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1. Introduction 
 Ocean color remote sensing provides synoptic-scale, near-daily observations of marine inherent optical 
properties (IOPs). Whilst contemporary ocean color algorithms are known to perform well in deep oceanic 
waters, they have difficulty operating in optically clear, shallow marine environments where light reflected 
from the seafloor contributes to the water-leaving radiance. The effect of benthic reflectance in “optically 
shallow” waters is known to adversely affect algorithms developed for optically deep waters [1, 2]. Whilst 
adapted versions of optically deep ocean color algorithms have been applied to optically shallow regions 
with reasonable success [3], there is presently no approach that directly corrects for bottom reflectance us-
ing existing knowledge of bathymetry and benthic albedo.  
 To address the issue of optically shallow waters, we have developed a semi-analytical ocean color inver-
sion algorithm: the Shallow Water Inversion Model (SWIM). SWIM uses existing bathymetry and a derived 
benthic albedo map to correct for bottom reflectance using the semi-analytical model of Lee et al [4]. The al-
gorithm was incorporated into the NASA Ocean Biology Processing Group’s L2GEN program and tested in 
optically shallow waters of the Great Barrier Reef, Australia. In-lieu of readily available in situ matchup data, 
we present a comparison between SWIM and two contemporary ocean color algorithms, the Generalized In-
herent Optical Property Algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA). 

3. Algorithm Structure 
 SWIM is a forward-inverse type algorithm. A ‘forward’ semi-analytical model [4] is used to simu-
late sub-surface remote sensing reflectances, rrs, which are compared within sensor observed val-
ues. The internal parameters (IOPs) of the forward model are dynamically varied using a con-
strained Levenberg-Marquardt non-linear least squares optimization routine. Once the cost func-
tion is minimized (i.e. modelled and observed rrs are most similar), SWIM returns the set of optimal 
IOPs as the ‘inverted’ solution. If convergence to a solution is not achieved, a product failure 
(PRODFAIL) flag is returned. Previously developed shallow water inversion algorithms sought to 
derive IOPs, water column depth, and benthic albedo simultaneously [6]. However such approach-
es were typically concerned with mapping bathymetry and/or benthic classification using airborne 
hyperspectral imagery. Conversely, SWIM uses bathymetry and a benthic albedo data as inputs, 
thereby reducing the number of free parameters in the algorithm. Within this study, an existing high 
resolution bathymetry [7] map of the Great Barrier Reef has been used. In addition, extensive 
knowledge of benthic composition [8] has been used to construct a two-class benthic albedo map 
of ‘light’ and ‘dark’ substrate types. 

4. Test region: the Great Barrier Reef 
 A sub-set of the northern Great Barrier Reef, Australia was used to demonstrate the SWIM algo-
rithm. The clear shelf waters of this region are on average 18 m deep with a mixed benthos com-
prising sand, seagrasses and corals. Results in Fig. 2 show that for shallow regions (< 20 m) GIOP 
and QAA give higher values of at(443), bbp(443) and Kd(488) than SWIM. This is further demonstrated 
using cross-shelf transects (Fig. 3). Difference plots of the transect data (Fig. 4) shows that once a 
depth of approximately 30 m is reached, SWIM, GIOP and QAA behave similarly. We therefore infer 
that under the optical conditions of that day (22 May 2009), the combined effect of  water column 
depth and benthic reflectance upon the water-leaving signal diminished, and thus the water became 
quasi-optically deep, after the depth exceeded 30 m. The differences between SWIM and GIOP/
QAA demonstrated here are expected. More specifically, both the GIOP and QAA algorithms as-
sume that the rrs signal is depended only upon IOPs. Thus, unlike SWIM, an increase in sensor-
observed rrs due to benthic reflectance is interpreted by GIOP/QAA as increased backscattering 
and/or absorption which then leads to exaggerated Kd(488). 

5. Time-series comparison 
 The shallow water (SW) region in Fig 2 and an adjacent offshore deep water (DW) region (depth > 
1000 m) were selected for further comparison using the MODIS Aqua time series (2002—2013). Val-
ues of at(443), bbp(443) and Kd(488) were derived using SWIM, GIOP and QAA from level-1A data and 
screened for bad values using standard masks and quality control flags. Monthly-averaged data 
and relative differences were then calculated and are shown in Figs. 5 and 6. Using input bathymet-
ric data, SWIM should mathematically transition into an optically deep model and it was observed 
that SWIM-derived values were indeed within 10 % of GIOP and QAA values for the DW region. Dif-
ferences in internal IOP parameterization was inferred to be the reason why SWIM and GIOP/QAA 
did not converge more closely for the DW region. As expected, SWIM-derived values were consist-
ently lower than GIOP and QAA values through time for the SW region. Differences between SWIM 
and GIOP/QAA derived products mostly exceeded 10 % for the SW region. 

FFigure 1: Schematic diagram of the SWIM algorithm. Water column depth and benthic al-
bedo maps are included as auxiliary datasets and are illustrated to the right-hand side 
of the flow chart. Here, the free parameters P, G, and X, correspond to the absorption 
coefficient of phytoplankton at 443 nm, aϕ(443), the absorption coefficient of colored 
dissolved and detrital matter at 443 nm, adg(443), and the particulate backscattering co-
efficient at 443 nm, bbp(443) respectively.  

Figure 2: MODIS Aqua 
test image captured over 
the northern GBR on 22 
May 2009. The top row 
shows: (i) a RGB image in 
the top left-hand corner 
with horizontal (X) and 
vertical (Y) cross-shelf 
transects indicated as 
red lines, (ii) the water 
column depth, and (iii) 
the benthic albedo at 550 
nm. The second row 
shows from left to right 
values of at(443) derived 
using (i) SWIM, (ii) GIOP, 
and (iii) QAA. The third 
row shows from left to 
right values of bbp(443) 
derived using (i) SWIM, 
(ii) GIOP, and (iii) QAA. 
The bottom row shows 
from left to right values 
of Kd(488) derived using 
(i) SWIM, (ii) GIOP, and 
(iii) QAA. 
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2. Research objectives 
�� Develop a shallow water inversion algorithm (SWIM) with depth and benthic albedo as inputs 
�� Incorporate the algorithm into L2GEN processing software 
�� Test the algorithm in optically shallow waters of the Great Barrier Reef, Australia 
�� With the MODIS Aqua time series, compare IOPs and Kd(488) [5] derived using SWIM with values 

derived by GIOP and QAA 

6. Summary 
Here we have demonstrated SWIM, an optically shallow ocean color inversion algorithm. The SWIM 
algorithm is currently an evaluation product within L2GEN processing code and was successfully 
applied in the Great Barrier Reef, Australia. Comparisons between SWIM and GIOP/QAA indicate 
the algorithm performs as expected in both deep and shallow waters. SWIM has the potential to en-
hance research and management of sensitive shallow water environments by complementing ex-
isting systems for monitoring water quality and ecosystem health. Further, because SWIM has 
been developed within the versatile L2GEN processing code it is easily applicable to sensors other 
than MODIS Aqua and regions outside the Great Barrier Reef. 
 

Figure 4: Differences (Δ) between at(443), bbp(443) and Kd(488) products derived using: (i) GIOP 
(blue), and (ii) QAA (green) those same products derived using SWIM. These differences are 
plotted against water column depth. The left and right-hand sides corresponds to data ex-
tracted along the X and Y cross-shelf transects depicted in Fig. 2. 

Figure 3: Comparison of at(443), bbp(443) and Kd(488) derived using SWIM (red), GIOP (blue) and 
QAA (green) as cross-shelf water column depth (dotted black) varies. The left and right-hand 
sides correspond to the X and Y cross-shelf transects depicted in Fig. 2. 

Figure 5: Left-hand side: 
Monthly means of at(443), bbp

(443) and Kd(488) for the Deep 
Water (DW) region retrieved 
using SWIM (red), GIOP (blue) 
and QAA (green). Right-hand 
side: Relative differences be-
tween GIOP and SWIM (blue) 
and QAA and SWIM (green). 

Figure 6: Figure 5: Left-hand 
side: Monthly means of at

(443), bbp(443) and Kd(488) 
for the Shallow Water (SW) 
region retrieved using SWIM 
(red), GIOP (blue) and QAA 
(green). Right-hand side: 
Relative differences be-
tween GIOP and SWIM 
(blue) and QAA and SWIM 
(green). 

8. Future work 
�� Validation and fine tuning of the SWIM algorithm using in situ datasets 
�� Implementing a tide offset correction procedure 
�� Extending the SWIM algorithm to other regions with well characterized bathymetry/benthos 
�� Potential to incorporate SWIM into L2GEN’s generalized IOP algorithm framework 
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