National Aeronautics and Space Administration

Mars, Phobos, and Deimos Sample Return Enabled by ARRM Alternative Trade Study Spacecraft

Jacob Englander Matthew Vavrina Gabe Merrill Min Qu Bo Naasz

S 0 LO O \bigcirc

NAVIGATION & MISSION DESIGN BRANCH NASA GSFC

www.nasa.gov

Introduction to the Asteroid Robotic Redirect Mission (ARRM)

- The Asteroid Robotic Redirect Mission (ARRM) is a mission concept to retrieve a large sample of asteroidal material, either:
 - Option A: a small Near-Earth Asteroid (NEA) via inflatable bag
 - Option B: or a piece of a large NEA via articulated grippers
- ARRM will also test large-scale solar arrays and electric propulsion systems
- ARRM is intended to be a stepping stone to the very large propulsion and power systems that will be needed for human exploration of the solar system

Why ARRM to Mars?

- Mars sample return has been a tantalizing but unattainable goal since the beginning of planetary exploration
- A very interesting precursor mission might be to collect samples from Deimos or Phobos
 - These bodies are windows into both Mars itself and into the primitive state of the solar system
- Previous sample return studies have focused on retrieving small amounts of material, but what if a large multi-ton sample could be returned?
- The ARRM Option B spacecraft, with its articulated grippers and landing legs, could also be used to retrieve a large sample from Deimos or Phobos
- Alternatively, the same spacecraft could be used to retrieve a sample container launched from the surface of Mars

Guiding Question

 "How much mass can we retrieve from Deimos, Phobos, or low-Mars orbit (LMO)?"

Mission Architecture

- Launch from Earth on either Falcon Heavy (FH) or Space Launch System (SLS)
 - FH launch is followed by a double lunar flyby maneuver which results in ejection from the Earth-Moon system with a C3 of 2 km²/s²
 - SLS directly delivers the spacecraft to a heliocentric trajectory with a C3 of up to 27 km²/s²
- Spacecraft travels to Mars and arrives at the sphere of influence (SOI) with C3 of 0 km²/s²
- Spacecraft descends to the orbit of interest (Deimos, Phobos, LMO)
- Spacecraft acquires sample (stay time of 200-600 days)
- Spacecraft ascends to the Martian SOI
- Spacecraft returns to Earth-Moon system with arrival C3 of 2 km²/s²
- Earth flybys on the way to or from Mars are considered

Trajectory Design Assumptions

Power Assumptions			
BOL Power at 1 AU	51 kW		
Array performance model	TJGA		
Array decay rate	1% per year		
Spacecraft bus power	0.5 kW		
Power Margin	15%		
Propulsion Assumptions			
Thruster model	Fixed I_{sp} and system efficiency		
Input power bounds	0-40 kW		
Thruster performance	2000 s I_{sp} with 55% efficiency		
	3000 s I_{sp} with 60% efficiency		
Duty cycle	90%		
Propellant margin	11 %		
Launch Assumptions			
Maximum departure hyperbolic excess energy (C3)	$2 \ km^2/s^2$ (FH)		
	27 km^2/s^2 (SLS)		
Maximum launch mass	13153 kg (FH with 2000 s I_{sp})		
	13169 kg (FH with 3000 s I_{sp})		
	16072 kg (SLS)		
Declination of Launch Asymptote (DLA) bounds	$+/-28.5^{\circ}$		
Post-launch forced coast	30 days (SLS)		
	none (FH)		
Mars stay assumptions			
Desired altitude	$5844 \ km$ (Phobos)		
	20063 km (Deimos)		
	400 (LMO)		
Stay time at desired altitude	200-600 days		
Earth Return Assumptions	·		
Maximum arrival C3	$2.0 \ km^2/s^2$		
Post-mission Δv	$100 \ m/s$		
Minimum spacecraft final mass	5170 kg (2000 s I_{sp} case)		
-	5020 kg (3000 s I_{sn} case)		

Full-Mission Optimization for Sample Return Problems

- When we first began this project:
 - We modeled the Earth-Mars and Mars-Earth phases of the mission separately
 - We varied the pickup mass and stay time at Mars parametrically
 - We computed the descent and ascent spiral flight time and propellant mass in post-processing
- But is there a better way? The real question is how much mass can we bring home – can the optimizer operate on pickup mass directly?
- We constructed a full sample-return model which captures the relationship between pickup mass and flight time
- The combination of variable pickup mass and fully-modeled descent and ascent spirals is highly complex – "time is mass and mass is time"
- The full-mission sample return optimization framework presented here is implemented in the Evolutionary Mission Trajectory Generator (EMTG), Goddard's open-source interplanetary trajectory optimization tool

Multiple Gravity Assist with Low-Thrust (MGALT) via the Sims-Flanagan Transcription

- Break mission into phases. Each phase starts and ends at a body.
- Sims-Flanagan Transcription
 - Break phases into time steps
 - Insert a small impulse in the center of each time step, with bounded magnitude
 - Optimizer Chooses:
 - Launch date
 - For each phase:
 - Initial velocity vector
 - Flight time
 - Thrust-impulse vector at each time step
 - Mass at the end of the phase
 - Terminal velocity vector
- Assume two-body force model; propagate by solving Kepler's problem
- Propagate forward and backward from phase endpoints to a "match point"
- Enforce nonlinear state continuity constraints at match point
- Enforce nonlinear velocity magnitude and altitude constraints at flyby

NAVIGATION & MISSION DESIGN BRANCH, CODE 595 NASA GSEC

Spiral Trajectory Modelling at Mars via Edelbaum's Method

Assume:

- The initial and final orbits are circular and coplanar
- The thrust available to the spacecraft is relatively low
- The thruster is operated continuously during the spiral orbit transfer and thrust is always tangent to the velocity vector

$$\begin{split} \Delta v_{Edelbaum} &= \sqrt{\frac{\mu_{planet}}{r_0}} - \sqrt{\frac{\mu_{planet}}{r_f}} \\ m_{propellant} &= m_{before-spiral} \left(1 - \exp\left(-1000 \frac{\Delta v_{Edelbaum}}{I_{sp}g_0}\right) \right) \\ t_{Edelbaum} &= \frac{m_{propellant}}{\dot{m}} \end{split}$$

• Note: For ascent spirals, $m_{before-spiral}$ is dependent on any mass added at the bottom of the gravity well, hence "time is mass and mass is time"

Rendezvous Sample-Return with Fixed Pickup Mass

This is the standard Sims-Flanagan Jacobian sparsity pattern for a two-phase mission with bounded flight time, a bounded return date, and a dry mass constraint

Sample Return with Fixed Pickup Mass and Low-Thrust Spiral Modeling

- Dependency of flight time constraint on the launch date (launch date influences arrival at Mars, which influences spiral time, which influences flight time)
- Dependency of Earth return date constraint on outbound flight duration

Sample Return with Variable Pickup Mass and Low-Thrust Spiral Modeling

- Dependency of return-phase match point constraints on pickup mass
- Dependency of Earth return date and total flight time on pickup mass
- Dependency of dry mass constraint on pickup mass due to its affect on propellant used for the ascent spiral

Nonlinear Programming via SNOPT

Minimize f(x)Subject to: $x_{lb} \le x \le x_{ub}$ $c(x) \le 0$ $Ax \le 0$

where:

 x_{lb} , x_{ub} are lower and upper bounds on the decision variables

c(x) is a vector of nonlinear constraints

Ax is a vector of linear constraints

- We use SNOPT as our NLP problem solver
- But all NLP solvers require an initial guess...

Monotonic Basin Hopping

Results

		Earth system return year			
		(NLT 12/31/YYYY)			
£		2024	2025	2026	2027
Earth system departure yea (NET 9/23/YYY	2018	1.936	9.410	9.826	10.413
	2019	1.932	8.315	8.061	9.987
	2020	-	0.695	-	8.685
	2021	-	-	-	8.479

Best performance for Deimos sample return on FH

Earth system return year

		(NLT 12/31/YYYY)			
ъ£		2024	2025	2026	2027
E arth sy stem departure y ea (NET 9/23/YY	2018	-	5.249	5.331	9.138
	2019	-	3.668	4.551	9.164
	2020	-	-	-	5.407
	2021	-	-	-	4.840

Best performance for Phobos sample return on FH

	Earth system return year (NLT 12/31/YYYY)				
3.1		2024	2025	2026	2027
Earth system departure yea (NET 9/23/YYY	2018	-	1.280	1.323	6.225
	2019	-	1.101	0.918	6.224
	2020	-	-	-	0.588
	2021	-	-	-	0.889

Best performance for LMO sample return on FH

An interesting example: LMO Sample Return on FH, 2022-2027

Another interesting example: Deimos Sample Return on FH, 2019-2025 with Earth flyby

NAVIGATION & MISSION DESIGN BRANCH, CODE 595 NASA GSFC (a.i. solutions

Conclusions

- We constructed a full-mission optimization framework for sample return problems which includes both variable pickup mass and low thrust descent/ascent spiral modeling
- Our approach allows pickup mass to be optimized directly and captures the dependencies of all of the problem constraints on the pickup mass
- This technique is efficient and reduces the human work-load necessary to design sample return missions without requiring large parametric runs
- The complexity of the problem increases, but this complexity is well-handled by the autonomous optimization algorithms in EMTG
- Using this technique, we found viable applications of the ARRM spacecraft to Deimos, Phobos, and Mars surface sample return in the 2020s

Thank You

EMTG is available open-source at https://sourceforge.net/projects/emtg/

