporary carbonbalance of tropical
forests10–12,15,16 and the probable response of Amazon forests to climate
change9,18,19.
Satellite instruments offer a global perspective on seasonal and inter-

annual changes in vegetation productivity. Indices of fractional vegeta-
tion cover derived from satellite data suggest a ‘green up’ over Amazon
forests during the dry season3,17, consistent with the light limitation
hypothesis2. Previous studies have attributed this seasonal greening
of Amazon forests to synchronous canopy leaf turnover3,4,6, as young
leaves reflect more near-infrared (NIR) light than the older leaves they
replace20, or seasonal increases in green leaf area5–7. These leaf-level
responses would increase the photosynthetic capacity of Amazon for-
ests, resulting in higher net primary production (NPP) as photosynthe-
tically active radiation (PAR) increases during dry season months1,3,4.
Light-limited forests could therefore respond to drought events or
other cloud-free periods with an increase in NPP17, given sufficient
access to deep soil moisture21.
NASA’sModerate Resolution Imaging Spectroradiometer (MODIS)

is the primary data source for studies of the green-up phenomenon,

including the enhanced vegetation index (EVI)3,4,7 and leaf area index
(LAI) products5,7. TheMODIS EVI and LAI products are very sensitive
to changes inNIR reflectance7,22. Severalmechanisms could generate an
increase in theNIR reflectance ofAmazon forests (Table 1); increases in
MODIS EVI or LAI alone are therefore insufficient to isolate the bio-
physical basis for the Amazon green up6,7.
We combined three lines of evidence to test the hypotheses that

changes in leaf area or leaf reflectance drive the appearance of a sea-
sonal green up of forests in southernAmazonia. First, we synthesized a
three-dimensional Amazon forest (Extended Data Fig. 1) and used the
FLIGHTradiative transfermodel8 to simulate changes in lidar andoptical
remote sensing metrics from seasonal variability in leaf and litter reflec-
tances, leaf area, and sun-sensor geometry during the June to October
dry season (Table 1). Second, we analysed lidar waveform centroid
relative height (WCRH)23 and 1064nm retroreflectance measurements
from theGeosciences Laser Altimeter System (GLAS) lidar instrument
onboard NASA’s Ice, Cloud, and land Elevation satellite (ICESat)24.
GLAS footprint pairs were selected from adjacent orbits in June and
October across the southern Amazon. Finally, we reprocessed daily
surface reflectance data at 1 km spatial resolution from the Terra and
AquaMODIS sensors to eliminate artefacts fromchanges in sun-sensor
geometry. The combination of theoretical modelling and independent
lidar and optical satellite observations in this study generated multiple
lines of evidence to better characterize the apparent green-up phenom-
enon.We found no evidence for consistent seasonal changes in canopy
structure or reflectance properties of southern Amazon forests from
lidar and optical remote sensing observations.Our approach to constrain
seasonal variability in NIR reflectance has wide-ranging implications
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Table 1 | Lidar and optical remote sensing metrics are sensitive to
possible leaf-level mechanisms for a seasonal green up of Amazon
forests
Model simulations WCRH EVI NDVI

June* 0.52 0.40 0.87
October{
Sun-sensor geometry 0.43 0.81
rLitter (120–25%){ 0.48 0.48 0.83
rLeaf (110%) 0.52 0.54 0.85
LAI (12) 0.58 0.43 0.83
LAI 1 rLitter 0.56 0.46 0.84
LAI 1 rLeaf 0.58 0.55 0.87
LAI 1 rLeaf 1 rLitter 0.56 0.59 0.88

Model simulations evaluated the impact of seasonal changes in sun-sensor geometry and increases in
litter reflectance (rLitter), leaf reflectance (rLeaf), and leaf area index (LAI) on GLAS lidar WCRH and
MODIS vegetation indices (EVI, NDVI).
*Amazon forest conditions in June for FLIGHT radiative transfer model simulations of GLAS lidar
(LAI54.5, 1064nm rLeaf50.39, and 1064nm rLitter50.34) and MODIS surface reflectance,
uncorrected for sun-sensor geometry (LAI54.5, 860nm rLeaf50.39, 860nm rLitter50.30; and
mean Terra MODIS solar zenith angle (hs)540u, view zenith angle (hv)515u, and relative azimuth
(w)560u).
{October viewing conditions for MODIS simulations were hs520u, hv515u, w50u.
{rLitter was increased by 20% for lidar (0.54) and 25% (0.55) for optical simulations with FLIGHT (see
Extended Data Fig. 1).
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for in situ, airborne and satellite-based studies of vegetation phenology
and canopy structure that rely on NIR spectral information.
Three potential biophysical mechanisms for a green up of Amazon

forests generated unique responses inmodelled lidar andoptical remote
sensingmetrics (Table 1 and Extended Data Table 1). Increasing litter
reflectance, consistent with greater litter depth or lower littermoisture
during the dry season, decreased theWCRHand increasedEVI. Increas-
ing leaf reflectance had negligible effects onWCRH based on compens-
ating increases inboth single andmultiple scatteringofNIRphotons, but
led to a 32–35% increase in EVI relative to simulations with unchanging
canopy properties. Adding LAI increased bothWCRHandEVI, as did
combinations of increasing LAI, leaf reflectance and litter reflectance.
A fourthmechanism, changes in sun-sensor geometry, only influenced
simulations of MODIS reflectance data. During the Amazon dry sea-
son, the relative azimuth angle (w) of MODIS observations decreases
until the sensor approaches the principal plane (w5 0u, w5 180u)
following the September equinox (Fig. 1 and Extended Data Fig. 3).
Changes in sun-sensor geometry alone increased EVI across the range
of view zenith angles selected for most land applications (Fig. 1).
Modelled changes were greatest near the hot spot, although themagni-
tudeof thehot-spot effect is difficult to reproduce in a theoreticalmodel25.
Seasonal changes in sun-sensor geometry decreased themodelled nor-
malized difference vegetation index (NDVI) due to an increase in red
reflectance in the hot spot (Table 1 andExtendedData Fig. 4). Themag-
nitude of changes inmodelled and observedMODISNDVIwas smaller
than for EVI (see Supplementary Information). Results of the FLIGHT
model simulations indicated that combined information from lidar

and optical satellite sensors could isolate leaf or litter mechanisms for
seasonal greening from artefacts of changing sun-sensor geometry in
MODIS observations.
The distributions of relative heights and apparent reflectance esti-

mates fromGLAS lidar observations did not increase between June and
October across the southernAmazon (Fig. 2). ConsistentWCRHvalues
at the beginning and end of the dry season could occur despite increas-
ing leaf reflectance (Table 1). However, the distribution of the most
reflective lidar returns was also similar between June and October,
indicating that the overall reflectivity of the forests at 1064nm did
not increase. Combined, height and reflectance estimates from the
GLAS lidar instrument do not provide consistent regional evidence
for a leaf-level mechanism for seasonal greening of Amazon forests.
The spatial patterns of lidar metrics also differed from previous maps

of the Amazon green-up phenomenon. Distributions of GLAS lidar
WCRH in June and October were similar across the southern Amazon
(Extended Data Fig. 5). As a relative metric, WCRH is more robust
to residual atmospheric contamination from biomass burning that
may influence lidar apparent reflectance estimates over Amazon forests.
The spatial pattern ofWCRH estimates during the dry season highlights
greater penetration of lidar energy in forests with lower mean annual
precipitation (Extended Data Fig. 6). We speculate that lower WCRH
estimates in these drier forest regions may arise from greater vertical
heterogeneity from emergent trees or higher gap fraction because of
moisture competition. A higher degree of within-canopy shadowing in
forests with low WCRH could exacerbate the directional anisotropy in
surface reflectance from optical sensors such as MODIS.

b

0 0.2 0.4 0.6 0.8
0

1,000

2,000

3,000

4,000 June
October

Waveform centroid relative height

IC
E

S
at

-G
LA

S
 li

d
ar

 p
ul

se
s 

(N
)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2,000

4,000

6,000

8,000 June
October

1064 nm apparent reflectance

c70º W 60º W 50º W

0º

10º S

300km

EcuadorEcuadorEcuador ColumbiaColumbiaColumbia

Peru

Bolivia

RO

MT

PA

AP

AM

AC

a

Figure 2 | Independent GLAS lidar observations indicate consistent canopy
properties between June and October across southern Amazonia. a, Map of
GLAS lidar footprint pairs from adjacent orbits during June (L3c and L3f) and
October (L3a and L3i) laser operation periods (n5 74,638). b, c, Distributions
of lidar waveform centroid relative heights (WCRH) (b) and maximum

apparent reflectance (c) (1064-nm retroreflectance) did not increase between
early and late dry season laser operation periods. States within the Brazilian
Amazon are abbreviated in a. Acre, AC; Amazonas, AM; Amapá, AP; Mato
Grosso, MT; Pará, PA; Rondônia, RO.
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Figure 1 | Seasonal changes in sun-sensor geometry generate the
appearance of a green up inMODIS observations of Amazon forest between
June and October. a–c, Modelled directional anisotropy of the MODIS
enhanced vegetation index (EVI) is stronger in June (a) than October (b), but
the realized bidirectional reflectance effect is greater in October (b, c) when the

MODIS instruments sample in the principal plane (w5 0u, w5 180u). White
dots in a and b indicate the relative azimuth angle of Terra and Aqua MODIS
observations. The peak in modelled October EVI near hv5 20u indicates
the hot-spot effect from the alignment of solar illumination and sensor
observation angles.
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Removing artefacts of changing sun-sensor geometry inMODIS red
and NIR reflectance data eliminated the appearance of a green up in
MODISEVIduringdry seasonmonths (Fig. 3 andExtendedData Fig. 7).
Previous green-up studies withMODIS EVI or LAI data did not expli-
citly account for changing viewing and illumination conditions3,7,17 or
didnotnormalize to a constant sun-sensor geometry for all observations4.
Corrected EVI data also eliminated the appearance of interannual vari-
ability during 2003–08 (Extended Data Fig. 8). Artefacts from changes
in sun-sensorgeometryduring thedry seasonmay therefore explainpre-
vious reports of higher EVI values overAmazon forests duringdrought
conditions17. Indeed, lower cloud cover during drought years increases
theprobabilityof observing forests in the southernAmazonwhenMODIS
observations are closer to the principal plane (Extended Data Fig. 9).
Seasonal increases in NIR reflectance drive the apparent green up of

Amazon forests, basedona reduction in self-shadingnear theSeptember
equinox that is amplified in MODIS EVI data by changes in sun-sensor
geometry. Seasonal changes in NIR reflectance and EVI do not corre-
spond directly to changes in leaf reflectance, leaf area or vegetation
productivity. However, the sensitivity of uncorrected MODIS EVI to
seasonal illumination may serve as a useful proxy for variability in the

fraction of absorbed PAR (FAPAR). This relationship between EVI and
FAPARmay explain the positive correlation betweenMODIS EVI and
net ecosystem exchange (NEE) in Amazon forests3 and other biomes26.
The potential response of Amazon forests to increasing PAR in the dry
season, as measured at the top of canopy1, is therefore moderated by
seasonal variability in FAPAR from the reduction in self-shading
between the June solstice and September equinox.
Satellite-based evidence for consistent reflectance of Amazon forest

canopies over seasonal and annual time scales reframes the debate over
climate controls on Amazon forest productivity. Leaf turnover may
still be important for increased productivity of individual trees during
dry season months4,6,19,20, but GLAS and MODIS observations do not
support the hypotheses that changes in canopy reflectance properties
from leaf phenology are consistent at larger spatial scales ($1 km)
across the southern Amazon. Direct observations of this fine-scale
variability in Amazon forest NPP may yet be possible from satellite-
based estimates of vegetation fluorescence27 or light-use efficiency28,
provided that the fractionof sunlit and shaded leaf area canbe retrieved
or modelled simultaneously. Our results support the initial interpreta-
tions of eddy covariance studies1, rainfall exclusion experiments29 and
plot measurements14 in Amazon forests that seasonal moisture avail-
ability governs the balance between photosynthesis and respiration in
Amazon forests.

METHODS SUMMARY
A 1 km2 Amazon forest was synthesized using field measurements of forest struc-
ture and reflectance properties (see Extended Data Fig. 1). Tree locations and
attributes were used to generate a three-dimensional forest scene in the FLIGHT
radiative transfer model8. FLIGHT model simulations quantified the impact of
individual and combined seasonal changes in leaf reflectance, litter reflectance,
LAI, and MODIS relative azimuth angle on optical and lidar remote sensing
metrics (see Extended Data Figs 1 and 2 and Extended Data Table 1). Simulated
seasonal changes in remote sensingmetricswere comparedwithGLASandMODIS
observations.
ICESat-GLAS lidar data over southernAmazon forests were selected fromLaser

3 operation periods in the early (L3c,May to June 2005; L3f,May to June 2006) and
late dry seasons (L3a, October 2004; L3i, October 2007). GLAS waveform char-
acteristics were derived from the GLA09 and GLA14 standard products (data
access: http://nsidc.org). High-quality data from adjacent orbits in June and October
were used to assess seasonal changes in lidar apparent reflectance and WCRH23

(n5 74,638).
Terra and Aqua MODIS daily 1 km surface reflectance data from 2003–08

were acquired for two 10u3 10u spatial tiles (H11V09 and H12V09, Collection
5MOD09GA andMYD09GA, data access: https://lpdaac.usgs.gov/). Eachmonth,
high-quality Terra and Aqua MODIS data were combined to estimate the bidir-
ectional reflectance distribution function (BRDF) and perform a per-pixel correc-
tion for variations in sun-sensor geometry25. A threshold of$ 20 observations per
pixel, per month was set to ensure a robust statistical inversion (n5 197,651).
BRDF parameters were used to normalize red and NIR reflectance values to
constant solar (hs5 30u) and view geometries (hv5 0u). NDVI and a two-band
version of EVI30 were calculated using the normalized red and NIR reflectance
data. Uncertainties in normalizedMODIS data were assessed using aMonte Carlo
sensitivity analysis.

Online Content Any additional Methods, ExtendedData display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS
Synthetic Amazon forest.We synthesized an Amazon forest scene for radiative
transfer model simulations using a three-dimensional canopy model and field
measurements of forest structure (Extended Data Fig. 1). The modelled forest
was generated using allometric equations for the relationships between diameter
at breast height (dbh), canopyheight (h), crownwidth (Cw), and crown depth (Cd).
For trees .20-cm diameter at breast height, we used published allometric equa-
tions for the eastern Amazon31–33. Log-linear relationships derived from field
measurements of large trees provided unrealistic values for smaller trees, especially
stems ,10-cm diameter at breast height. Therefore, we adjusted the allometric
relationships to better represent smaller diameter stems in the synthetic forest
scene.
In the forest understory, crown dimensions are more strongly correlated with h

than dbh34,35.We adjusted the original h-dbh relationships for small trees, using the
large-tree allometry estimates for trees 10–25-cm diameter at breast height. These
original estimates were fit with a power-law function to estimate the h (m) of trees
with diameter at breast height , 20 cm (Extended Data Fig. 1):

h~1:37dbh0:88

Adjusted h estimates for small diameter trees were then used to develop revised
estimates of Cw and Cd. The resulting h-Cw relationship was close to the reported
values for a range of understory species in Panama34:

Cw~0:47h0:934

A revised estimate of Cd for small trees was derived in similar fashion, based on a
power-law fit of the h-Cd relationship for trees 25–50-m in height. Larger trees
were selected for estimating Cd in small trees because the h-Cd relationship for
trees 10–25-m was asymptotic:

Cd~0:11h1:5

This approach resulted in a flattening of tree crowns in the understory, with Cd

estimates of 10, 30, and 60 cm for trees 1, 2 and 3m in height, respectively.
We synthesized an Amazon forest scene with 8% gap fraction and 200 trees per

hectare (ha), similar to satellite and field-based studies in eastern Amazonia,
respectively32,36. Trees were drawn at random from a Weibull distribution of
diameter at breast height sizes to populate a 13 1 km forest scene (Extended
Data Fig. 1). Weibull distribution parameters (b5 1, a5 27.5-cm diameter at
breast height) were based on an extensive survey (392 ha) of diameter at breast
height values in the Tapajos National Forest near Santarém, Pará31,36. Trees were
located in x,y space using a simple spacing algorithm. If more than half of the
crown radius of the new individual overlapped with half of the crown radius of an
existing tree, the tree was excluded and a new sample was drawn until the stem
density reached 20,000 individuals .1-cm diameter at breast height per km2.
Conceptually, this approach incorporates the concepts of shading (large trees
exclude small trees) and gap dynamics (small trees indicate the absence of large
trees). The x,y location and properties of each stem (dbh, h, Cw, Cd) were used to
create a three-dimensional forest scene in the FLIGHT model8. We estimated
mean total aboveground biomass of 312 megagrams carbon per ha for the syn-
thetic forest scene based on an independent height-diameter allometry37, similar to
forest inventory data36 and satellite-based estimates38,39 of above-ground biomass
in the eastern Amazon.
FLIGHT model simulations. We simulated the impact of seasonal changes in
Amazon forest structure and reflectance properties on optical and lidar remote
sensingmetrics using FLIGHT, a three-dimensionalmodel of light transport based
on a Monte Carlo simulation of radiative transfer8,40. FLIGHT uses photon tra-
jectories within a canopy to evaluate solar bidirectional reflectance and lidar back-
scatter retroreflectance (reflectance at 0u phase angle). The model simulates the
chain of scattering events along each photon trajectory, including multiple scat-
tering between canopy elements and the ground surface. Atmospheric transmit-
tance is simulated using fixed conditions for atmospheric trace gases and aerosols.
Amazon tree crowns were modelled as elliptical shells, and field measurements41

of reflectance and transmittance (ExtendedData Fig. 1) were assigned to scattering
elements based on the proportion of leaves (85%) and branches (15%) within each
crown. To simulate seasonal increases in LAI, only the foliar area was increased in
each canopy, thereby decreasing the relative fraction of bark and branches.
Optical and lidar radiative transfer simulations quantified the impact of sea-

sonal changes in leaf reflectance (rLeaf,6 10%), litter reflectance (rLitter,6 10–
25%), and LAI (11,12) on remote sensing metrics. Multiple changes in seasonal
forest structure and reflectance were simulated using combinations of rLeaf,
rLitter, and LAI changes under October illumination conditions (Table 1 and
Extended Data Table 1). Optical simulations also considered MODIS viewing
geometry and seasonal variability in solar illumination, based on the location of

the simulated Amazon forest (2.65u S, 54.95u W). FLIGHT simulations with
varying relative azimuth angle (w, 0u–180u), view zenith angle (hv, 0u–60u), and
solar zenith angle (hs, 20u–40u) provided a more complete picture of the dir-
ectional anisotropy of surface reflectance from seasonal illumination conditions.
These three-dimensional plots of the bidirectional reflectance effect were used to
illustrate the impact of seasonal changes in sun-sensor geometry on optical remote
sensing data (Fig. 1 and Extended Data Fig. 4).
Lidar radiative transfer simulations with FLIGHT incorporated GLAS instru-

ment characteristics, including nadir incidence angle, 5-ns pulse duration, 57mJ
pulse energy (Laser 3a), 600 km sensor altitude and 450mrad detector field of view.
In addition, a constant 5u slope was added to the Amazon forest scene to simulate
the effect of microtopography on laser energy returned from the ground. The
distribution of modelled WCRH for the synthetic Amazon forest was similar to
GLAS data (Fig. 2 and Extended Data Fig. 2a). However, lidar simulations were
conducted using a single footprint to isolate the influence of individual scene
modifications on lidar radiative transfer (Extended Data Fig. 2b).
Random background noise, similar to noise levels in GLAS lidar waveforms,

was added to FLIGHT lidar waveforms to simulate a realistic signal returned to the
detector. Noise levels were consistent with the potential contribution from solar
photons to return waveform energy, based on FLIGHT simulations of the solar
flux at 1064 nm for solar noon at the equator under June andOctober illumination
conditions (0.8–2.5%). Solar noise constitutes a constant offset term in the vertical
lidar waveform and does not impact the relative metrics derived frommodelled or
observed lidar waveforms. The extent of the forest canopy was determined by
setting an amplitude threshold above the background noise, based on the signal-
to-noise characteristics of the waveform. A Gaussian smoothing algorithm was
used as a low-pass filter before computing lidar metrics, following established
waveform-processing methods42. The width of the smoothing Gaussian was
chosen as the half-width at full maximum of the outgoing laser pulse to avoid
over-smoothing the waveform data. The ground peak maximum was detected by
determining the zero-crossing point of the first derivative of the smoothedwaveform.
ICESat-GLAS lidar analysis.GLAS lidar data provided an independent estimate
of seasonal changes in forest structure and canopy reflectance. The GLAS instru-
ment is a large footprint, full-waveform lidar24,43. Each lidar waveform contains
information on the height and vertical distribution of scattering elements within
the lidar footprint, and the integrated energy from the return waveform can be
normalized by the outgoing laser energy to estimate apparent reflectance at
1064 nm. Apparent reflectance corresponds to the footprint retroreflectance mul-
tiplied by the square of atmospheric transmission to account for the two-way travel
path. The waveform centroid relative height (WCRH)23 was used in this study to
assess changes in the relative height of median energy within the waveform:

WCRH~
(CE{SeE)
(SsE{SeE)

where CE corresponds to the waveform centroid elevation, SsE is the signal start
elevation and SeE is the signal end elevation as determined by thresholds defined
for the alternate (land) waveform processing schemes. GLAS footprints over
Amazon forest cover types were selected based on time series of dry season
MODIS NDVI data44 to select forests .1 km from non-forest cover types and
burned forest areas in 2010 (ref. 45). In addition, topographic data from the Shuttle
Radar Topography Mission at 90-m resolution (data access: http://hydrosheds.
cr.usgs.gov) were used to exclude forested areas in the southern Amazon above
500-m elevation or on slopes.10%.
We selected four Laser 3 operation periods for the GLAS analysis. Two laser

operation periods captured early dry season conditions (L3c, May to June 2005;
L3f, May to June 2006), and two laser operation periods covered the late dry season
across the southernAmazon (L3a,October 2004; L3i,October 2007).Data fromL3a,
L3c, L3f and L3i also had similar footprint characteristics (diameter, circularity and
radial energydistribution). Differences in Laser 3 transmit energies between L3a and
L3i do not impact the estimates of WCRH and apparent reflectance because these
metrics are normalized by the transmit energy. The GLA09 and GLA14 standard
data products (data access: http://nsidc.org) were used to assemble information
on the location, laser energy, atmospheric backscatter, apparent reflectance and
waveform characteristics for GLAS footprints over Amazon forests. GLAS data
parameters were used to screen lidar footprints with cloud contamination, weak
or saturated energies, or specular reflections from water. Specifically, we used the
offset from the digital elevation model (, 70m), pulse width (, 100m), WCRH
(, 1), apparent reflectance (. 0.45, , 1), and a threshold value in the integrated
backscatter (,3.53 1026) to select cloud-free, high-quality ICESat data. Inaddition,
weusedMODISaerosol optical thickness (AOT,0.09) data fromtheMOD09CMG
product (E.Vermote, unpublisheddata) from the samedateofGLASobservations to
further screen the lidar data for high aerosol conditions. Finally, GLAS data from
June and October laser periods were ‘paired’ using a 0.02u search radius to select
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footprints from adjacent orbits. This paired subset of high-quality GLAS data
ensured a similar spatial distribution of lidar footprints across the southern
Amazon in early and late dry season conditions. The total number of GLAS foot-
prints was 74,638, equally divided between June (L3c5 22,528, L3f5 14,791) and
October (L3a5 20,786, L3i5 16,533).
MODIS analysis.We used Terra and Aqua MODIS data from 2003–08 to evalu-
ate seasonal changes in canopy reflectance at ICESat footprint locations in eastern
Amazonia. Daily red andNIR surface reflectances, sun-sensor geometry, and data
quality flags were drawn from theCollection 5MOD09GA andMYD09GA stand-
ard products at 1-km spatial resolution for two 10u3 10u spatial tiles (H11V09
andH12V09, data access: https://lpdaac.usgs.gov). MODIS data were screened for
high aerosols and cloud cover using the MOD09GA and MYD09GA data quality
flags, and low-aerosol conditions (AOT ,0.09) were confirmed using AOT esti-
mates retrieved from the MOD09CMG product (E. Vermote, unpublished data).
Fixed thresholds were also used to selectMODIS observations with low red reflec-
tance (, 0.2), NIR reflectance typical of vegetated surfaces (0.1,NIR, 0.6), and
low view zenith angles (,60u). Finally, an iterative outlier removal procedure was
used to eliminate remaining observations with cloud or aerosol contamination.
Outliers were identified as NDVI values. 2 standard deviations from themedian
NDVI value per pixel, per month. These outlier values were removed, and the
process was repeated two more times to remove any residual cloud or aerosol-
contaminated data. The resulting data set included 197,651 pixels across the south-
ernAmazon. Largerdatavolumes couldbeachievedwith alternative approaches for
cloud and aerosol screening46.
Eachmonth, high-qualityMODIS data fromTerra andAquawere combined to

estimate the bidirectional reflectance distribution function (BRDF) and perform a
per-pixel correction for variations in sun-sensor geometry. The BRDF correction
uses Ross-Li-Maignan model, revised to account for the hot-spot effect25,47:

r(hs,hv,w)~k0zk1F1(hs,hv,w)zk2F2(hs,hv,w)

Surface reflectance (r) at a specified hs, hv, and w is modelled as a function of
volumetric (F1) and geometric scattering (F2). The volumetric scattering kernel
(F1) is based on the Rossthick function, corrected for the hot spot, and the geo-
metric kernel (F2) is based on the Li-sparse reciprocal function25. The model
equation can be rewritten to highlight the contribution of the volumetric kernel
(k1/k0) and geometric kernel (k2/k0) to the overall signal: :

~k0 1z
k1
k0

F1 0s,0v,wð Þz k2
k0

F2 0s,0v,wð Þ
� �

The k0, k1 and k2 parameters were inverted for red and NIR reflectances from all
cloud free and low aerosol MODIS data on a per-pixel basis for all dry season
months during 2003–08. A threshold of$ 20 observations per pixel, per month
was set to ensure a robust statistical inversion. These BRDF parameters were then
used to normalize both red and NIR reflectance values to a constant solar (hs5
30u) and view geometry (hv5 0u) for observations in allmonths. Normalization of
sun-sensor geometry in this approach differs from previous efforts to correct
MODIS data for BRDF48. Finally, NDVI and a two-band version of EVI30 were
calculated using the normalized red and NIR reflectance data.
Uncertainty estimation.We estimated the root mean square error (RMSE) of the
MODIS surface reflectance product based on mean values of red (0.02) and NIR

(0.33) reflectance over Amazon forests49. Measurement error was propagated to
EVI and NDVI using a Monte Carlo sensitivity analysis approach. The RMSE of
MODIS EVI (0.56) was 0.036, and the RMSE of MODIS NDVI (0.89) was 0.033.
The root mean square model error was approximately one-third as large as mea-
surement error. Assuming independence, total error is approximately 0.035 to
0.037 for bothEVI andNDVI, or approximately 6%ofmeanEVI and4%ofNDVI.
Seasonal differences in uncorrected MODIS EVI data exceed this error range
(,0.1), while seasonal differences in corrected MODIS EVI data do not (see
Fig. 3).
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Extended Data Figure 1 | Synthetic Amazon forest developed from field
measurements of forest structure and reflectance properties. a, Oblique view
of the 1 km3 1 km synthetic forest. b, Reflectance (r) and transmittance (t)
properties of Amazon leaves (G. P. Asner, unpublished data) and litter41 at
MODIS (red, 620–670 nm; NIR, 841–876 nm) and ICESat (NIR, 1064 nm)
wavelengths. c, d, Parameter values for lidar and optical radiative transfer
simulations. Field measurements of rLitter differ slightly at optical (860nm)

and lidar (1064 nm) NIR wavelengths (see b). June conditions were used to
estimate early dry season (baseline) lidar and optical remote sensing metrics
with FLIGHT. e–g, Height-diameter relationships (e) and crown depth (f) and
width (g) estimates for small trees (, 20-cm diameter at breast height) were
derived from allometric relationships for larger trees (.20-cm diameter at
breast height) using regression with a power-law function.
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Extended Data Figure 2 | FLIGHT model simulations of GLAS lidar
waveforms. a, Distribution of modelled waveform centroid relative height
(WCRH) for 100 simulated GLAS lidar footprints located at the centre of each
1003 100m grid box of the synthetic Amazon forest. b, Nadir view of the

waveform selected for FLIGHT model simulations (blue outline). The
dashed vertical line in a indicates the June WCRH (0.519) for the footprint
location in b.
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ExtendedData Figure 3 | Seasonal variability inMODIS surface reflectance,
vegetation indices, and sun-sensor geometry. Seasonal distributions of
NDVI, EVI and near-infrared (NIR) reflectance for uncorrected (a–c) and
corrected (e–g) MODIS 1 km data from 2003–08, in which corrected MODIS
data have been normalized to a consistent sun-sensor geometry. Lines denote

the median (black) and upper and lower quartile median values (grey) for
uncorrected and corrected MODIS observations. The decrease in solar zenith
angle between day of year 150 and 300 (d) increases the frequency of
observations near the principal plane (h, w5 0u, w5 180u).
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Extended Data Figure 4 | Impact of changingMODIS sun-sensor geometry
on NDVI. a–c, Seasonal changes in sun-sensor geometry decrease MODIS
NDVI over Amazon forest between June and October. As for EVI (see Fig. 1),
modelled directional anisotropy of the MODIS NDVI over southern Amazon
forests is stronger in June (a) than October (b), but the realized bidirectional
reflectance effect in MODIS observations is greater in October (b, c) when the
Terra and Aqua MODIS instruments sample in the principal plane (w5 0u,
w5 180u). ForNDVI, the hot spot effect near hv5 20u increases red reflectance,
thereby loweringNDVI values at these viewing angles. d, Seasonal profile of red

reflectance for uncorrected (grey) and corrected (black) MODIS 1 km data in
southern Amazonia. Values indicate the upper quartile median monthly red
reflectance from all Terra and Aqua MODIS observations in 2003–08
(n5 197,651). e, Per-pixel changes in uncorrected (grey) and corrected (black)
MODIS NDVI between October and June for all forested areas in southern
Amazonia. Small seasonal decreases in MODIS NDVI data were eliminated
after normalizing the sun-sensor geometry during the June to October dry
season.
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Extended Data Figure 5 | Spatial pattern of seasonal changes in GLAS lidar
metrics. a–f, June, October, and difference maps (October minus June) of
WCRH (a–c) and 1064 nm apparent reflectance (d–f) for 0.25u grid cells in

southern Amazonia with$ 10 pairs of June and October GLAS footprints.
White cells indicate non-forest areas or grid cells with ,10 GLAS lidar
footprints in one or both months.
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Extended Data Figure 6 | Correlation between GLAS lidar WCRH and
mean annual precipitation. Values indicate mean June WCRH and mean
annual precipitation (September to August, 1997–2009) from the tropical
rainfall measurement mission (TRMM) 3B43v6 product for 0.25u cells
with$ 10 GLAS footprint pairs (n5 728, see Extended Data Fig. 5).
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Extended Data Figure 7 | Maps of seasonal amplitude in uncorrected and
corrected MODIS EVI data. a, Seasonal amplitude in uncorrected MODIS
EVI data (October minus June) for two 10u3 10u spatial tiles in southern
Amazonia (H11V09, H11V10). b, Seasonal amplitude in corrected EVI data
(October minus June), using a single BRDF inversion model to normalize
changes in sun-sensor geometry for all Amazon forest pixels per tile, per
month. Instead of modelling BRDF on a per-pixel basis (see Fig. 3, Extended
Data Figs 3, 4 and 8), this map reflects the reduction in the seasonal amplitude
of EVI using generic BRDFmodels derived from all cloud-freeMODIS data per
tile, per month. c, The difference in the seasonal amplitude of MODIS EVI
(uncorrected minus corrected) is positive, highlighting how changes in sun-
sensor geometry generate the apparent green up phenomenon. White regions
indicate non-forest cover types.
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Extended Data Figure 8 | Interannual variability in MODIS EVI for
southern Amazon forests in 2003–08. Values indicate the upper quartile
median monthly EVI for uncorrected (grey) and corrected (black) MODIS

data. Normalization of sun-sensor geometry reduced both seasonal and
interannual variability in MODIS EVI over southern Amazon forests.
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Extended Data Figure 9 | Contribution of variability in MODIS view
geometry to interannual differences in EVI over Amazon forests. EVI and
view zenith angle (hv) data from the MOD13A1 16-day composite product
(data access: https://lpdaac.usgs.gov) are shown for spatial tile H11V09 when
the Terra MODIS sensor was observing in the principal plane (October, day of
year 273–288). The fraction of observations in the backscatter direction
(hv. 0u) and mean EVI over forests were strongly correlated, highlighting the
importance of sun-sensor geometry for interannual variability in uncorrected
MODIS EVI data. The drought year of 2005 had the highest fraction ofMODIS
observations in the backscatter direction of any year during 2000–12.
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ExtendedData Table 1 | Sensitivity of lidarWCRHand optical vegeta-
tion indices (EVI, NDVI) tomodelled seasonal changes in forest struc-
ture and reflectance properties

Optical data simulations reflect October illumination conditions (hs520u, hv515u, w50u).
*Field measurements of rLitter differ slightly between lidar (1064nm) and optical (841–876nm) NIR
ranges (see Extended Data Fig. 1).
{FLIGHT model analyses in the optical domain did not include simulations with rLeaf50.29.
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