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Outline 

• Environmental barrier coating (EBC) development: the CMAS relevance 
 

• Some generalized CMAS related failures 
 

• CMAS degradation of environmental barrier coating (EBC) systems: rare 
earth silicates 

– Ytterbium silicate and yttrium silicate EBCs 
– Some reactions, kinetics and mechanisms 

 
• Advanced EBCs, HfO2- and Rare Earth - Silicon based 2700°F+ capable 

bond coats 
 
• Summary 
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NASA Environmental Barrier Coatings (EBCs) and Ceramic 
Matrix Composite (CMC) System Development  

− Emphasize material temperature capability, performance and long-term 
durability- Highly loaded EBC-CMCs with temperature capability of 2700°F 
(1482°C) 

• 2700-3000°F (1482-1650°C) turbine and CMC combustor coatings 
• 2700°F (1482°C) EBC bond coat technology for supporting next generation 

– Recession: <5 mg/cm2 per 1000 h 
– Coating and component strength requirements: 15-30 ksi, or 100- 207 Mpa 
– Resistance to Calcium Magnesium Alumino-Silicate (CMAS) 

2400°F (1316°C) Gen I and Gen II  SiC/SiC 
CMCs 

3000°F+ (1650°C+) 

Gen I

Temperature 
Capability (T/EBC) surface

Gen II – Current commercial
Gen III

Gen. IV

Increase in �T 
across T/EBC

Single Crystal Superalloy

Year

Ceramic Matrix Composite

Gen I

Temperature 
Capability (T/EBC) surface

Gen II – Current commercial
Gen III

Gen. IV

Increase in �T 
across T/EBC

Single Crystal Superalloy

Year

Ceramic Matrix Composite

2700°F (1482�C) 

2000°F (1093°C), PtAl and NiAl bond coats 

Step increase in the material’s temperature capability 

3000°F SiC/SiC CMC airfoil 
and combustor 
technologies 

2700°F SiC/SiC thin turbine 
EBC systems for CMC 

airfoils 

2800ºF 
combustor 
TBC 

2500ºF 
Turbine TBC 2700°F (1482°C) Gen III  SiC/SiC CMCs  
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EBC-CMAS Degradation is of Concern with Increasing 
Operating Temperatures 

− Emphasize improving temperature capability, performance and long-term 
durability of ceramic turbine airfoils 

• Increased gas inlet temperatures for net generation engines lead to significant CMAS -
related coating durability issues – CMAS infiltration and reactions 

Marcus P. Borom et al, Surf. Coat. Technol. 
86-87, 1996  

Current airfoil CMAS attack region - R. 
Darolia, International Materials 
Reviews, 2013 



National Aeronautics and Space Administration 

www.nasa.gov 6 

Calcium Magnesium Alumino-Silicate (CMAS) 
Systems Used in Laboratory Tests 

NASA modified version 
ARFL PTI CMAS 02 

GE/Borom 

Wellman  

Kramer   

Aygun   

Smialek   

Rai   

Braue   

− Synthetic CMAS, modified version (NASA), the Air Force PTI 02 CMAS 
currently being used 

− Saudi Sands used for past turbine TBC studies 
− CMAS SiO2 content typically ranging from 43-49 mole%   
− Collaborations on-going with the Air Force; also planned DLR, ONEA etc 

on Volcanic Ash Composition selections 
ARFL PTI 02 is also used at NASA for CMAS studies 

Fully reacted 
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Thermal Gradient Tests - Thermal Barrier Coating 
Degradations 

―  Coating cyclic failure with CMAS 
 

7YSZ turbine EB-PVD laser rig cyclic 
tested, after 50 hr cyclic test at Tsurface 
1230°C and Tinterface 1170°C 

Steady state laser thermal 
gradient test 
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Thermal Gradient Tests of Infiltrated and Reacted Apatite 
Phase under Cyclic Testing – Thermal Barrier Coating 

Degradations 
―  Coating surface layer spallation in infiltrated or highly reacted apatite phase 

layer in high rare earth dopant TBC systems 
―  Thermal gradient cyclic testing at Tsurface=1 316°F, Tinterface=950°F 

After thermal gradient cyclic 
testing 
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CMAS Related Degradations in EBCs 
− CMAS effects 

• Significantly reduce melting points of the EBCs and bond coats 
• Cause more severe degradations with thin airfoil EBCs  
• CMAS increase EBC diffusivities and permeability, thus less protective as an environmental 

barrier 
• Reduced mechanical properties: such as strength and toughness reductions 
• Leads to grain boundary attack thus disintegrate EBCs  
• CMAS interactions with heat flux, thermal cycling, erosion and thermomechanical fatigue 

Such as yttrium silicate 

EBC and degradations 

EBC 

CMAS 

CMAS induced melting and failure 
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Phase diagrams showing yttrium di-silicate reactions 
with SiO2, NaO and Al2O3  

10 

CMAS Related Degradations in EBCs - Continued 
− CMAS effects on EBC temperature capability 

• Silicate reactions with NaO2 and Al2O3 silicate 
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EBC-CMAS Degradation under Thermal Gradients 
− Effect of CMAS concentration on EBC-CMC system cyclic durability 

• CMAS reacts with high SiO2 activity layer and reducing melting point 
• Low tough reaction layers such as apatite phases 
• Interactions with heat flux, thermal cycling, erosion and thermomechanical fatigue 

EB-PVD ZrO2 

HfO2-Yb2O3-
Aluminosilicate  
Yb2Si2O7 
Si 

More severe 
degradation and 
delamination: 
Tsurface 
1500°C 
Tinterface 
1316°C 
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NASA EBC Systems 

12 

NASA EBC Systems 
• HfO2 -RE2O3-SiO2/RE2Si2-xO7-2x environmental barrier systems 

• Controlled silica content and transition element and rare earth dopants to improve EBC 
stability and toughness 

• Develop HfO2-Si based + X (dopants) and more advanced rare earth composite 
compound composition systems for 2700°F+ long-term applications 

• Develop prime-reliant composite EBC-CMC interfaces for fully integrated EBC-bond 
coat systems 

• RE2O3-SiO2-Al2O3 Systems 
• Develop advanced NASA high toughness alternating layered systems 
• Advanced 1500°C bond coats 
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Strength Results of Selected EBC and EBC Bond Coats 
- CMAS Reaction resulted in Strength Reduction in Silicates 

Selected EBC systems 
– HfO2-RE-Si, along with co-doped rare earth silicates and rare earth alumino-

silicates , for optimized strength, stability and temperature capability 
– CMAS infiltrations can reduce the strength 

13 
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Effect of CMAS Reaction on Toughness of HfO2-Si Bond Coat 
and Yb2Si2O7 EBC 

– HfO2-Si bond coat  and ytterbium di-silicate fracture toughness studied 
• HfO2-Si toughness >4-5  MPa m1/2 achieved at higher temperature 
• Annealing heat treatments at 1300°C improved lower temperature toughness  
• CMAS effect unclear due to the compounded effects of possible 1350°C CMAS reaction 

degradation and annealing 
– Ytterbium silicate EBC toughness may also be reduced due to CMAS reactions 

• More measurements are needed 
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HfO2-Si illustrating notch distortion due to 
CMAS exposure at 1350°C for 50 hrs 

Yb2Si2O7 notch after CMAS exposure at 1350°C 
for 50 hrs 
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EBC CMAS Surface Reactions 

– Ytterbium and yttrium silicate reactions and dissolutions in CAMS 
 

15 

Ytterbium silicate surface CMAS melts: 50 hr 
1300°C 

Ytterbium silicate surface CMAS melts: 5 hr 
1500°C 

Yttrium silicate surface CMAS melts: 50 
hr 1300°C 

Yttrium silicate surface CMAS melts: 5 hr 
1500°C 
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EBC Reacted Apatite Phases under Long-Term Testing at 
1500°C – Ytterbium silicate EBC 

– Non stoichiometric characteristics of the CMAS – rare earth silicate reacted 
apatite phases

– Difference in partitioning of ytterbium vs. yttrium in apatite 
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Composition in apatite (100 hr): 
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EBC Reacted Apatite Phases under Long-Term Testing at 
1500°C: Yttrium Silicate EBC 

– Non stoichiometric characteristics of the CMAS – rare earth silicate reacted 
apatite phases

– Difference in partition of ytterbium vs. yttrium 
• Average AEO/RE2O3 ratio ~ 0.68 for ytterbium silicate – CMAS system 
• Average AEO/RE2O3 ratio ~ 0.22 for yttrium silicate – CMAS system 
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Composition in apatite (100 hr): 
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Stoichiometry of the Reacted Apatite Phases under Long-
Term Testing at 1500°C 

– Non stoichiometric characteristics of the CMAS – rare earth silicate reacted 
apatite phases – up to 200 hr testing

– Difference in partitioning of ytterbium vs. yttrium in apatite 
• Average AEO/RE2O3 ratio ~ 0.68 for ytterbium silicate – CMAS system 
• Average AEO/RE2O3 ratio ~ 0.22 for yttrium silicate – CMAS system 
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AEO–RE2O3–SiO2 phase diagram 

Ahlborg and Zhu, Surface & Coatings 
Technology 237 (2013) 79–87. 

Ytterbium 
system 

Yttrium 
system 
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Partitioning of Rare Earths in Apatite in Geo Systems: Medium 
Ionic Rare Erath Reported higher Partitioning Coefficients 

– Reported partition of Rare Earths in Apatite  
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YUANMING PAN et al, Non-Henry’s Law behavior of REE partitioning between 
fluorapatite.., Geochimica et Cosmochimica Acta, Vol. 67, No. 10, pp. 1889–1900, 2003 

Stefan Prowatke et al, Trace element partitioning between apatite and silicate melts., 
Geochimica et Cosmochimica Acta 70 (2006) 4513–4527 

Yb 
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Effect of CMAS Reactions on Grain Boundary Phases 

– CMAS and grain boundary phase has higher Al2O3 
content (17-22 mole%)

• Eutectic region with high Al2O3 content ~1200°C melting point 
• Loss of SiO2 due to volatility 
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200 hr, 1500°C 

NASA 
modified 
CMAS 

Grain 
boundary final 
phase – low 
SiO2 and high 
Alumina 
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Rare Earth Apatite Grain Growth 

– Grain growth of apatite phase at 1500°C at various times 
 

 50 hr 150 hr 200 hr 

50 hr 200 hr 150 hr 
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Effect of CMAS Reaction on EBC Cyclic Durability in Thermal 
Gradient Laser Steam Rig 

22 

- Ytterbium silicate EBC Yb2Si2O7/Si on CMC 
- CMAS fully infiltrated 
- Failed after 40 cycles (1hr cycle) under combined laser thermal gradient  

CMAS+steam at 1400-1500°C 
- Accelerated recession leading to cracking and porous coatings 

Tsurface 

Tback 

Coating spalled after 40 hr test  

Failed coating surface 
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CMAS 
Infiltration, 
air

HfO2-Rare Earth Silicate Composite EBC with Yb-Si Bond 
Coat Systems 

– Generally showed good resistance in CMAS and CMAS-steam tests 

23 

- Composite system for achieving balanced CMAS resistance 
and water vapor stability at 1500°C 

- Compositions being further optimized 

Specimen after testing 

Back surface 

Coating surface 
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HfO2-Rare Earth Silicate Composite EBC Systems - Continued  
– Silica loss observed in the concentrated CMAS reacted regions 

24 

Rare earth silicate - 
apatite phase rich 
phase region 

HfO2 rich phase 
region 

CMAS concentrated 
region, SiO2 content 
20-30 mol% (SiO2 
loss in the steam 
water vapor tests) 

Coating surface 

Cross-section 
(surface region) 

Coating surface 
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High Stability Rare Earth Silicon Bond Coat with High Melting 
Point Coating Compositions 

– Thermogravimetric analysis (TGA) in dry O2 at 
1500°C, tested up to 500 hr 

– “Protective” scale of rare earth di-silicate formed 
in oxidizing environments 

– Furnace cyclic test life evaluated at 1500°C 
 

SiC 

RESi(O) 

RE2Si2O7-x 

40 �m 

TGA results vs. Si content 

FCT life of RE-Si coatings  
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High Stability and CMAS Resistance Observed from the Rare 
Earth Silicon High Melting Point Coating Compositions 

– Demonstrated CMAS resistance 
of NASA RESi System at 
1500°C, 100 hr 

– Silica-rich phase precipitation 
– Rare earth element leaching into 

the melts (low concentration 
~9mol%) 
 
 Area A 

Area B 

Surface side of the 
CMAS melts 
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CMAS Reaction Kinetics in Bond Coats  

27 

CMAS Partitioning on RE-Si 
bond coat, 1500°C, 100hr 

RE incorporations 

– SiO2 rich phase partitioning in the CMAS melts 
– Rare earth content leaching low even at 1500°C 
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Turbine TEBC Life Aspects due to CMAS Degradations and Other 
Mechanisms 

• Reduced cyclic life due to the CMAS infiltration 
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Summary 
• CMAS degradation remains a challenge for emerging turbine engine 

environmental barrier coating – SiC/SiC CMC component systems 
• CMAS leads to lower melting point of EBC and EBC bond coat 

systems, and accelerated degradations 
• NASA advanced HfO2-Si and, in particular Rare Earth - Silicon based 

bond coat compositions showed promise for CMAS resistance at 
temperatures up to 1500°C

• We have better understanding of CMAS integration with rare earth 
silicates, and in controlling the compositions for CMAS resistance while 
maintaining high toughness 

• We are developing better standardized CMAS testing, and working on 
CMAS induced life reductions, helping validate life modeling  


