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h i g h l i g h t s

� Our Models resulted in very high out-of-sample R2 (R2 ¼ 0.88).
� Our model performed well both spatially and temporally (R2 ¼ 0.87, R2 ¼ 0.87).
� Our results revealed very little bias (Slope of predictions versus withheld observations ¼ 0.99).
� Importantly, these R2 are for daily, rather than monthly or yearly, values.
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a b s t r a c t

The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter (PM2.5) for
epidemiology studies has increased substantially over the past few years. These recent studies often
report moderate predictive power, which can generate downward bias in effect estimates. In addition,
AOD measurements have only moderate spatial resolution, and have substantial missing data. We make
use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of
Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) reso-
lution AOD data. We developed and cross validated models to predict daily PM2.5 at a 1 �1 km resolution
across the northeastern USA (New England, New York and New Jersey) for the years 2003e2011, allowing
us to better differentiate daily and long term exposure between urban, suburban, and rural areas.
Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized
predictions representing deviations from the area 1 � 1 km grid predictions. We used mixed models
regressing PM2.5 measurements against day-specific random intercepts, and fixed and random AOD and
temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate
grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the
residuals from the final model for each monitor against the local spatial and temporal variables at each
monitoring site. Our model performance was excellent (mean out-of-sample R2 ¼ 0.88). The spatial and
temporal components of the out-of-sample results also presented very good fits to the withheld data (R2

¼ 0.87, R2 ¼ 0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope
of predictions versus withheld observations ¼ 0.99). Our daily model results show high predictive ac-
curacy at high spatial resolutions and will be useful in reconstructing exposure histories for epidemio-
logical studies across this region.
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1. Introduction

The use of satellite-based aerosol optical depth (AOD) to esti-
mate exposure to fine particulate matter (PM2.5-particulate matter
<2.5 mm in aerodynamic diameter) concentrations for epidemio-
logic studies has increased substantially over the past few years
(Chang et al., 2013; A.A. Chudnovsky et al., 2013; Chudnovsky et al.,
2012; Kim et al., 2013; Kloog et al., 2012b, 2011; Lee et al., 2011; Lin
et al., 2013; Nordio et al., 2013). Both short term (hours, days) and
chronic (months, years) exposure to PM2.5 has been extensively
associated with detrimental human health effects (Halonen et al.,
2008; Kloog et al., 2012a; Peacock et al., 2011; Zanobetti and
Schwartz, 2009). Fine PM exposures were found to be associated
with respiratory and cardiovascular morbidity, mortality from
cardiovascular and respiratory diseases and an increase in hospital
admissions (Dominici et al., 2006; Kloog et al., 2012a; Schwartz,
1996).

Traditionally, estimation of PM2.5 exposures has been based on
using measurements of a central ground monitor, and assigning
these measurement to populations within a specified distance of
the monitor (Laden et al., 2006; Samet et al., 2000). This approach
introduces exposure error (also known as exposure misclassifica-
tion), and likely biases the effect estimates downward due to spatial
misalignment (Zeger et al., 2000). In recent years, to avoid this
exposure misclassification, many studies have used regression
models based on geographic covariates (termed “land use” re-
gressions e LUR) to expand in situ measurements of PM2.5 con-
centrations to large areas. LUR is essentially an interpolation
technique that employs the PM2.5 concentrations as the dependent
variable, with proximate land use, traffic and physical environ-
mental variables used as independent predictors (Beckerman et al.,
2013; Gryparis et al., 2009; Hoek et al., 2008; Vienneau et al., 2010).
Since the geographic covariates are generally not time varying, the
temporal resolution of the LUmodel predictions is limited and thus
can only be employed to assess long-term exposures for chronic
health effects studies. Finally, current exposure assessments are
limited to urban areas due to the paucity of monitoring sites in rural
locations.

Satellite-based AOD provides physical daily measurements that
can be used to estimate air quality and pollution due to its extensive
spatial coverage and repeated observations of the earth surface and
atmosphere. AOD is a measure of the extinction of electromagnetic
radiation at a given wavelength due to the presence of aerosols in
an atmospheric column. However, satellite-based AOD is a measure
of light attenuation in the column which is affected by ambient
conditions (such as vertical profile, chemical composition and hu-
midity). In contrast, PM2.5 is a measure of dry particle mass near the
surface and thus we do not expect them to be strongly correlated
(Chudnovsky et al., 2012).

In recent years many studies have used various statistical
methods to establish quantitative relationships between AOD and
PM2.5 (Chang et al., 2013; A. Chudnovsky et al., 2013; Cordero et al.,
2013; Gupta et al., 2013; Kim et al., 2013). Traditionally, the health
exposure studies have used the standard MODIS (Moderate Reso-
lution Imaging Spectroradiometer) AOD product of the “Dark
Target” algorithm (Levy et al., 2007) which has a nadir resolution of
10 � 10 km2. Lately, AOD at significantly higher spatial resolution
(1�1 km2) has been offered by a newMulti-Angle Implementation
of Atmospheric Correction (MAIAC) algorithm. Chang et al. (2013)
used some novel ideas such as a statistical downscaling and data
fusion techniques to predict PM2.5 concentrations at spatial point
locations in the southeastern United States during the period
2003e2005. Their model showed relatively high cross-validated
predictions (R2 ¼ 0.78 and a root mean-squared error (RMSE) of

3.61 mg/m3). Chudnovsky et al. (2014) used one year of observations
fromMODIS based Aqua at a 1 km spatial resolution to obtain daily
PM2.5 estimates for AOD retrieval days. Their model results indi-
cated that high resolution MAIAC (Multi-Angle Implementation of
Atmospheric Correction) data better explains the variations in
PM2.5 However, the developed model was restricted to retrieval
days, and the out-of-sample predictive performance spatially was
similar to that estimated by Chang et al. (spatial R2 ¼ 0.79).

These recent studies, while generally showing better fits than
previous models, still leave room for improvement in terms of
reducing exposure error. In addition, they all lack detailed high
resolution predictions across large space-time domains (especially
in rural areas) which is critical for acute exposure epidemiologic
studies.

In this paper, we incorporate MAIAC-based AOD satellite data
which allows us to present a much simplified model, while still
improving significantly over currently available models. We devel-
oped and validated models to predict daily PM2.5 at a 1 � 1 km
resolution across the northeastern USA (New England, New York
and New Jersey) for the years 2003e2011, allowing us to better
differentiate daily and long term exposure between urban, subur-
ban, and rural areas. Additionally, we developed an approach that
allows us to generate daily high-resolution 200 � 200 m localized
predictions that are separate fromthe area 1�1kmgrid predictions.

2. Material and methods

2.1. Study domain

The spatial domain of our region included the Northeastern part
of the USA (Fig. 1), and includes the states of Connecticut, Maine,
Massachusetts, New Hampshire, New Jersey, New York, Rhode Is-
land and Vermont. Many urban areas (notably New York and Bos-
ton) are included as well as rural hill towns, large forested regions,
water bodies, mountains and the Atlantic sea shoreline. The study
area included 285,284 discrete 1 � 1 km satellite grid cells.

2.2. AOD data

One of the fundamental aerosol products fromMODIS is spectral
AOD (sometime referred to as Aerosol Optical Thickness or AOT).
This is a global level 2 daily MODIS product. The details of the
standard “Dark Target” (DT) MODIS algorithm over land providing
10� 10 km2 resolution AOD have been broadly reported (Levy et al.,
2007; Remer et al., 2005). Recently a new processing algorithm
(MAIAC) has been developed that provides a high 1 km resolution
AOD from MODIS data (Chudnovsky et al., 2014; Lyapustin et al.,
2011a, 2011b). MAIAC processing begins with the gridding of
MODIS L1B data to a fixed 1 km grid, and accumulation of up to 16
days of measurements in the memory. Then it uses time series
analysis and processing of groups of pixels to derive surface bidi-
rectional reflectance distribution function (BRDF) and aerosol pa-
rameters without assumptions typical of current MODIS
operational processing algorithms. The spatio-temporal analysis
also helps MAIAC's cloud mask augmenting traditional pixel-level
cloud detection techniques. In this analysis we used MAIAC AOD
based on collection 6 MODIS Aqua L1B data for the years
2003e2011.

2.3. Monitoring data

Data for daily PM2.5 mass concentrations across the Northeast
region (see Fig. 1) for the years 2003e2011 were obtained from the
U.S. Environmental Protection Agency (EPA) Air Quality System
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(AQS) database as well as the IMPROVE (Interagency Monitoring of
Protected Visual Environments) network. IMPROVE monitor sites
are located in national parks and wilderness areas while EPA
monitoring sites are located across the Mid-Atlantic including ur-
ban areas such as New York City, Boston, etc. There were 161
monitors with unique locations operating in the Northeast during
the study period. The Mean PM2.5 across the Northeast during the
study period was 11.7 mg/m3 with a standard deviation of 7.8 mg/m3

and an interquartile range (IQR) of 9.1 mg/m3.

2.4. Spatial predictors of PM2.5

We used a hybrid model, containing both AOD, land use, and
meteorological predictors. The following spatial predictors were
used: population density, elevation, traffic density, percentages of
land use according to 12 land use categories based on United States
Geological Survey (USGS) National Land Cover Dataset (NLCD),
point emissions and total area-source emissions (tons per year) for
PM2.5, PM10, SO2, and NOx.

Elevation: Elevation data were added through a satellite-based
digital elevation model from the USGS National Elevation Dataset
(NED) covering the United States at a spatial resolution of 1 arc sec
(Maune,2007). Thereare sharpelevationcontrastsacross sucha large

studyareaand thusweusedelevationasa spatialpredictor (generally
higher elevations are associated with lower air temperatures).

Traffic density: Road data were obtained through the U.S. Census
2000 topologically integrated geographic encoding and referencing
system (TIGER, 2006). We calculated the total A1 road length (class
1 roads that are hard surface highways including Interstate and U.S.
numbered highways, primary State routes, and all controlled access
highways) across the study area. The A1 roads were intersected
with the 1 �1 km grid and the resulting attribute tables contained
the density of all A1 road segment lengths in each 1 km2 grid cells.

Population density: Population density data were obtained
through the U.S. Census 2000 dataset (Census, 2000).We calculated
the weight-averaged population for each 1 � 1 km grid cell based
on the tracts intersecting these grid cells.

Point emissions: Additional point emissions data for PM2.5, PM10,
SO2, and NOx were obtained through the 2005 U.S. EPA National
Emissions Inventory (NEI) facility emissions report (EPA, 2010).
Locations reporting zero emissions within the appropriate grid cell
were assigned a value of one-half of the minimum value among all
monitoring locations.

Area-source emissions: Area-source PM2.5, PM10, SO2, and NOx

emissions data were obtained through the 2005 U.S. EPA-NEI tiered
emissions reports (EPA, 2010), which provide estimates of total

Fig. 1. Map of the study area showing the location of EPA and IMPROVE monitoring sites across the Northeastern USA.

I. Kloog et al. / Atmospheric Environment 95 (2014) 581e590 583



area-source emissions by county and year. Intersecting source
emission areas for each 1 � 1 km grid were calculated by weight
averaging the values from each intersecting areas intersecting n
each 1 � 1 km grid cell.

Percentages of land use: We used the NLCD from 2001 (Homer
et al., 2004), available as raster files with a 30 m spatial resolu-
tion. We calculate the percentages of mixed forest, deciduous for-
est, evergreen, crop, pasture, grass, shrub, water, high
development, medium development, low development and open
development areas in each 1 � 1 km grid across the study area.

2.5. Temporal predictors of PM2.5

Meteorological data: All meteorological variables used in the
analysis were obtained through the National Climatic Data Center
(NCDC, 2010). Only continuous operating stations with daily data
running from2003 to 2011were used (26 stations spread across the
study area). Grid cells were matched to the closest weather station
with available meteorological variables (24 h means).

We used the following meteorological variables: air tempera-
ture, wind speed, daily visibility, sea land pressure (SLP) and rela-
tive humidity. All the variables represent 24 h averages except
visibility, which is only computed during daylight hours.

NDVI: We used the publicly available monthly MODIS NDVI
(Normalized Difference Vegetation Index) product (MOD13A3) at
1 km spatial resolution. The monthly resolution was chosen since
NDVI values do not change considerably within a month except
periods of spring green-up and fall senescence.

PBL: We used publicly available daily data on the height of the
planetary boundary layer (PBL) obtained from the NOAA Reanalysis
Data (NOAA, 2010). The spatial scale of the data was 32 � 32 km.
The height of the boundary layer may vary with wind speed (Oke,
1987), influencing the concentration and vertical profile of pollut-
ants. The boundary layer not only controls transport and location of
pollutants and aerosols but also their concentrations would be
different in variable boundary layer structures (Angevine et al.,
2013).

2.6. Statistical methods

All modeling was done using the R statistical software version
3.02 and SAS (Statistical Analysis System) version 9.3.

As we have shown in previous studies (Chudnovsky et al., 2014;
Kloog et al., 2012b, 2011) there is a varying spatial relationship
between AOD and PM2.5 on a single day due to differences in factors
including particle composition, PBL, relative humidity, vertical
profiles. Thus, we use a mixed effects model incorporating spatial
and temporal predictors and day-specific random-effects to take
into account these temporal variations in the PM2.5eAOD rela-
tionship. Since the exposure predictions generated by our model
are primarily intended for use in epidemiologic health effect
studies, we generate exposure predictions at two different spatial
scales at which health data are typically collected: small area (zip
code, census tract, etc) geocoded data (SAGD) and address-specific

geocoded data (RGD). When only SAGD health data is available, we
use predictions at the 1 � 1 km grid cell level, whereas when RGD
are available, we add an additional local daily estimation compo-
nent at a very high resolution (200 � 200 m) to the grid-level
predictions. Using higher resolution MAIAC data compared to our
previous 10 � 10 km MODIS AOD data allowed us to simplify our
approach in this way.

All models were fit to data from each year (2003e2011) sepa-
rately. To generate the daily 1 �1 km PM2.5 predictions in each grid
cell for the entire 2003e2011 period, we developed a prediction
process using a series of models: The first model calibrates the AOD
grid-level observations to the PM2.5 monitoring data collected
within 1 km of an AOD value, while adjusting for the land use and
meteorological variables. In the second model we predict daily
PM2.5 concentrations in grid cells without monitors but with
available AOD measurements using the model 1 fit. Then in the
third model, to estimate daily PM2.5 in grid cells with no AOD on
that day, we take advantage of the region-specific association be-
tween grid-cell AOD and PM2.5 levels, and the association between
PM2.5 level in a given grid with that in neighboring grid cells.

To generate the daily 200 � 200 m PM2.5 local predictions for
studies using RGD, we take the residuals of model 3 at each
monitoring site (that is the ground level PM2.5 data minus the
model 3 predictions) and regress them against very fine
(200 � 200) monitor-specific spatial and temporal predictors of
PM2.5 which included traffic density, population density, elevation,
percent urban, distance to major roads (A1), distance to source
emission points, PBL and visibility. This stage allows us to predict
local PM throughout the study area on any given day.

To accommodate the fact that daily AOD data missingness is not
random, the first stage model incorporated inverse probability
weighting (IPW) to potentially avoid bias in the regression coeffi-
cient estimates and thus in the resulting predictions. This approach
effectively up-weights dates and grid cells which are under-
represented due to a large degree of missing data. To obtain the
weights that account for the non-random missingness in AOD
values, we fit the following logistic regression model for the
probability (p) of observing an AOD value in cell i on day j:

ln
�

�p
1� �p

�
¼ b0 þ b1Elevationi þ b2SLPij þ b3Temperatureij

þMonth

IPW ¼
�
1
�p

�
(1)

where (p) is the probability for availability of AOD in each day in
each grid cell in each year. There were no observations which had a
disproportionate influence in the yearly models.

Finally, since the daily PMeAOD calibration factors can vary
spatially, the study area is divided into 7 regions. The day-specific
intercept, AOD, and temperature random effects in the model are
nested within regions of the study. Specifically, the first model can
be written as

PMij ¼
�
aþ uj þ gjðregÞ

�
þ
�
b1 þvj þ hjðregÞ

�
AODij þ

�
b2 þ kj

�
Temperatureij þ

�5

m¼1

g1mX1mi þ
�28

m¼1

g2mX2mj þ
�2

m¼1

g3mX3mij þ�ij
�
ujvjkj

�
�N½ð000Þ;s��

gjðregÞ;hjðregÞ
�

�½ð00Þ;sREG�

(2)
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where PMij is themeasured PM2.5 concentration at a spatial site i on
day j; a and uj are the fixed and random (day-specific) intercepts,
respectively, AODij is the AOD value in the grid cell corresponding to
site i on day j; b1 and vj are the fixed and day-specific random
slopes, respectively. Temperatureij is the temperature value in the
grid cell corresponding to site i on day j; and, b2 and kj are the fixed
and random slopes for temperature. X1mi is the value of the mth
spatial predictor at site i, X2mj is the value of the mth temporal
predictor on day j, and X3mij is the value of themth spatial-temporal
predictor at site i on day j. gj(reg) and hj(reg) are the daily random
intercepts and AOD slopes specific to each study area region, nested
within the overall random effects uj and vj. Here, we assume s is a
3� 3 diagonal matrix with diagonal elements s2u, s2v, s2k,, and sREG
is a 2 � 2 diagonal matrix with diagonal elements s2g, s2h.

We used ten-folds out-of-sample cross validation (CV) to vali-
date our model 1 predictions. We randomly divide our data into 90
and 10 percent splits ten times. We predict for the 10% datasets
using the model fitted from the remaining 90% of the data. We then
report these computed R2 values. To test our results for bias we
regress the measured PM value for a given site and day against the
corresponding predicted value. We estimated the model prediction
precision by taking the square root of the mean squared prediction
errors (RMSPE). In addition we calculated prediction errors from a
model that contained the spatial components only, to make it more
comparable to the commonly used monthly/yearly prediction
models available such as Yanosky et al. (2008). Temporal R2 was
calculated by regressing Delta PM against Delta predicted where:
Delta PM is the difference between the actual PM in place i at time j
and the annual mean PM at that location, and Delta predicted is
defined similarly for the predicted values generated from the
model. Spatial R2 was calculated by regressing the site-specific
annual means in observed PM versus the same annual means for
predicted PM.

The next model (model 2), uses the fit of model 1 to predict a
PM2.5 concentration for each day and grid cell at which we have an
observed AOD value. This resulted in yearly datasets with PM2.5
prediction for all day-grid cell combinations with available AOD.

In model 3 of the sequence, we estimate daily PM2.5 for all grid
cells in the study area even in days when no AOD data are present.
We fit a generalized additive model with a smooth function of
latitude and longitude (using the grid cell centroids) and a random
intercept for each cell. This is similar to other interpolation tech-
niques (universal kriging, etc.) to use nearby grid cells to help fill in
the missing, however we also construct a 100 km buffer around
each grid cell and fit a regression analysis relating the predicted PM
at each grid cell to the daily mean PM2.5 from the stations in each
buffer around that grid cell, which also aids in predicting the value
on missing days. The 100 km buffer size was chosen since we
wanted a small enough buffer to ensure relevance and hence
improve the R2 of the monitored value on the grid cell values, but
large enough a buffer to include multiple PM monitors to produce
more stable estimates (again improving the prediction R2). To allow
for temporal variations in the spatial correlation, we fit a separate
spatial surface for each two-month period of each year. Using this
method provides additional information about the concentration in
the missing grid cells that classic interpolation would not provide.
Specifically, we fit the following semiparametric regression model:

PredPMij ¼ ða þ uiÞ þ ðb1 þ viÞMPMij þ sðXi;YiÞkðjÞ þ �ij;

ðuiviÞ�
�ð00Þ;Ub

� (3)

where PredPMij is the predicted PM2.5 concentration at a grid cell i
on a day j from the model 2; MPMij is the mean PM in the relevant
100 km buffer for site i on a day j; a and ui are the fixed and grid-cell
specific random intercepts, respectively; b1 and vi are the fixed and

random slopes, respectively. The smooth Xi,Yi are the latitude and
longitude, respectively, of the centroid of grid cell i, and s(Xi,Yi)k(j) is
the a smooth function of location (modeled by thin plate splines)
specific to the two-month period k(j) in which day j falls (that is, a
separate spatial smooth was fit for each two-month period).

To estimate the goodness of fit and due to computational limits,
we used a “leave 10 out” approach where we randomly selected 10
monitors to leave out of the model 3 predictions. We the test the fit
and bias (regressing the measured PM values against the predicted
values and predicting PM levels at the left out monitoring
locations).

Finally, we run a forth model where we take the residuals
constructed by taking the difference between a given daily moni-
tored PM2.5 concentration and the 1 km� 1 km corresponding daily
model 3 prediction, and regress that against spatial and temporal
predictors of PM2.5 at eachmonitor. Specifically, we fit the following
model:

ResidPMij ¼ f1ðTraffic densityi;Population densityiÞ
þ f2ðElevationiÞ þ f3ðPercent urbaniÞ
þ f4ðDistance to A1 roadsiÞ
þ f5ðDistance to point emissionsiÞ þ f6

�
PBLij

�

þ f7
�
Traffic densityi;PBLij

�

þ f8ij
�
Traffic densityi;Visibilityij

�
þ �ij

(4)

where ResidPMij is the residual at a spatial monitor site i on day j; f1
denotes a penalized spline for an interaction between traffic den-
sity and population density at a spatial monitor site i; f2ef6 denote
(potentially nonlinear) effects of elevation, percent urban land use,
distance to A1 road, distance to point emissions and PBL respec-
tively at a spatial monitor site i (and day j for PBL). f7 denotes a
penalized spline for an interaction between traffic density and PBL
at a spatial monitor site i on day j and f8 denotes a penalized spline
for an interaction between traffic density and visibility at a spatial
monitor site i on day j. Finally �ij is the error.

3. Results

Overall mean for MAIAC AOD was 0.25. Fig. 2 presents the mean
ground PM2.5 measurements across all years (2003e2011) and the
difference between monitor and predicted PM2.5 concentrations at
each monitoring site. The figure shows how measured PM2.5 con-
centrations at monitors corresponds well with our predicted con-
centrations, and the differences at 95% of the monitoring sites are
within ±1.3 mg/m3, clearly showing excellent agreement between
observed and predicted values. Fig. 3a presents a density plot
exhibiting the daily variation of AOD slopes between 2003 and 2011
during model 1 calibrations, while Fig. 3b presents a density plot
exhibiting the daily variation of temperature slopes for the same
period. The figure shows there is considerable day-to-day vari-
ability in these slopes.

Table 1 presents results from our model 1 calibration analysis.
The yearly predictive power of ourmodel is extremely high, with an
overall “out-of-sample” R2 for daily values of 0.88 (year-to-year
variation 0.82e0.90), with a highly significant association between
PM2.5 and the main explanatory variable-AOD. The models yield
almost no bias in our cross validation results as the slope of
observed versus predicted ¼ 0.99 (year-to-year variation
0.98e1.01). The spatial and temporal out-of-sample results also
presented excellent fits (Table 1): For the temporal model, the
mean “out-of-sample” R2 was 0.87 (year-to-year variation
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Fig. 2. EPA and IMPROVE PM2.5 annual means and the difference between measured and estimated PM2.5 concentrations at each PM2.5 monitor.



0.81e0.90) and for the spatial model the mean “out-of-sample” R2

was 0.87 (year-to-year variation 0.80e0.93). When looking at Root
Mean Square Prediction Error (RMSPE), our models exhibit very
low RMSPE values of 2.33 mg/m3 (year-to-year variation
1.95e2.89 mg/m3). Our “spatial” component only RMSPE is much
lower at 0.82 mg/m3. The final prediction model (model 3) presents
very similar results and is presented in Table 2.

Fig. 4 shows the spatial pattern of predicted PM2.5 concentra-
tions in Boston from the AOD models, averaged over the entire
study period. The spatial variation in these long term PM2.5 pre-
dictions ranges from 2.36 mg/m3 to 40.12 mg/m3 showing a good
range of variability for our model.

Fig. 5 shows the deviation of the estimated local PM2.5 con-
centrations (model 4) from the average 1 � 1 km PM2.5 concen-
trations at a very fine resolution (200 � 200 m) aggregated over a
year (2003) in Boston.

4. Discussion

In this paper we used novel 1 km AODMODIS data based on the
MAIAC algorithm to predict PM2.5 concentrations across the
Northeastern USA. Using the newly available MAIAC data allows us
to simplify our previously described models while still gaining
much better predictive power and reducing the exposure error. In

Fig. 3. Density plots exhibiting the daily variation of AOD slopes (a) and temperature slopes (b) between 2003 and 2011 during the stage 1 calibrations.

Table 1
Prediction accuracy: Ten-fold cross-validated R2 for PM2.5 stage 1 predictions (Calibration stage for 2003e2011).

Year R2 Slope Spatial R2 Temporal R2 RMSPE (mg/m3) Spatial RMSPE (mg/m3)

2003 0.89 0.98 0.87 0.88 2.89 1.05
2004 0.89 0.99 0.90 0.88 2.34 0.85
2005 0.88 0.98 0.87 0.87 2.85 1.00
2006 0.89 1.00 0.85 0.88 2.30 0.81
2007 0.90 1.01 0.93 0.90 2.34 0.73
2008 0.88 0.99 0.92 0.86 2.22 0.72
2009 0.86 0.98 0.86 0.84 1.97 0.71
2010 0.90 0.99 0.84 0.89 1.85 0.69
2011 0.82 0.99 0.80 0.81 2.22 0.82
Overall Mean 2003e2011 0.88 0.99 0.87 0.87 2.33 0.82

Table 2
Prediction accuracy: R2 for stage 3 PM2.5 predictions (final prediction model including locations without AOD for 2003e2011).

Year R2 Slope Spatial R2 Temporal R2 RMSPE (mg/m3) Spatial RMSPE (mg/m3) Slope for leave 10-out

2003 0.91 1.02 0.88 0.91 2.69 0.65 1.09
2004 0.89 1.01 0.93 0.88 2.47 0.60 1.09
2005 0.88 1.01 0.93 0.88 2.79 0.63 1.10
2006 0.89 1.02 0.93 0.89 2.37 0.53 1.08
2007 0.91 1.01 0.96 0.91 2.26 0.47 1.04
2008 0.87 0.99 0.96 0.86 2.30 0.42 1.03
2009 0.87 1.01 0.94 0.86 1.95 0.37 1.06
2010 0.89 1.00 0.96 0.88 1.91 0.29 1.04
2011 0.84 1.01 0.92 0.83 2.09 0.39 1.05
Overall Mean 0.88 1.01 0.93 0.88 2.32 0.48 1.07
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addition, in our updated model we introduce significant method-
ological improvements with the predictions for daily fine resolu-
tion (200 � 200 m) PM exposure, which can better capture
pollution attributed to local sources such as traffic. Our models
yield extremely good model fits and observed versus predicted
slopes that were practically ‘1’, which clearly show that there is no
bias in the resulting exposure predictions.

It is important to compare the predictions of our models to the
other ‘state of the art’ prediction models that are available today.

While the various existingmodels have all advanced in the past few
years (including somemodels that use MAIAC data as well), they all
still lack the ability to generate daily predictions for studies of the
acute effects (short term) of air pollution as well as chronic (long
term) effects, which are useful in epidemiologic studies aiming to
estimate both acute and chronic effects of exposure. Sampson et al.
(2013) recently published a universal kriging model using Partial
Least Squares regression for estimating annual PM2.5 concentra-
tions. They present a high accuracy of prediction with an overall R2

Fig. 4. Mean PM2.5 concentrations in each 1 � 1 km grid cell in Boston during 2003 predicted by the AOD models.

Fig. 5. The deviations of the estimated local pollution concentrations at a very fine resolution (200 � 200 m) from the average 1 �1 km grid PM2.5 aggregated over a year (2003) in
Boston.
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of 0.88 and well-calibrated predictive intervals. While the predic-
tion accuracy of this model for long-term exposures is high, this
model (1) does not predict daily and (2) is complex and requires an
enormous number of spatial variables that are not always freely-
available to researchers. In contrast our model presents similar
spatial accuracy (R2 ¼ 0.87), but with the additional advantage of
yielding daily predictions also with very good prediction accuracy
(temporal R2 ¼ 0.87). Hu et al. (2014) published a study estimating
ground-level PM2.5 concentrations in the Southeastern United
States. Similar to our model they used MODIS based MAIAC data
with a two-stage spatial statistical model with meteorological
fields and land use parameters as ancillary variables to estimate
daily mean PM2.5 concentrations. The model was run in south-
eastern USA, for the year 2003. They used cross validation and
predicted for only days with available MAIAC data resulting in an R2

of 0.67 and RMSPE of 3.88 mg/m3. Their models do not yield daily
predictions (in every grid cell on every day) and are less accurate
compared to our presented model (such as cross validated RMSPE
of 3.88 mg/m3 compared to 2.33 mg/m3 in our model). Other models
published recently have all similar issues with lack of highly ac-
curate daily predictions across the study area (Kim et al., 2013; Lin
et al., 2013; Liu et al., 2009; Yanosky et al., 2008; Yap and Hashim,
2013). It is important to note that Beckerman (Beckerman et al.,
2013) recently published results showing that in a Hybrid model
estimating national scale spatio-temporal variability of pm2.5 the
inclusion of satellite based AOD into the LURmodel did not improve
the model. The study though used the older 10 � 10 MODIS data
and generally the cross validated results were lower than our
presented models (R2 ¼ 0.79).

Although the new 1 � 1 km MAIAC data is a considerable
improvement over the previous MODIS 10 � 10 km data (for
example, R2 ¼ 0.83 for our previously published 10 km model
versus R2 ¼ 0.88 in the current MAIAC model, spatial R2 ¼ 0.78
versus R2¼ 0.87), finer scale or less noisy future satellite-based data
could further reduce exposure error bias resulting in larger and
more accurate health effects estimates. Jerrett et al. (2005) have
previously demonstrated how fine-scale variations in PM2.5 are
associatedwith larger health effects than those that vary regionally.
We partly address this limitation in our model by adding our new
local stage model 4 predictions at very fine 200 � 200 m scale that
complements our 1 � 1 km predictions.
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