Exoplanet Direct Imaging: Coronagraph Probe Mission Study “EXO-C”

Karl Stapelfeldt

NASA Goddard Space Flight Center

For the EXO-C STDT and Design Team
Context for Study

• Flagship mission for spectroscopy of ExoEarths is a long-term priority for space astrophysics (Astro2010).
• Requires 10^{-10} contrast at $3\lambda/D$ separation, (>10,000 times beyond HST performance) and large telescope $>4m$ aperture. Big step.
• Mission for spectroscopy of giant planets and imaging of disks requires 10^{-9} contrast at $3\lambda/D$ (already demonstrated in lab) and $\sim1.5m$ telescope. Should be much more affordable, good intermediate step.
• Various PIs have proposed many versions of the latter mission 17 times since 1999; no unified approach.
NASA HQ Astrophysics Implementation Plan

• New strategic mission expected to start in FY 17. It will be AFTA/WFIRST if budget allows. If not, need less expensive “probe” mission options as backups. Four to choose from: WFIRST, 2 exoplanet, and X-ray.

• Probe mission terms:
 • cost ~ $1B
 • technical readiness (TRL 5) by 2017

• EXO-C is an 18 month HQ-funded study of an internal coronagraph probe mission
 • Science & Technology Definition Team selected May 2013. Previous competitors now working together.
 • Engineering Design Team in place at Jet Propulsion Laboratory, July 2013
 • Interim report for March 2014, Final report due Jan 2015
EXO-C Key People

Science and Technology Definition Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karl Stapelfeldt</td>
<td>Chair, NASA/GSFC</td>
</tr>
<tr>
<td>Rus Belikov</td>
<td>NASA/Ames</td>
</tr>
<tr>
<td>Geoff Bryden</td>
<td>JPL/Caltech</td>
</tr>
<tr>
<td>Kerri Cahoy</td>
<td>MIT</td>
</tr>
<tr>
<td>Supriya Chakrabarti</td>
<td>UMass Lowell</td>
</tr>
<tr>
<td>Mark Marley</td>
<td>NASA/Ames</td>
</tr>
<tr>
<td>Michael McElwain</td>
<td>NASA/GSFC</td>
</tr>
<tr>
<td>Vikki Meadows</td>
<td>U. Wash</td>
</tr>
<tr>
<td>Gene Serabyn</td>
<td>JPL/Caltech</td>
</tr>
<tr>
<td>John Trauger</td>
<td>JPL/Caltech</td>
</tr>
</tbody>
</table>

JPL Engineering Design Team

<table>
<thead>
<tr>
<th>Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Keith Warfield</td>
<td>Michael Brenner</td>
</tr>
<tr>
<td>Ron Bauman</td>
<td>John Krist</td>
</tr>
<tr>
<td>Paul Brugarolasa</td>
<td>Jared Lang</td>
</tr>
<tr>
<td>Frank Dekens</td>
<td>Joel Nissen</td>
</tr>
<tr>
<td>Serge Dubovitsky</td>
<td>Jeff Oseas</td>
</tr>
<tr>
<td>Bobby Effinger</td>
<td>Otto Polanco</td>
</tr>
<tr>
<td>Andy Kissel</td>
<td>Eric Sunada</td>
</tr>
</tbody>
</table>

ExEP Office

<table>
<thead>
<tr>
<th>Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gary Blackwood</td>
<td>Wes Traub</td>
</tr>
<tr>
<td>Peter Lawson</td>
<td>Steve Unwin</td>
</tr>
</tbody>
</table>
Approach to the Study

• Build on previous work (ACCESS, PECO, ...)
• Begin with science goals and trade studies of system-level issues: telescope design, orbit selection, pointing control, wavefront stability and control, cost
• Evaluate coronagraph options in the context of achievable system performance
• Engage Aerospace Corp. early in the study for cost feedback
• Innovate
Science Goals

• Obtain optical spectra of the nearest RV planets: measure CH$_4$, H$_2$O, Rayleigh scat. Fix orbit inclination \rightarrow planet mass.

• Search for planets beyond RV limits (Neptunes, super-Earths) in a TBD nearby star sample. Measure their orbits, carry out follow-on spectroscopy of the brightest ones
 • alpha Centauri system is a particularly important case

• Optical spectra of planets discovered by near-IR ground AO

• Image circumstellar disks beyond HST, AO, and ALMA limits:
 • Resolve disk structures: Size, extent, rings/gaps/asymmetries as evidence for planetary perturbations
 • Dust properties: diagnose via albedo, color, and phase function
 • Time evolution of the above from protoplanetary to debris disks
 • Assess dust content near HZ in maybe a dozen nearby sunlike stars
Accessible RV planets

Known RV planets vs. $2 \lambda/D @ \lambda = 0.8 \mu m$

![Graph showing cumulative number vs. planet elongation (arcsec) with vertical lines at different wavelengths (1.1m, 1.3m, 1.5m, 1.8m).]
α Cen binary orbit:

- 8.5″ separation in 2025, growing to 10.5″ a few years later
- Need coronagraph mask that covers both stars and can accommodate the variable separation
- HZs at 0.5″
Current working science requirements

• Residual uncontrolled speckle contrast:
 • DC level ≤ 1e-09, stability over 48 hours ≤ 1e-10, stray/scattered light from binary companion ≤ 1e-09 @ 8” sep

• Pointing performance
 • 0.1 mas accuracy, 0.5 mas stability per 1000s (to be achieved with fine steering mirror)
 • Telescope/spacecraft requirements still under evaluation

• Spectroscopy: 450 nm < λ < 1000 nm range desired
 • R~25 at short wavelengths, R~50 at long wavelengths

• Astrometric precision 30 mas

• Mission lifetime >= 3 yrs
Planet size for 1×10^{-09} contrast at quadrature
Planet detectability placeholder from the Trauger et al. ACCESS study

![Graph showing planet detectability](image)
Engineering Trades

• Unanimous decision for unobscured telescope
 • Better throughput, resolution, stiffness, coronagraph TRL. Slightly higher cost
• Telescope aperture of 1.3-1.5m appears to be affordable
• Nearly decided on Earth-trailing orbit
 • Better thermal stability & sky visibility than EO. No propulsion needed. Acceptable data rates.
• Integral Field Spectrograph in addition to filter imaging
 • Simultaneous measurements over ~> 20% bandpass
 • Supports speckle rejection as well as planet spectra
Choosing a coronagraph

• Pre-requisite is having some understanding of likely pointing performance, thermal stability, and control authority over time-variable low order aberrations.

• Six concepts to be evaluated: hybrid Lyot, PIAA, shaped pupils, vector vortex, two visible nuller variants.

• Process will begin at our Nov. meeting. Optical simulations, science yield estimates. Demonstrated lab performance will be highly weighted. Will take our time.

• EXO-C decision will be totally independent of AFTA choices.
Thoughts on 3 year Design Reference Mission

• Very preliminary: don’t yet understand our overheads, and throughput varies across coronagraph types

• 800 days of integration time would support:
 • Spectra of ~ dozen known RV planets (100 days)
 • Planet searches in 250 stars (250 days), followup spectroscopy of another ~ dozen objects (100 days)
 • Disk imaging surveys
 • Detection survey in 500 RV planet systems (200 days)
 • 120 known debris disks within 40 pc (60 days)
 • 180 young debris disks from WISE (100 days)
 • 100 nearby protoplanetary disks (40 days)
Conclusions

• EXO-C Study is well underway. We will show what an affordable, optimal, high TRL exoplanet direct imaging mission could do.

• We are eager to get our first Structural-Thermal-Optical (STOP) models to assess telescope stability.

• Capability to search alpha Cen system may be key to selling the mission.

• Please send me your suggestions for things we should look into, or how you’d like to help: kstapelf@gmail.com.