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Introduction to the Asteroid Robotic 
Redirect Mission (ARRM)
� The Asteroid Robotic Redirect Mission (ARRM) is a mission concept to 

retrieve a large sample of asteroidal material, either:
- Option A: a small Near-Earth Asteroid (NEA) via inflatable bag
- Option B: or a piece of a large NEA via articulated grippers

� ARRM will also test large-scale solar arrays and electric propulsion 
systems

� ARRM is intended to be a stepping stone to the very large propulsion 
and power systems that will be needed for human exploration of the 
solar system
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Why ARRM to Mars?

� Mars sample return has been a tantalizing but unattainable goal since 
the beginning of planetary exploration

� A very interesting precursor mission might be to collect samples from 
Deimos or Phobos
- These bodies are windows into both Mars itself and into the primitive 

state of the solar system
� Previous sample return studies have focused on retrieving small 

amounts of material, but what if a large multi-ton sample could be 
returned?

� The ARRM Option B spacecraft, with its articulated grippers and landing 
legs, could also be used to retrieve a large sample from Deimos or 
Phobos

� Alternatively, the same spacecraft could be used to retrieve a sample 
container launched from the surface of Mars
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Guiding Question

� “How much mass can we retrieve from Deimos, Phobos, or low-Mars 
orbit (LMO)?”
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Mission Architecture

� Launch from Earth on either Falcon Heavy (FH) or Space Launch 
System (SLS)
- FH launch is followed by a double lunar flyby maneuver which results 

in ejection from the Earth-Moon system with a C3 of 2 km2/s2

- SLS directly delivers the spacecraft to a heliocentric trajectory with a 
C3 of up to 27 km2/s2

� Spacecraft travels to Mars and arrives at the sphere of influence (SOI) 
with C3 of 0 km2/s2

� Spacecraft descends to the orbit of interest (Deimos, Phobos, LMO)
� Spacecraft acquires sample (stay time of 200-600 days)
� Spacecraft ascends to the Martian SOI
� Spacecraft returns to Earth-Moon system with arrival C3 of 2 km2/s2

� Earth flybys on the way to or from Mars are considered
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Trajectory Design Assumptions
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Full-Mission Optimization for Sample 
Return Problems
� When we first began this project:

- We modeled the Earth-Mars and Mars-Earth phases of the mission separately
- We varied the pickup mass and stay time at Mars parametrically
- We computed the descent and ascent spiral flight time and propellant mass in 

post-processing
� But is there a better way? The real question is how much mass can we bring 

home – can the optimizer operate on pickup mass directly?
� We constructed a full sample-return model which captures the relationship 

between pickup mass and flight time
� The combination of variable pickup mass and fully-modeled descent and ascent 

spirals is highly complex – “time is mass and mass is time”
� The full-mission sample return optimization framework presented here is 

implemented in the Evolutionary Mission Trajectory Generator (EMTG), 
Goddard’s open-source interplanetary trajectory optimization tool
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� Break mission into phases. Each phase starts and ends at a body.
� Sims-Flanagan Transcription

- Break phases into time steps
- Insert a small impulse in the center of each

time step, with bounded magnitude
- Optimizer Chooses:
� Launch date

- For each phase:
� Initial velocity vector
� Flight time
� Thrust-impulse vector at each time step
� Mass at the end of the phase
� Terminal velocity vector

� Assume two-body force model; propagate by solving Kepler’s problem
� Propagate forward and backward from phase endpoints to a “match point”
� Enforce nonlinear state continuity constraints at match point
� Enforce nonlinear velocity magnitude and altitude constraints at flyby

Multiple Gravity Assist with Low-Thrust 
(MGALT) via the Sims-Flanagan Transcription
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Spiral Trajectory Modelling at Mars via 
Edelbaum’s Method
� Assume:

- The initial and final orbits are circular and coplanar
- The thrust available to the spacecraft is relatively low
- The thruster is operated continuously during the spiral orbit transfer and thrust 

is always tangent to the velocity vector

� Note: For ascent spirals,  ��������	
��� is dependent on any mass added at the 
bottom of the gravity well, hence “time is mass and mass is time”
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Rendezvous Sample-Return with Fixed 
Pickup Mass
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This is the standard Sims-Flanagan Jacobian sparsity pattern for a two-phase 
mission with bounded flight time, a bounded return date, and a dry mass constraint
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� Dependency of flight time constraint on the launch date (launch date 
influences arrival at Mars, which influences spiral time, which influences 
flight time)

� Dependency of Earth return date constraint on outbound flight duration

Sample Return with Fixed Pickup Mass and 
Low-Thrust Spiral Modeling
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Sample Return with Variable Pickup Mass 
and Low-Thrust Spiral Modeling

� Dependency of return-phase match point constraints on pickup mass
� Dependency of Earth return date and total flight time on pickup mass
� Dependency of dry mass constraint on pickup mass due to its affect on 

propellant used for the ascent spiral
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Nonlinear Programming via SNOPT
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Minimize � �

Subject to:
�� � � � ���

� � � �

�� � �

where:
��, ��� are lower and upper bounds on the decision variables

� � is a vector of nonlinear constraints
�� is a vector of linear constraints

� We use SNOPT as our NLP problem solver
� But all NLP solvers require an initial guess…
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Monotonic Basin Hopping
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Results
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Best performance for Deimos 
sample return on FH

Best performance for Phobos
sample return on FH

Best performance for LMO 
sample return on FH
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An interesting example:
LMO Sample Return on FH, 2022-2027
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Another interesting example: 
Deimos Sample Return on FH, 2019-2025 with Earth flyby
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Conclusions

� We constructed a full-mission optimization framework for sample return 
problems which includes both variable pickup mass and low thrust 
descent/ascent spiral modeling

� Our approach allows pickup mass to be optimized directly and captures the 
dependencies of all of the problem constraints on the pickup mass

� This technique is efficient and reduces the human work-load necessary to 
design sample return missions without requiring large parametric runs

� The complexity of the problem increases, but this complexity is well-handled by 
the autonomous optimization algorithms in EMTG

� Using this technique, we found viable applications of the ARRM spacecraft to 
Deimos, Phobos, and Mars surface sample return in the 2020s
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Thank You

EMTG is available open-source at 
https://sourceforge.net/projects/emtg/
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