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a b s t r a c t

By using the results of highly accurate T-matrix computations for randomly oriented
oblate and prolate spheroids and Chebyshev particles with varying degrees of asphericity,
we analyze the effects of a deviation of water-droplet shapes from that of a perfect sphere
on the behavior of Lorenz–Mie morphology-dependent resonances of various widths.
We demonstrate that the positions and profiles of the resonances can change significantly
with increasing asphericity. The absolute degree of asphericity required to suppress a
Lorenz–Mie resonance is approximately proportional to the resonance width. Our results
imply that numerical averaging of scattering characteristics of real cloud droplets over
sizes may rely on a significantly coarser size-parameter resolution than that required for
ideal, perfectly spherical particles.

Published by Elsevier Ltd.

1. Introduction

Liquid-cloud droplets always exist in the atmosphere in
the form of polydisperse mixtures. Therefore, the numer-
ical modeling of their scattering and absorption properties
(such as the optical cross sections, single-scattering
albedo, and scattering matrix elements) must involve
averaging over a size distribution by using an appropriate
quadrature integration formula. For a given type of quad-
rature formula, the number of the quadrature division
points and the total integration range determine the
respective size-parameter resolution Δx, where x¼2πr/λ,
r is the sphere radius, and λ is the wavelength in the
surrounding medium. In principle, the size-parameter
resolution should be made finer (i.e., Δx should be

decreased) iteratively until the succession of the corre-
sponding numerical results converges to a certain constant
value. However, the straightforward practical implementa-
tion of this procedure may require a substantial or even
prohibitive computer time. Therefore, the size parameter
resolution is usually selected based on the efficiency of the
available computers rather than on an objective accuracy
criterion. At the same time, it has been claimed that the
size-averaged results obtained at canonical size-parameter
resolutions cannot be trusted (see, e.g., Ref. [1]). The main
reason for requiring an exceedingly small Δx in Lorenz–Mie
computations for perfect spheres is the existence of numerous
morphology-dependent resonances (MDRs) [2–4], some of
which are super-narrow features that can be extremely
difficult to resolve numerically.

The results of an extensive analysis of potential effects
of size-parameter resolution on the outcome of polydis-
perse Lorenz–Mie computations for liquid-water clouds
were published in Ref. [5]. However, the final conclusions
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were based on the assumption of a perfect spherical shape
of the cloud droplets and on the ignorance of the fact that
the actual droplet shapes can be expected to deviate from
that of a perfect sphere due to various ambient distur-
bances typical of a naturally-occurring cloud. On the other
hand, it was shown in Ref. [6] that for spheroids and
Chebyshev particles with a refractive index of m¼1.4, the
deformation of a sphere by as little as one hundredth of a
wavelength can essentially annihilate super-narrow MDRs.
Obviously, this factor can be very important in selecting an
appropriate value of Δx when performing polydisperse
computations for actual liquid-cloud droplets.

It is well known that the shape of falling raindrops with
radii exceeding �1 mm can be quite nonspherical [7]. On the
other hand, experimental data on the likely degree of
asphericity of typical liquid-cloud droplets with radii ranging
from a few to �20 μm appear to be absent. This shortage of
critical information makes impossible a definitive solution of
the problem of selecting an appropriately fine size-parameter

resolution Δx. However, we can facilitate the eventual solu-
tion of this problem by performing a systematic analysis of
the likely effects of increasing deviations of the shapes of
liquid-cloud droplets from perfect sphericity on the behavior
of Lorenz–Mie MDRs of varying widths. Such an analysis is
the main objective of this note.

2. Preliminaries

All numerical results reported and discussed below are
based on using a fixed relative refractive index of m¼1.31.
This value was selected to represent the real part of the
refractive index of liquid water in a wide spectral range
extending from near ultraviolet to short-wave infrared
wavelengths [8]. For simplicity, the imaginary part is
always taken to be zero. It is well known that even small
amounts of absorption serve to effectively suppress MDRs [4].
Thus by ignoring absorption we, in essence, consider the
worst case scenario in terms of the potential effect of MDRs on
the result of numerical integration over cloud-droplet radii
using course size-parameter resolution.

To illustrate the potential effects of a course size-para-
meter resolution, Fig. 1 depicts the dimensionless extinction
efficiency factor Qext ¼ Cext=ðπr2Þ (where Cext is the scatter-
ing cross section [4]) versus size parameter x for a perfectly
spherical particle plotted using two values of the size
parameter step size: Δx¼0.5 and 0.05. It is seen indeed
that the bottom curve reveals quite vividly numerous spike-
like MDRs superimposed on the nearly periodic interfer-
ence structure. The latter is traditionally explained as the
result of interference of light diffracted and transmitted by
the particle [9,10]. On the other hand, the resonances are
attributed to the fact that when the size parameter x
approaches a resonant value xres, the denominator in the
formula for a Mie coefficient an or bn approaches a local
minimum, thereby causing the appearance of a local
extremum in the curve for a specific scattering character-
istic (see., e.g., Ref. [3] and references therein).

Fig. 2 is another way to look at the optical resonances. It
depicts the degree of linear polarization of scattered light for
unpolarized incident light, �F21/F11 (where F11 and F21 are
elements of the normalized Stokes scattering matrix [4]), as
a function of the scattering angle Θ and size parameter x.
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Fig. 1. Extinction efficiency factor Qext versus size parameter x for a
perfectly spherical particle with the refractive index m¼1.31. The results
are plotted using size parameter resolutions Δx¼0.5 (top panel) and 0.05
(lower panel).

Fig. 2. Low-resolution (left) and medium-resolution (right) images of the degree of linear polarization �F21/F11 (%) as a function of size parameter x and
scattering angle Θ (deg) for a perfectly spherical particle with the refractive index m¼1.31.
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The left-hand panel is plotted with low resolution and is
obviously dominated by the interference structure. The
right-hand panel is a zoomed, medium-resolution image of

a small part of the left-hand panel and reveals fine ripple
features and sharp dislocations; the latter are first indicators
of super-narrow MDRs.

 2.3
 2.32
 2.34
 2.36
 2.38

 2.4
 2.42
 2.44
 2.46
 2.48

 2.5
no

rm
al

iz
ed

 e
xt

in
ct

io
n

 2.3
 2.32
 2.34
 2.36
 2.38

 2.4
 2.42
 2.44
 2.46
 2.48

 2.5

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 39.4  39.42  39.44  39.46  39.48  39.5

as
ym

m
et

ry
 p

ar
am

et
er

size parameter
E = 1

E = 1.0005
E = 1.001
E = 1.003
E = 1.005

E = 1.01

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 39.4  39.42  39.44  39.46  39.48  39.5
size parameter

E = 1
E = 0.9995

E = 0.999
E = 0.997
E = 0.995

E = 0.99

 2.3
 2.32
 2.34
 2.36
 2.38

 2.4
 2.42
 2.44
 2.46
 2.48

 2.5

no
rm

al
iz

ed
 e

xt
in

ct
io

n

 2.3
 2.32
 2.34
 2.36
 2.38

 2.4
 2.42
 2.44
 2.46
 2.48

 2.5

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 39.4  39.42  39.44  39.46  39.48  39.5

as
ym

m
et

ry
 p

ar
am

et
er

size parameter
e = 0

n = 8, e = 0.0005
e = 0.0007

e = 0.001
e = 0.005

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 39.4  39.42  39.44  39.46  39.48  39.5
size parameter

e = 0
n = 8, e = −0.0005 

e = −0.0007
e = −0.001
e = −0.005

Fig. 3. (a) Normalized extinction and asymmetry parameter versus size parameter in the vicinity of the xres¼39.4502 resonance for a perfect sphere and
volume-equivalent, randomly oriented oblate (left-hand column) and prolate (right-hand column) spheroids. (b) The same, but for volume-equivalent,
randomly oriented Chebyshev particles with positive (left-hand column) and negative (right-hand column) values of the deformation parameter.
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In order to investigate the effects of deviations of the
droplet shape from that of a perfect sphere on the
behavior of the Lorenz–Mie MDRs, it is necessary to
perform extremely accurate computations of scattering

properties of randomly oriented nonspherical particles
over a substantial range of size parameters. In this study,
such computations are performed by using the extended-
precision version of the FORTRAN T-matrix program [11]
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Fig. 4. As in Fig. 3, but in the vicinity of the xres¼45.0502 resonance.
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based on Waterman0s extended boundary condition
method [12]. In order to model particle aspherisity, we
use oblate and prolate spheroids and high-order Chebyshev
particles [13]. Prolate and oblate spheroidal shapes are
intended to represent uniform deformations of a spherical
droplet caused by stretching or flattening of the droplet as a
whole, whereas the shape of a Chebyshev particle is used to
simulate microscopic undulations on the droplet surface.
The shape of a spheroid is characterized by the axis ratio
E¼a/b, where b is the spheroid semi-axis along the axis
of rotation and a is the semi-axis in the perpendicular
direction. The shape of a Chebyshev particle with respect
to the particle reference frame with the z-axis serving
as the axis of rotational symmetry is given by r(θ)¼
r0[1þeTn(cos θ)], where r0 is the radius of the unper-
turbed sphere, e is the relative deformation parameter,
Tn(cos θ)¼cos nθ is the Chebyshev polynomial of degree
n, and θ is the polar angle.

3. Numerical modeling and discussion

Figs. 3–5 show the results of T-matrix computations of
the normalized extinction and asymmetry parameter for
spheres, randomly oriented volume-equivalent spheroids,
and volume-equivalent Chebyshev particles in the range
of equivalent-volume-sphere size parameters affected
by three Lorenz–Mie resonances, viz., b146 (xres¼39.4502,
Wx¼0.003); b153 (xres¼45.0502, Wx¼0.0009); and a163
(xres¼53.4408, Wx¼0.0002). Here, Wx is the half-width
at half maximum of a Lorenz–Mie resonance in units of
size parameter, while the notation b146, b153, and a163 is
intended to label the first resonances caused by the b46,
b53, and a63 Lorenz–Mie coefficients as x increases from
zero [14]. The normalized extinction is defined as the
ratio 〈Cext〉=ðπr2Þ; where 〈Cext〉 is the orientation-averaged
extinction cross section and r is the radius of the equal-
volume sphere. For spherical particles this ratio coincides
with the extinction efficiency factor. The asymmetry para-
meter is defined by

〈 cos Θ〉¼ 1
2

Z π

0
dΘ sin Θ F11ðΘÞ cos Θ: ð1Þ

The relative accuracy of the T-matrix computations was set
to be better than 10�9. The values of resonance locations
and half-widths were calculated with the Fortran computer
program developed by S. Hill (personal communication)
using the algorithm described in Ref. [15]. It is seen that the
half-width values of these resonances progressively
decrease.

Fig. 3(a) demonstrates the resulting behavior of the
normalized extinction and asymmetry parameter in the
vicinity of the xres¼39.4502 resonance for spheres and oblate
and prolate spheroids with different values of the axis ratio E.
In Fig. 3(b), the corresponding size-parameter dependences
are depicted for Chebyshev particles with n¼8 and various
positive and negative values of the relative deformation
parameter e. The reader can see that all types of droplet
deformations have a similar suppressing effect on the Lorenz–
Mie resonance considered. Specifically, for spheroids increas-
ing the degree of asphericity results in a rapid decrease of the
resonance peak in the normalized extinction and the depth

of the spike-like minimum in the asymmetry parameter.
Additionally, an increase of asphericity results in shifting the
location of the resonance to either larger (oblate spheroids) or
smaller (prolate spheroids) values of the volume-equivalent-
sphere size parameter. Interestingly, the curves for oblate and
prolate spheroids corresponding to the same degree of
asphericity look almost like mirror images of each other. A
similar suppressing effect of increasing asphericity of Gheby-
shev particles with positive and negative values of the
deformation parameter is clearly seen in Fig. 3(b). However,
unlike the case for spheroids, increasing the absolute value of
the deformation parameter e results in a growing complexity
of the fine resonance structure, whereas the position of the
main resonance appears to be much more stable. The curves
for |e|¼0.005 show that the corresponding absolute degree of
asphericity not only annihilates the main resonance but starts
to affect the background values of the normalized extinction
and asymmetry parameter.

Figs. 4 and 5 reveal qualitatively similar effects of growing
asphericity on MDRs with decreasing half-widths. More
importantly, however, it demonstrates that it takes smaller
absolute degrees of asphericity to “kill” narrower MDRs.

Figs. 3–5 show that a resonance peak in extinction is
always accompanied by a resonance spike-like minimum
in the asymmetry parameter. This trait can easily be
explained by taking into account that, according to Refs.
[16,17], the Lorenz–Mie coefficients can be expressed as

anðx;mÞ ¼ ½pnðx;mÞ�2
½pnðx;mÞ�2þ½qnðx;mÞ�2 � i

pnðx;mÞqnðx;mÞ
½pnðx;mÞ�2þ½qnðx;mÞ�2 ;

ð2Þ

bnðx;mÞ ¼ ½rnðx;mÞ�2
½rnðx;mÞ�2þ½snðx;mÞ�2 � i

rnðx;mÞsnðx;mÞ
½rnðx;mÞ�2þ½snðx;mÞ�2 :

ð3Þ
The functions pnðx;mÞ; qnðx;mÞ; rnðx;mÞ; and snðx;mÞ
are given by Eqs. (9.3)–(9.6) of Ref. [4] and are real if
the relative refractive index m is real. What happens at
a resonance is that either qnðx;mÞ or snðx;mÞ vanishes.
For this specific set of x-, m-, and n-values, the real part of
anðx;mÞ or bnðx;mÞ reaches its maximum possible value,
unity, while the imaginary part vanishes [2]. Let us now
recall that

〈 cos Θ〉¼ 4π

k21Csca
Re Σ

1

n ¼ 1

nðnþ2Þ
nþ1

ðanan

nþ1þbnb
n

nþ1Þþ
2nþ1
nðnþ1Þ anb

n

n

� �

ð4Þ
and, for nonabsorbing particles,

Cext ¼ Csca ¼ 2π

k21
Σ
1

n ¼ 1
ð2nþ1Þf anj2þ bnj2g:

���� ð5Þ

If, for example, the Lorenz–Mie coefficient an with nb1 has a
resonance at the size parameter xres [i.e., anðxres; mÞ¼1] then,
obviously, it causes a peak centered at xres in the plot of Cext
(as well as that of Csca) as a function of size parameter.
Furthermore, one can expect that at the resonance size
parameter,

Re an

nþ1þbnb
n

nþ1þ
2
n2 b

n

n

� �
51þ bnj2:

�� ð6Þ
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This implies that the peak in Csca will cause a resonance
minimum in 〈 cos Θ〉: A corollary of this explanation is that
there will be a resonance peak in the plot of the radiation-
pressure cross section Cpr ¼ Cextð1� 〈 cos Θ〉Þ:

Figs. 6 and 7 depict the results of computations of
the degree of linear polarization in the vicinity of the
xres¼39.4502 MDR for scattering angles in the range
1651rΘr1751. It is seen again that increasing asphericity
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Fig. 5. As in Fig. 3, but in the vicinity of the xres¼53.4408 resonance.
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serves to level out the resonance maximum and fill in the
resonance minimum, eventually resulting in the complete
annihilation of the MDR.

4. Conclusion

The most important result of our study is that the
absolute degree of asphericity (in units of size parameter)

required to suppress and essentially extinguish a Lorenz–Mie
MDR is approximately proportional to the resonance width
(also in units of size parameter). This result implies that
numerical averaging of scattering characteristics of real cloud
droplets over sizes is unlikely to require the extra-fine size-
parameter resolutions that would be necessary for ideal,
perfectly spherical particles. Indeed, natural ambient distur-
bances can be expected to induce a degree of asphericity of
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Fig. 6. High-resolution image of the degree of linear polarization �F21/F11 (%) in the vicinity of the xres¼39.4502 resonance for a perfect sphere and
volume-equivalent, randomly oriented oblate spheroids.
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real cloud droplets and thereby annihilate MDRs with widths
smaller than a certain threshold value ~Wx: Unfortunately, the
absence of requisite experimental data makes this threshold
value currently unknown.

Precise T-matrix computations for nearly-spherical par-
ticles remain excessively time-consuming and will not
replace the operational use of the Lorenz–Mie theory in
the foreseeable future. Therefore, in view of our results, one
will eventually need to develop an automatic computa-
tional Lorenz–Mie procedure eliminating the contribution
of the “artificial” MDRs with widths Wxo ~Wx: One can
think of at least two alternative ways of addressing this
problem. For example, if the nonsphericity of natural cloud
droplets is likely to extinguish only super-narrow MDRs
then it is possible that the use of a relatively large Δx in the
numerical integration over particle sizes will make the
probability of an integration quadrature points hitting a
resonance negligibly small. If so, the direct use of the
Lorenz–Mie scattering code can be expected to generate
results sufficiently accurate for most practical applications.
Alternatively, one can use a recursive procedure examining
the Lorenz–Mie results for triplets of sequential quadrature
points in order to see if the result for the middle point
deviates significantly from those for the bracketing points. If
so, the artificial Lorenz–Mie resonance can be eliminated by
using a simple interpolation of the bracketing results. It
would be worthwhile to examine thoroughly both
approaches and develop an efficient computer program
suitable for use in operational calculations.
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