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ABSTRACT  

Launched in late 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting 
Partnership (NPP) spacecraft is being evaluated by NASA to determine whether this sensor can continue the ocean color 
data record established through the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and the MODerate resolution 
Imaging Spectroradiometer (MODIS).  To this end, Goddard Space Flight Center generated evaluation ocean color data 
products using calibration techniques and algorithms established by NASA during the SeaWiFS and MODIS missions. 
The calibration trending was subjected to some initial sensitivity and uncertainty analyses.  Here we present an 
introductory assessment of how the NASA-produced time series of ocean color is influenced by uncertainty in trending 
instrument response over time.  The results help quantify the uncertainty in measuring regional and global biospheric 
trends in the ocean using satellite remote sensing, which better define the roles of such records in climate research. 
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1. INTRODUCTION  
Launched in late 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting 
Partnership (NPP) spacecraft is being evaluated by NASA to determine whether this sensor can continue the ocean color 
data record established through the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and the MODerate resolution 
Imaging Spectroradiometer (MODIS).  To this end, the NASA Goddard Space Flight Center (GFSC) generated 
evaluation ocean color data products using calibration techniques and algorithms established by NASA during the 
SeaWiFS and MODIS missions.  The calibration trending was subjected to sensitivity and uncertainty analyses.  Of 
particular interest was, and continues to be, the effect of calibration trending uncertainties on derived ocean color data 
products, such as chlorophyll a concentration, which is used to monitor phytoplankton activity at synoptic scales. 

Phytoplankton are estimated to contribute to as much as half of global primary productivity, essentially all marine 
productivity, and support nearly all major aquatic food webs.  Understanding and quantifying global changes in 
phytoplankton communities in the ocean is important to linking ecological and biogeochemical responses to climate 
change.  Satellite chlorophyll a concentration, Chl a, as derived using the OC3 algorithm [1], is a standard data product 
being implemented for the VIIRS instrument.  This standard product is currently the principal indicator of phytoplankton 
activity in the upper layers of the ocean. This is also true for other instruments on which the NASA climate data record is 
based, including MODIS onboard the Aqua spacecraft (MODIS Aqua) and SeaWiFS.  The analogous algorithm for 
SeaWiFS is OC4, which makes use of an additional blue band at 510 nm [1].  OC3 computes Chl a as a exponential-
linear function of green to blue band ratios, more specifically the maximum of Rrs(551nm):Rrs(443nm) and 
Rrs(551nm):Rrs(488nm), where Rrs(λ) is the remote sensing reflectance for the ocean surface at the band centered at 
wavelength λ.  Rrs(λ) is derived from the VIIRS radiometry above the atmosphere through the removal of the light 
contributed by the atmosphere.  Because the atmospheric contribution to the at-sensor light level can be over 90%, small 
errors in the top-of-atmosphere (TOA) measurements are large relative to the desired contribution from the surface.  In 
addition, measurements in the red band and two NIR bands factor into the calculation of the atmospheric contribution. 
Thus, Chl a is influenced by uncertainties in the four aforementioned visible bands and two NIR bands (six of the seven 
VIIRS ocean bands). 
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Here we present an introductory assessment of how the NASA-produced time series of ocean color is influenced by 
uncertainty in trending instrument response over time.  Work in on this problem will help quantify the uncertainty in 
measuring regional and global biospheric trends in the ocean using satellite remote sensing, which better define the roles 
of such records in climate research.  Included is an initial evaluation of potential uncertainty stemming from calibration 
trend errors and directions for further work.  

2. BACKGROUND  
Much work has been done to quantify trends in the existing chlorophyll record [2, 3], including focusing on the existing 
decade and a half of global satellite data [4, 5].  Many efforts to extract a trend in chlorophyll show a downward trend, 
and expanding oligotrophic regions, across all ocean basins [6, 7].  A corresponding increase in eutrophic regions has 
also been noted, including coastal regions [8]. Models of primarily productivity that are dominated by the satellite Chl a 
likewise saw distinct trends, [9]. Intuitive physical explanations have been suggested for these trends. For instance, the 
decrease in productivity in the ocean gyres could stem from acidification of ocean waters or the rise in global sea surface 
temperature.  Conversely, this process might be countered and overtaken by anthropogenic eutrophication, increasing 
Chl a in some coastal waters. However, considerable debate has been raised regarding the validity of the some of 
observed trends [10, 11]. Some noted a number of inconsistencies in the reports. Others simply reported more mixed 
results [12, 13] or noted the insufficient length of the satellite data record [14, 15]. Siegel et al. [11] did note the 
importance of highly accurate instrument calibration for assessing global changes in Chl a, clearly pointing in an 
important direction that was not being discussed. None of these chlorophyll trend studies considered the contribution of 

Figure 1 - Small changes in calibration lead to big changes in Chl a.  The image taken from MODIS Aqua 
shows the effect of perturbing the NIR calibration 0.3% in opposite directions between the two bands.  The 20% 
percent or more change in Chl a is substantial. It is also interesting that the eutrophic coastal waters and lower 
concentrations of more open water respond oppositely [16]. 



 
 

 
 

small instrument calibration drifts. 

An earlier sensitivity analysis of ocean color algorithms demonstrated that calibration changes of only a small fraction of 
a percent in the Near Infrared (NIR) bands of ocean color instruments could cause decreasing low chlorophyll a 
measurements and increasing high chlorophyll measurements [16]. The phenomenon seen in Figure 1 shows the effect 
on high and low chlorophyll a values for opposite changes in the 750 and 865 nm bands of 0.3% (the criterion threshold 
for the calibration stability requirement for S-NPP VIIRS).  In the right hand example, the small perturbations in the NIR 
calibration caused higher coastal concentrations to increase, while lower open waters concentrations to decreased. These 
changes in Chl a are greater than 20% and far exceed the amounts noted in studies based on satellite ocean color data.  
The NIR bands are used to help remove of the aerosol component of the atmospheric signal in order to obtain Rrs(λ), 
which is used to calculate Chl a. Although this portion of the atmospheric correction is only about 20% of the total TOA 
signal being removed, it is particularly subject to error and hence represents a major source of uncertainty in computing 
Rrs(λ)  for the visible wavelengths.  Likewise, an error in the calibration of each visible band can lead to an order of 
magnitude larger error in the corresponding value for Rrs(λ).  Figure 2 shows the relative Rrs(λ)  error resulting from 
small errors in calibration [16].  Meanwhile, the standard calculation for Chl a dependent on Rrs(λ)   ratios of green band 
(551 nm) to blue bands (443 or 488 nm).  Because the aerosol correction tends to affect the denominator of these ratios 
differently than the numerator, the subsequent error in the chlorophyll algorithm can be quite large. 

Given that Chl a is sensitive to very small changes in instrument calibration, it is clear that the effect of any potential 
changes to the instrument with time on Chl a must be quantified before credible statements can be made regarding the 
Chl a trend.  This study begins with investigation of very small, uncorrected drift in the on-orbit calibration, and is 
primarily based on known residuals observed in trending instrument changes.  Estimating the size of instrument 
calibration drift residuals on the quality of the NASA climate data record will help refine our understanding of this 

Figure 2 - Sensitivity of Rrs(λ) to small errors in calibration. The ordinate represents changes in Rrs(λ)   in 
response to changes in calibration, which are given along the abscissa. Calibration errors directly affect the top-of-
atmosphere measurements, and lead to large changes in Rrs(λ).  The top row was taken from an open ocean 
MODIS scene (a-c) and the bottom row likewise uses data from a coastal scene (d-f). Small calibration changes in 
any visible band results directly in a large Rrs(λ)  change for the corresponding band (a,d).  Likewise, changes in 
each of the NIR band calibration leads to a similar sized error (b,c,e,&f) in all visible bands.  The response in 
Rrs(λ) varies between bands and between ocean and coastal water because the underlying Rrs values differ between 
bands and geographic location. [16] 



 
 

 
 

influence. In addition, this will help to us understand how to investigate these effects for MODIS and SeaWiFS. 

Ocean color instruments are calibrated prior to launch using NIST-traceable laboratory sources to within 2% uncertainty 
for TOA reflectance measurements.  The instrument is also designed to facilitate calibration stability of 0.3% for on-
orbit calibration.  Changes in the instrument calibration are monitored using either an onboard Spectralon™ panel, called 
the solar diffuser (SD), or the moon.  These trends are subsequently used to correct the conversion of dark count 
subtracted digital numbers to TOA spectral radiance in physical units (e.g., W m-2 nm-1 sr-1) or reflectance (in units of 
sr-1).  The latter is obtained by dividing the TOA radiance by the extraterrestrial solar irradiance [17].  In the terminology 
associated with VIIRS, these correction factors are typically denoted as F. 

Figure 3 shows the dramatic change in the red and especially the NIR bands, which are substantially larger than the 
VIIRS blue bands (or than any band on MODIS Aqua). This is because of contamination of four telescope mirrors with a 
tungsten oxide compound during their manufacture.  When exposed to the intense UV light of the space environment, 
this compound decreases mirror reflectivity (and hence the instrument responsivity) in the red to shortwave IR (SWIR) 
wavelengths.  Thus, a substantially large relative change in these bands must be accurately trended and corrected. Under 
some circumstances, this could possibly negatively affect the accuracy of the NIR and red trending. 

In addition, the residuals of the fits for all bands show both a largely uncorrelated noise component and systematic, 
seasonal variation.  The seasonal nature of these artifacts can be seen in the variation around the fits for the blue bands in 
Figure 3.  These artifacts are of similar size and nature for the red and NIR bands, but less periodic (e.g., different or 
additional systematic sources may be at play).  Both limit the size of any residual spurious trend that may be included the 
calibration trend, and hence the standard data products. However, the effect of the systematic seasonal component is 
much larger than the uncorrelated noise.  It is currently believed amongst the VIIRS calibration teams that this seasonal 
variation in the residuals is caused by biases in instrument calibrator system characterization look-up tables.  These do 
not represent actual changes in the response of VIIRS and they may be improved with time with further analysis.  This is 
also supported by the fact that no systematic seasonal fluctuation has been observed the lunar time series (after 
correcting for libration effects in the RObotic Lunar Observatory or ROLO model) [17]. Therefore, quantification of 
spurious trends will need to be reassessed with any future improvements in quantification and removal of these 

Figure 3 - Solar calibration trending.  Two different functional forms are used for different sets of bands as 
indicated by the formulas given.  The resulting gain trends are equal to the inverse of the SD trending factor, F. 
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systematic artifacts in the residuals. 

The accuracy of this trending approach in representing the true change in the instrument response is limited by, in order 
of process, four sources of uncertainty: 1) the ability of the selected functional form to describe the actual change, 2) 
random and systematic variability in the SD measurement time series that affect the fitting process, 3) the sample size 
and the length of the time series, and 4) periodic extrapolation of calibration trending. In this study, we investigated the 
size of underlying spurious variation that stems from the second source.  Others will be explored in subsequent work.  
Once all these sources are evaluated, their output can then be tied to sensitivity analyses of the ocean color algorithms to 
quantify the resulting change in time series of Rrs(λ) and subsequently Chl a. 

3. METHODOLOGY 
Because of the complexity of the fit employed by NASA, Monte Carlo techniques were employed to estimate the effect 
of the uncertainty source stemming from random variation in the trend data. To address the effects of variability, the 
functional fits that were originally calculated for each band were assumed to be the “true” instrument response trend (as 
determined using the SD).  In this Monte Carlo experiment, many repeated fits are made to these “true” trends plus a 
noise model.  The noise model consists of, at most, two components: one for white noise (i.e., Gaussian distributed and 
uncorrelated) and one systematic, seasonal curve (i.e., a sinusoid).  The analysis initially looked at modeling white noise 
alone and then a seasonal component was added later.  The combination of the “true” trend and the noise model is the 
modeled data.  The fit to the modeled data will be referred to as the modeled trend.  The difference between the “true” 
trend and the modeled trend will be hence called the modeled spurious trend.  For each trial in the Monte Carlo 
experiment, many instances of the modeled spurious trend are generated. 

For each trial, the modeled noise was randomized as to not reproduce the fit residual, but vary in a similar fashion.  
Otherwise, the results will be underestimated because the original curve would be reproduced and hence the residual 
would be minimized. With each instance of the modeled data, the white noise component is resampled and the 
systematic component is varied uniformly in phase and amplitude.  Improvements on this scheme may be effected as the 
residual is further analyzed.   In initial Monte Carlo experiments, the maximum range for the spurious trends are on the 
order of 0.05-0.3% over the first two years of the VIIRS mission.  This represents a potentially significant effect in the 
Rrs and Chl a trends and further emphasized the need for this study.  As an example, Figure 4 shows the difference 
curves (i.e., modeled spurious trends) for a single trial. 

4. RESULTS 
The modeled spurious trends in Figure 4 were generated with Gaussian white noise with a quarter percent standard 
deviation and with no seasonal variation.  Only sixteen points were used as a test, but the actual experiment used the tens 
of thousands points corresponding to the actual SD time series.  The results for this single trial interestingly (but 
probably coincidentally) show the NIR bands as being anti-correlated and varying as much as 0.3%.  The expected 
influence on chlorophyll concentrations where the maximum NIR differences occur would be similar to the results 
shown in Figure 1 (not counting the effect of biases in visible bands).  It is also interesting to note that the resulting 
variation is highly auto-correlated, as opposed to the input noise.  Thus the resulting modeled spurious trends could 
induce a small secular trend in the time series of the calibrated satellite data, even though no significant secular trend 
exists in the input noise model. 

Further trials were generated (10 to 100 thousand) and the root mean square error (RMSE) for each modeled spurious 
trend was taken. This process was repeated for a range of different modeled noise levels.  The results showed that there 
is a one-to-one correspondence between input white noise and the RSME of the modeled spurious trends.  The Gaussian 
component of noise observed in NASA’s operational fits to the instrument trending (see Figure 3) is within the 0.05 to 
0.1% range.  Thus, the white noise component alone should have much less influence on estimates of Chl a than shown 
in Figure 1.  However, the impact could still be significant and bring into question any claimed observation of synopic 
variation of Chl a on the order of few percent over the first two years of the mission. 

The observed residuals also show a large seasonal component at around the 0.1% level.  When a sinusoidal component 
with 0.1% amplitude was added to the noise model in the Monte Carlos experiment the resulting RSME of the modeled 
spurious trend was again very close to the noise amplitude.  Thus, this component of the noise contributes to the majority 
of the chlorophyll a trend uncertainty.  Even thought this spurious signal in the instrument response monitoring is 
removed from by the functional fit, its influence on the fit accuracy  (i.e., the ability to recover the underlying “true” 



 
 

 
 

trend) is affected at the 0.1% level.  The total influence of the white noise and seasonal variation leads to a spurious 
trend in calibration at the 0.1 to 0.15% level for all VisNIR bands, or up to half of the example provided in Figure 1, 
which is also up to half of the VIIRS calibration stability requirement threshold.  Additional uncertainty will be caused 
by fluctuation in the green and blue bands.  Influence by the red band, which is used to help the atmospheric correction 
in turbid and productive waters, is likely less in coastal regions and nonexistent in the clearer, deep open ocean. 

5. DISCUSSION 
The source of the season effects the VIIRS SD response trends are speculatively attributed to biases in tables used to 
process both the SD and the SD stability monitor (SDSM) measurements, the latter of which is discussed further, later in 
this section.  The tables contain the SD and SDSM aperture screen transmission and SD bidirectional reflectance 
distribution function (BRDF) characteristics, which were obtained from laboratory measurements prior to launch.  As the 
Sun retraces its path across the apertures each year, table biases repeat, producing a cyclic signal in the trending.  
Speculation that these are the likely sources arose from examination of calibration system component measurements at 
the DN level.  These tables can be refined through further analysis of on-orbit measurements, a task which is currently 
underway and being conducted by the VIIRS Calibration Support Team (VCST) at GSFC.  The addition information 
from this analysis will not only reduce the season fluctuation in the instrument responsivity monitoring, it will help 
substantially reduce the expected uncertainty in synoptic chlorophyll trends, likely reducing it by more than half. 

In addition, an algorithmic error was recently discovered in the NOAA operational software that processes calibration 
data from the spacecraft and is also currently being used by NASA teams.  Through a mixing of incompatible time 
reference systems, small errors were introduced into the solar position vector, which is used to help determine the solar 
irradiance on the SD and determine the position the Sun in the SD and SDSM apertures.  Correction to this error is also 
expected to remove additional seasonal and possible secular variation in the SD calibration trends. 

Figure 4 – Example modeled spurious trends.  Results from a single trial of a Monte Carlo experiment.  In 
this case only 16 points were generated, which is coincidentally around the number of lunar measurements the 
can be taken in two years time.  The noise model used was based only on Gaussian noise with a standard 
deviation of 0.25%.  The modeled spurious trends are auto-correlated, even though the input noise model was 
not auto-correlated at all. 
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As the same functional fit trending techniques are applied to both MODIS and SeaWiFS, the Chl a trends from those 
instruments are subject to similar uncertainty constraints, although the causal details may differ.  Further analysis of the 
noise in fit residuals for those missions could indicate much about the uncertainty in their much longer Chl a trends.  In 
general, a more detailed study is in order for VIIRS and the heritage instruments, carefully quantifying calibration trend 
uncertainty and following the propagation of the uncertainty from all input bands to all standard NASA derived data 
products.  This is necessary to facilitate proper studies of climatic trends in oceanic phytoplankton activity. In addition, 
there are other potential sources of time dependent uncertainty that should also be explored for VIIRS, and possibly 
heritage instruments also.  These are discussed briefly in the following subsections. 

Extrapolation Uncertainty 

NASA’s current methodology involves trending the SD measurements periodically and offline from the operational data 
production. SD trends must be extrapolated into the future to facilitate forward processing.  Thus, until the ocean color 
data products are reprocessed, all new data products are based to some degree on extrapolation of the calibration trend.  
Thus, any possible systematic effects of this extrapolation should be quantified and reported for forward processing after 
each new reprocessing version of the data is released.  Future comparisons will be needed between trends fitted to the 
entire existing SD calibration time series and trends based on a fit of only an initial portion of that time series followed 
by extrapolation of the function form fit.  Repeating this comparison for fits over increasing longer segments of the SD 
time series would provide a series of biases associated with the extrapolation as a function of the time since last 
reprocessing. 

Solar Diffuser Stability Monitor (SDSM) 

It is well know that the SD, as a reference, is not stable optically.  UV light degrades the prelaunch (relatively flat) 
reflectance spectrum of the Spectralon™ panel to be increasingly less reflective in the blue (i.e., the SD is yellowing 
with time).  To monitor and adjust for this effect, the SDSM is used to measure the ratio of the SD measurements to 
measurements of the sun through a screen.  Relative changes in this ratio from first light is used to adjust the SD 
trending, especially for the blue bands, which are mostly affected by the SD yellowing.  The uncertainty associated with 
ability of the SDSM to account changes to the SD should be quantified.  Further work will be needed to determine the 
size of any spurious trend that could be introduced into the SDSM correction, and subsequently the SD calibration trend, 
and then eventually propagated to the chlorophyll trends.  For instance, the coating in the SDSM integrating sphere that 
is used to observe the SD is also yellowing and could thus cause an overestimate of the SD yellowing.  Also, the out-of-
band (OOB) response of SDSM detectors are rapidly losing responsivity in the NIR because ambient ionizing radiation 
in the space environment, which is changing the SDSM spectral response characteristics. 

Relative Spectral Response Changes 

Because of the degradation of the instrument response in the red to SWIR regions of the spectrum over time, it follows 
that the relative spectral response of the instrument is also changing.  In short, each band is becoming slightly, relatively 
more responsive in the blue end of the spectrum with time.  Some OOB effects, such the known large light-leak in the 
412 nm band, are decreasing.  Compensation for OOB effects that are used for calibration is based on prelaunch 
characterization of the VIIRS instrument and is static.  Therefore, an uncorrected, changing bias in calibration stemming 
from a time-dependent OOB response could contribute a small spurious trend to the TOA measurements.  An 
investigation of this effect is underway by the authors, who have already determined that this mostly affects the 412 nm 
band, causing a change in the TOA radiance measurement of about 0.3% at present and that most of this change 
occurred during 2012.  As this band is not used in the OC3 algorithm, its influence on the standard chlorophyll product is 
inconsequential.  The blue and green bands are predicted to drift less than 0.1%.  The NIR bands are subject to a more 
significant change, but still at just under 0.2%.  But given that these increasing biases are positive for both NIR bands, 
the impact to the Rayleigh-subtracted band ratio used to compute the aerosol radiance is probably very small.  
Nonetheless, the impact of the total effect of spectral response change for all bands should be quantified. 

It is also possible that this effort will benefit heritage missions, as spectral response change may not be specific to S-NPP 
VIIRS.  Change in the instrument responsivity with time across all bands has typically not observed to be spectrally flat 
for either SeaWiFS or MODIS, which strongly suggests that the instrument OOB characteristics could have also changed 
for these instruments. 

 

 



 
 

 
 

Polarization Response Changes 

To a lesser degree than MODIS, each band of the VIIRS instrument will record slightly different radiance values (<2%) 
for two objects with the same radiance, but where the polarization state of the measured light is different.  Light 
measured above the atmosphere is partially polarized by molecular scattering, the resulting degree of polarization being 
up to 60-70%, depending on wavelength, viewing, and illumination angles.  This causes a bias that must be corrected to 
accurately obtain Rrs(λ).  The response of the instrument to polarization state is characterized under laboratory conditions 
using a light source and a polarizer set a several different angles and the resulting characterization information is used to 
correct for biases in the on-orbit radiometry [18]. 

A concern has been recently raised amongst NASA and NOAA analysts regarding the polarization nature of the mirror 
contamination of S-NPP VIIRS.  It known that VIIRS is changing in spectral response as a result of the mirror 
contamination.  But, could VIIRS possibly be also changing its polarization characteristics over time?  This effect would 
show up as a changing scan-angle dependent bias appearing over the day-lit side of each orbit.  Further work to identify 
such variations should be part of future work. 

Counts-to-Radiance Converse 

Tracking changes in the instrument response with time using the SD assumes that the underlying counts-to-radiance 
conversion is initially and continues to be based on a linear relationship between output digital numbers (DN) and input 
radiance levels in geophysical units.  The SD trend provides a factor, as a function of time, by which the counts-to-
radiance conversion is multiplied to adjust for changes in instrument response.  However, it is known that some small 
non-linearity in the relationship between DN and input radiance exists.  Furthermore, the SD provides an adjustment 
based on a very limited range of radiances.  Therefore, as the correction from the SD trend increases, biases over other 
radiance levels could also grow.  Because the counts-to-radiance conversion differ from detector to detector, these 
growing biases may also increase differently from detector to detector, appearing as gradual increases in striping in the 
satellite imagery over time.  Other changes in the radiometric characteristics could contribute a spurious trend in the 
data, including but not limited to, the dark count or the radiance level of the gain switch point (pertaining to SeaWiFS 
and VIIRS) 

6. CONCLUSION 
An initial evaluation trend uncertainty in the VIIRS instrument responsitivity tracking was conducted.  The tracking 
methodology was based on the standard approach used by NASA (i.e., nonlinear functional fits) for VIIRS, MODIS, and 
SeaWiFS.  Monte Carlo experiments used residual characteristics to model SD trend noise and estimate the size of 
modeled spurious trends introduced by the nonlinear fitting process.  The size of these spurious trends, for all bands, was 
not surprisingly similar to the residual noise amplitude.  But these spurious trends by nature are highly auto-correlated 
and can lead to false variation in chlorophyll a concentration data product.  Tying the modeled spurious calibration 
trends to fluctuations in the chlorophyll a concentrations suggests significant false variation in the latter could exist on 
the level of a few percent over the course of the VIIRS mission.  Anti-correlated NIR contributions were shown to 
possibly affect coastal and open waters differently, possibly leading to misinterpretation of ecological responses to 
climate.  Additional variation would be expected from spurious trends in the visible bands.  Improvement to operational 
look-up tables for the SD and SDSM characteristics and to the code used for determining the solar position vector are 
expected to reduce spurious trends in VIIRS calibration.  Further analysis should be conducted to evaluate the total 
influence of calibration trend uncertainty in all bands to all ocean color derived products.  Other sources of time 
dependent variation should also be investigated.  This and continued analysis of trend uncertainty will be crucial to 
understand the epistemological validity of statements based on satellite data that are made about synoptic climatic effects 
in ocean biology. 
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