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ABSTRACT

We report on the status and development of polarization-sensitive detectors for millimeter-wave applications.
The detectors are fabricated on single-crystal silicon, which functions as a low-loss dielectric substrate for the
microwave circuitry as well as the supporting membrane for the Transition-Edge Sensor (TES) bolometers. The
orthomode transducer (OMT) is realized as a symmetric structure and on-chip filters are employed to define
the detection bandwidth. A hybridized integrated enclosure reduces the high-frequency THz mode set that can
couple to the TES bolometers. An implementation of the detector architecture at Q-band achieves 90% efficiency
in each polarization. The design is scalable in both frequency coverage, 30-300 GHz, and in number of detectors
with uniform characteristics. Hence, the detectors are desirable for ground-based or space-borne instruments
that require large arrays of efficient background-limited cryogenic detectors.
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1. INTRODUCTION

Millimeter-wave observations are extremely valuable for the study of cosmic evolution. For instance, the Sunyaev-
Zeldovich effect observed below the arcminute scale is a powerful tool for probing galaxy cluster dynamics and
structure growth as a function of redshift. Above the degree scale, the polarization of the Cosmic Microwave
Background (CMB) is potentially the only known source accessible to measurements that is sensitive to the
Big Bang initial conditions. With this perspective, the recent BICEP2 results present an exciting future for
inflation cosmology,1 but also highlight the importance of distinguishing the cosmological signal from sources
such as polarized galactic foregrounds.2,3 Hence, the relatively low source surface brightness at millimeter
wavelengths poses strict requirements on an instrument and detection system, whether in a sub-orbital or space-
based platform. Specifically, an instrument capable of multi-wavelength operation with control over potential
systematics (e.g. symmetric beam with control over side-lobes, stray light mitigation), and high stability (low
1/f) is required. Ideally, the detectors in the focal-plane should be background-limited, efficient, and scalable
with highly uniform characteristics across the focal-plane array.

In this paper, we report on progress of Q-band (fc = 26.4 GHz; operational bandwidth 29-50 GHz) and
W-band (fc = 59.1 GHz; operational bandwidth 65-112 GHz) feedhorn-coupled polarization-sensitive detectors
designed for CMB observations. The detectors are fabricated on single-crystal silicon and designed with a high
degree of symmetry at the circuit level that maximizes the coupling of the sky signal to the Transition-Edge Sensor
(TES) bolometers for each polarization channel. The detectors are designed for the ground-based Cosmology
Large Angular Scale Surveyor (CLASS) telescope.4 CLASS will target detection of the low-multipole reionization
bump theoretically predicted in the B-mode angular power spectrum, where the signal from gravitational lensing
is sub-dominant to that of inflation. To remove galactic foregrounds, CLASS will observe at four frequency bands
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with center frequencies of 38, 93, 148, and 217 GHz. Further details on the CLASS instrument4 and the 38 GHz
focal plane development5 can be found in these proceedings.

We emphasize that the scalability, uniformity, efficiency, wide bandwidth, and noise properties of the detec-
tors described here are highly desirable for space- and balloon-borne instruments. The architecture has been
demonstrated at Q-band, is currently being developed for two W-band receivers each with 259 dual-polarization
detectors,4 and can be implemented at up to 300 GHz.

2. PROGRESS ON Q-BAND DETECTORS

Figure 1(a) shows a CLASS Q-band detector chip. Fabrication of the detectors has been described in detail
in Ref. 6. One of the key design features of the detectors is the silicon substrate, which functions both as
the dielectric for the microwave circuitry, as well as the supporting membrane for the TES bolometers and
waveguide coupling probes. The single-crystal silicon is a float-zone-refined p-type boron doped layer with a
room temperature resistivity of 5 kΩ-cm and a carrier density of 5×1011 cm−3.

There are several advantages to the use of single-crystal silicon. For the microwave circuitry, silicon can be
micro-mashined to form a low loss dielectric substrate. An upper limit on the loss-tangent of high resistivity
silicon at 4.2 K and 150 GHz7 is ∼7×10−5. In comparison, the loss-tangent of silicon nitride estimated from
room-temperature measurements8 indicates at least a factor of 2-4 higher loss in this material9 when compared
to silicon. From the perspective of the bolometer thermal design, the single-crystal silicon offers the advantage
that the specific-heat and thermal conductivity can be effectively modeled from theory, and reliably obtained in
practice given careful design and fabrication techniques.10 For example, the specific heat of the silicon membrane
in our devices can be estimated from the Debye equation, and is found to be small compared to the specific heat
of normal metals at 0.15 K. We have successfully used Pd to set the total heat capacity of the CLASS detectors
to 2.5 pJ/K with a 400 nm thick layer.10 Single-crystal silicon does not appear to exhibit excess heat capacity,
in contrast to amorphous silicon nitride.11,12

The thermal conductance requirement for CLASS can be reliably obtained with a ballistic silicon beam 10
μm long and 13 μm wide (see Fig. 1 in Ref. 10, and Sec. 3). A uniformity of ±8% was reported in Ref. 10
for detectors fabricated across two wafers, and the latest results indicate a uniformity of ±5% for 36 detectors
sampled across three wafers.5 The definition of the thermal conductance with a ballistic-dominated silicon beam
has now approached an engineering solution, where the required thermal conductance is obtained with a high
degree of reliability given the single-crystal material, beam geometry, and appropriate fabrication technique. The
remaining 5% variability in conductance is associated with the surface roughness of the beams that support the
Nb microwave and DC bias leads.10 The silicon surface is roughened during dry etch steps in the fabrication chain,
the statistical characteristics of which can vary significantly across a wafer and between wafers. In prototype
devices where the thermal conductance was solely defined by long beams (in which phonon mean-free-path is
short compared to the beam length), the non-uniformity in surface roughness caused a factor of 5 variability in
thermal conductance.10 The effects of surface roughness on G have also been observed in silicon nitride beams.13

We have measured the efficiency of the Q-band microwave circuitry with a cryogenic calibrator described
in Ref. 14. Figure. 1(b) shows the detector chip when hybridized to a metalized enclosure fabricated from a
stack of silicon wafers. This enclosure mitigates the coupling of multi-moded high-frequency radiation that can
potentially couple to the detectors through unintended paths in the silicon dielectric and free space. A quarter-
wave backshort for the OMT probes is an element in the micro-machined silicon hybrid assembly. Preliminary
measurements indicate a 90% efficiency in-band for both channels of the Q-band polarimeter. This estimate
is based on the measured band edges that are consistent with high-frequency finite-element simulations of the
band-definition filter.15 The detector response to the calibrator thermal power is linear in the 3-8 K temperature
range, which suggests the microwave techniques employed for the reduction of high-frequency radiation coupling
to the TES bolometers are effective to greater than 500 GHz. The microwave techniques we have employed were
briefly described in Ref. 16, and will be detailed extensively in a future paper.
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Figure 1. (a) Photograph of a feedhorn-coupled Q-band detector chip. The symmetry in the microwave circuit enables
broadband operation. (b) The detector chip after hybridization to the metallic enclosure, which functions as a microwave
tight package that prevents high-frequency radiation from coupling to the TES bolometers. The quarter-wave backshort
for the OMT probes is part of the enclosure.

3. DESIGN OF W-BAND DETECTORS

The microwave design of the W-band detectors utilizes planar circuit elements similar to those employed at
Q-band. The most notable difference between the architecture at the different frequencies is in the packaging of
the detectors at the focal plane. The CLASS telescopes share the same optical design, with diffraction-limited
feedhorns placed at the focal plane of each receiver.4 The throughput of each telescope, or étendue = AΩ, is
equal to λ2 for a single mode of the optical system. Given a constant beam solid angle, the area of the feedhorn
aperture, and therefore the footprint of each detector, scales with λ2 at the focal plane. Ultimately, the feedhorn
shape and size is optimized17 for low cross-polarization, and high instrument sensitivity.4 For the CLASS W-
band receivers, the required number of feedhorn-coupled detectors (per receiver) can be packaged into seven
hexagonal monolithic arrays each with 37 dual-polarization detectors.

Figure 2(a) is a sketch of a W-band array fabricated on a 100 mm silicon-on-insulator wafer with a single-
crystal silicon device layer 5 μm thick. The array is fabricated using the same lithographic techniques employed
for the fabrication of the Q-band detectors.6 The polarization of the sky signal is separated with an orthomode
transducer (OMT), which consists of radial probes that couple each polarization to a magic-tee18 (180◦ hybrid)
through via-less crossovers.19 These components utilize the duality between microstrip and slotline20 to realize
broad bandwidth operation, low return loss, and high isolation for the appropriate modes. The OMT probes
couple directly to a circular waveguide TE©

11 mode. The symmetry in the overall design and in each microwave
component enables broadband operation over an octave from the cut-off frequency of the dominant mode.
The design is flexible and enables use of the full waveguide bandwidth for space-borne or other applications
as appropriate. For a sub-orbital platform, additional filters can be used to avoid atmospheric lines that can
saturate the detectors.4 Figure 2(b) shows the modeled response for the OMT circuit and band definition of the
reactive filter employed for the W-band focal plane of the CLASS instrument. After the band definition filter, a
reactive low-pass filter rejects unwanted signals from ∼115 GHz up to the superconducting gap frequency of Nb
at ∼700 GHz. Above this frequency, signals are attenuated by the resistive properties of the planar transmission
lines.



Nb leads

TES V
TES H

Dark TES

Bond pads

Thru holes for 
    Kinematic mount

Circular guide with
    OMT Probes on Si layerDetector Unit

90mm

(a)

50 100 150
0

0.2

0.4

0.6

0.8

1

Frequency (GHz)

T
ra

ns
m

is
si

on

OMT
OMT+CLASS Filter

(b)

Figure 2. (a) Design of a W-band monolithic polarimeter array. The array is fabricated from a single silicon-on-insulator
wafer, and consists of 37 feedhorn-coupled detectors. (b) Full-wave simulation of an OMT (red line) and band-definition
filter (blue line) response for a W-band polarimeter. The bandwidth of the reactive filter is designed to meet the
requirements of the CLASS instrument.4

To control radiative coupling to the bolometers, and reduce losses by reciprocity, a metalized enclosure is
hybridized to the monolithic array as shown in Fig. 3(a). The enclosure is a stack of degenerately-doped silicon
wafers that includes a quarter-wave backshort for the probe antennas of each detector unit in the array. The
fabrication of the enclosure is similar to that utilized for the individual Q-band detectors that has been described
in Ref. 21. The material choice and geometry of the metalized enclosure is designed to limit free-space high-
frequency radiation coupling to the bolometers. For the in-band radiation, the enclosure forms a cap over the
TES membranes that prevents cavity resonances. For the out-of-band multi-moded radiation, the microwave
transmission and DC bias lines to the TES are boxed to form a natural waveguide high-pass filter with a cut-off
frequency above ∼ 1 THz. The residual (stray) radiation coupled into the silicon dielectric is attenuated by a
thin film resistive coating (5 Ω/�). Residual in-band radiation present in the sensor enclosure is absorbed by
patterning this coating to achieve 150 Ω/� structure on the dielectric substrate.

The planar transmission line design rules and fabrication process employed enable control over non-ideal
circuit responses. Particular attention has gone into limiting parasitic responses in- and out-of-band. When con-
sidering surface wave losses, the substrate thickness h/λ0 (where h = 5 μm) is small and the loss is negligible up
to 5 THz, where the first synchronous coupling of the dielectric TM0 and quasi-TEM mode of microstrip occurs.22

In terms of radiation loss, the contribution from a slotline is proportional to the square of the slot width-to-guide
wavelength ratio, and can be effectively minimized with microwave techniques that can be implemented within
the micro-machining tolerances, for example, by simply reducing the slot width. Given substrate thickness and
conductor widths are much smaller than the operating free-space wavelength, radiation loss from discontinuities
in the circuit is a subdominant term. With these scaling laws in mind, the planar circuit design employed here
can be successfully implemented at up to 300 GHz. It is worth noting that the circuit implementation at the
lower frequency of Q-band is the most challenging given the greater required rejection bandwidth of out-of-band
radiation.

For the W-band monolithic array, square pillars with 4-fold rotational symmetry are lithographically machined
in the silicon handle layer (Fig. 3(a)). Once the array is in contact with, or in proximity to the focal plane
baseplate, a photonic choke-joint (PCJ) is formed that creates a virtual short at the waveguide interface.23 The
PCJ allows for the thermally mismatched layers to be in contact without the need for a mechanically stiff joint.
A kinematic mount4 is used to meet the appropriate requirements on the vertical separation between the array
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Figure 3. (a) The W-band monolithic array is hybridized with a metalized enclosure that encapsulates the whole array.
In this sketch, only one feedhorn and detector is shown in cross-section for simplicity. (b) Photograph of a W-band TES
bolometer. The thermal conductance of the TES to the bath is defined by the ballistic beam. The four Pd layers define
the heat capacity of the TES. The diffusion-dominated beams merely support the TES DC bias leads and have a negligible
contribution to the total thermal conductance.

and base plate for the proper function of the PCJ.

For the W-band monolithic arrays, it is essential to have uniformity in detector characteristics across a wafer.
Uniformity in thermal conductance G and critical temperature Tc of the TESs ensures that all of the detectors
in an array can be biased in a single chain. The latter is not a strict requirement for an array, but simplifies
readout of the detectors in an instrument with multiplexing capability. In terms of G, the uniformity of the Q-
band detectors is excellent,5 ±5% standard deviation at 150 pW/K. For the W-band detectors, we have reduced
the number of diffusion-dominated beams by a factor two, and the ballistic-dominated beam that defines the
conductance is now supporting the microwave bias line to the TES as shown in Fig. 3(b). The length of the
diffusion-dominated beams has been increased to reduce the effect from these beams on the final conductance.
Preliminary measurements indicate that the total thermal conductance is 248 pW/K at 150 mK, a value that
is within the predicted range for the ballistic beam.10 From extensive measurements of the Q-band detectors,5

the expected percentage deviation in Tc is ±2% across a wafer. Combined with the variance in G, the expected
percentage deviation in the saturation power is ±10%, a level of uniformity that is acceptable for the multiplexing
requirements.

4. CONCLUSION

We have described the design of Q- and W-band detectors suitable for background-limited operation in space
and in sub-orbital instruments. The detectors are fabricated on single-crystal silicon, which serves as a low-loss
dielectric for the microwave circuitry as well as the support membrane for the Transition-Edge Sensors. The
Q-band design has been successfully demonstrated. Preliminary measurements with a cryogenic blackbody load
indicate ∼90% efficiency in each polarization channel. Fabrication of the Q-band detectors is nearing completion,
with half of the 36 polarimeters required for the CLASS instrument fabricated and tested. A important feature of
the Q-band detectors is the uniformity achieved in the thermal properties of the TES bolometers. The techniques
utilized to ensure this uniformity are key to the success of the W-band detectors, which are fabricated as a
monolithic array of 37 detectors on a single silicon-on-insulator wafer. A micro-machined metalized enclosure is
hybridized to the array at the wafer level. The enclosure controls the mode set that couples to the TES bolometers
and includes the quarter-wave backshort and waveguide delay structures for the OMTs antenna probes.
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