
Verification and Validation of the
General Mission Analysis Tool (GMAT)

Steven P. Hughes1, Rizwan H. Qureshi1 , D. Steven Cooley1, Joel J. K. Parker1, Thomas G. Grubb2

NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA

This paper describes the processes and results of Verification and Validation (V&V)
efforts for the General Mission Analysis Tool (GMAT). We describe the test program and
environments, the tools used for independent test data, and comparison results. The V&V
effort produced approximately 13,000 test scripts that are run as part of the nightly build-
test process. In addition, we created approximately 3000 automated GUI tests that are run
every two weeks. Presenting all test results are beyond the scope of a single paper. Here we
present high-level test results in most areas, and detailed test results for key areas. The final
product of the V&V effort presented in this paper was GMAT version R2013a, the first Gold
release of the software with completely updated documentation and greatly improved
quality. Release R2013a was the staging release for flight qualification performed at
Goddard Space Flight Center (GSFC) ultimately resulting in GMAT version R2013b.

I. Introduction
MAT is a space mission design software system for the design and optimization of missions anywhere in the
solar system ranging from low Earth orbit to lunar, Libration point, and deep space missions. The system

contains high-fidelity space system models, optimization and targeting, built-in scripting and programming
infrastructure, and customizable plots, reports and data products, to enable flexible analysis and solutions for custom
and unique applications. GMAT can be driven from a fully-featured, interactive Graphical User Interface (GUI), or
from a custom script language. An important goal of the GMAT project is to share NASA funded technology as
openly as possible as required by the Space Act. To this end, most components of GMAT have been released under
the Apache License 2.0.

The GMAT V&V effort for R2013a involved 10 full time engineers and developers for approximately 18
calendar months of effort. During that time, no new features were incorporated (in fact, some were removed until
quality could be improved). The primary objective of this paper is to describe at a high level the test processes and
document key test results. As of the completion of the V&V effort, GMAT was rigorously tested on the Windows 7
platform and we were performing nightly regression tests running almost 12,000 test cases for the script engine and
approximately 3400 test cases for the GUI interface. While the system is routinely built on Mac and Linux, we
consider the software to be in alpha form on those platforms. The V&V program we present here was used for
version R2013a released in April 2013. R2013a is the first Gold version of the system. After release R2013a, we
performed further flight qualification of the system that is described by Qureshi1, resulting in version R2013b, the
first flight qualified release of GMAT.

We begin the paper with a high-level overview of GMAT including a description of the software, its history, and
usage. We then provide a high level overview of the V&V program including the driving goals and philosophy,
high-level testing methodology, and the test environments and tools. Detailed discussion of testing methodology
and results are presented in five sections devoted to logical grouping of system components. Those sections include
Dynamics and Modelling, Powered Flight, Solvers, Output and Utilities, and Programming Infrastructure. A
separate section is devoted to GUI testing processes and results.

1 Aerospace Engineer, Navigation and Mission Design Branch
2 Software Engineer, Ground Software Systems Branch

G

American Institute of Aeronautics and Astronautics
1

Figure 1 High Level V&V Approach

A. GMAT System Overview

GMAT is implemented in ANSI standard C++ (approximately 440,000 non-comment source lines of code) using
an Object Oriented methodology, with a rich class structure designed to make new features easy to incorporate.
GMAT uses the wxWidgets cross platform UI Framework, and can be built using either commercial development
tools or the GNU Compiler Collection (GCC). Development is conducted as a cooperative effort between an
analysis team, typically composed of flight dynamics specialists, and a development team consisting of software
developers. Past and present US Government participants and/or contributors include NASA GSFC, NASA JPL,
and the Air Force Research Lab (AFRL). Past and present industry contributors to GMAT include Thinking
Systems, Inc. (system architecture and all aspects of development), a.i.-solutions (testing, development), Korea
Aerospace Research Institute (all aspects of development), Boeing (algorithms and testing), The Schafer
Corporation (all aspects of development), Honeywell Technology Solutions (testing), and the Computer Sciences
Corporation (requirements). University contributors include Korea Advanced Institute of Science and Technology
(KAIST), Yonsei University, and Chonbuk National University.

GMAT has been used extensively as a design tool for missions in early development and proposal phases
through and for flight projects such as NASA’s Lunar Crater Observation and Sensing Satellite LCROSS mission
and Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun
ARTEMIS mission, and the Lunar Reconnaissance Orbiter (LRO). ARTEMIS and LRO flew trajectories optimized
in GMAT and verified in the operational ground system. GMAT has been used extensively for launch window
verification for the Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer (OSIRIS-
Rex) mission. The Magnetospheric Multiscale (MMS) mission has used GMAT for formation maneuver planning
and Monte Carlo analysis. GMAT has also been used on numerous concept studies from Earth-Sun Libration point
missions; LEO missions; lunar missions; and interplanetary missions to Venus, Mars, Jupiter, and near-Earth and
Trojan asteroids.

II. V& V Overview
The V&V program presented in this paper began in the winter of 2012, after GMAT had been in Beta form for

approximately 5 years and used extensively as a preliminary design tool. At the start of the final V&V effort, the
system had an extensive set of regression tests (especially for dynamics modelling and propagation and the GUI).
The V&V program formalized the test efforts to ensure total system test coverage and to prepare for later flight
qualification. The primary technical goals of the V&V effort were to

Systematically evaluate and validate all models, components, and functionality
Fix all critical system defects
Update working specifications that define system behavior
Provide high quality end user documentation and training material
Prepare for system maintenance and further development of a Class B flight qualified system

The primary strategic goals of the effort were to:

Position GMAT for larger community adoption
Position GMAT for flight qualification to begin in the spring of 2013.

The next few sections describe the V&V philosophy, methodology, and environments we employed to meet those
goals.

A. V&V Philosophy

We developed the GMAT V&V program using the
principal of “Eat Your Own Dog Food”; use the product
you’ve developed to validate the quality and capabilities of
that product. At the highest level, our test program had four
primary engineering activities: (1) Explore, (2) Document, and
(3) Test, and (4) Debug as shown in Figure 1.

American Institute of Aeronautics and Astronautics
2

Figure 2 High Level Test Process and Environment

During the Explore phase, test engineers explored and used system components and documented their findings
as pre-triage/sanity checks to determine the state of the component. The documentation activity included updating
working specifications, writing additional test plans/procedures, and updating or writing end-user documentation.
The testing phase included writing and performing additional tests to ensure full test coverage. We found that the
Explore, Document, and Test activities are not necessarily sequential. As testing occurred, additional information
was identified that is useful to users and that should be included in specifications and user documentation. During
documentation, additional areas of exploratory and beta testing were identified. It was not unusual to make a few
cycles through these activities for a given component.

B. V&V Methodology

We employed industry standard V&V methodologies throughout the test program. The GMAT Software
Management Plan9 and Test Plan10 provided guidance for basic test processes. Test engineers developed specific
test procedures and test cases according to the plans for all components in scope of the V&V program. A major goal
of the V&V program was to implement test procedures and test cases in repeatable and automated test environments
to support regression testing of the entire application during current and future development activities. A high level
view of the test process and environment are illustrated in Figure 2. The regression test environments are discussed
in the next section.

Table 1 describes the primary test classes performed by test engineers. Note: developer testing such as
integration and unit tests are performed during the development process and are not discussed here.

We logically grouped system components in the V&V program into subgroups shown in Table 2. Each
component area was assigned a Flight Dynamics Engineer (FDE) to lead the V&V effort for the area and a Software

Table 1. Primary System Test Types

Test Type Description
Numeric Tests Tests of physical and mathematical models. Numeric tests are performed by

comparing output to external "truth".
Functional tests Tests that verify non-numeric functionality, such as plotting styles, file formats,

and control flow behavior.
Input validation Tests that ensure user inputs are validated by the system and the correct error

messages are provided for invalid user input.
End-to-end tests Tests that solve an end-to-end engineering problem such as a lunar transfer or

orbital maneuver. These tests are "fit for use" tests and are applications of
GMAT to real-world problems

Stress Tests Test designed to stress the system and make heavy use of system resources.
Edge corner tests Tests designed to test models at the boundaries of applicability, in the GMAT

context this often means testing models near numerical singularities.

American Institute of Aeronautics and Astronautics
3

Development Engineer (SDE) responsible for addressing defects found during testing. In all, about 65 components
were tested. The FDE was responsible for the Explore, Document, and Test activities for features in the component
group, and the SDE was responsible for defect resolution and review of work products such as specifications and
user documentation. The GMAT Configuration Control Board (CCB) met weekly to triage all issues found during
testing. We tracked high level progress using standard agile burn down charts tracking number of open critical and
minor issues, and number of features remaining to be tested and documented.

C. V&V Environment

The environment required to support the V&V program is a complex set of tools that must meet requirements for
test automation and traceability for all interfaces including the GMAT script interface and the GMAT GUI interface.
We developed a custom script test environment in MATLAB2 to perform automated script regression testing and
used SmartBear Software’s TestComplete3 for automated GUI testing. The automation requirements on the test
environment help reduce human error in testing processes and ensure that the large number of test cases and
procedures can be executed in a repeatable and efficient manner. To meet these goals, the test environment must be
able to run a large number of test types and compare very different types of output to benchmark data.

GMAT's script test system is written in MATLAB and automatically runs all test cases, compares the results to
both external benchmark data and past GMAT output, and sends nightly test reports to the entire development team.
Nightly regression test reports contain high-level statistics on the number of tests run and the number of failing tests.
The reports also document test case changes including tests that have switched from passing to failing, test that
changed from failing to passing or tests that changed but still fail or pass. Custom script verification tests types
ensure that all features implemented in GMAT function correctly and within tolerance and allow for rapid
development of new test cases without needing to understand the internals of the test system. The system currently
supports about 15 built-in “Comparators” such as the ability to compare position velocity files to external
benchmark data, compare generic data files to user defined tolerances, perform file difference compares, and search
system log files for warnings or error messages. Testers can quickly run test cases by specific software requirement
ID, test name, or feature group among others. Additionally, script tests are classified by their type (Numeric,
Validation, System, Stress, etc.) and subsets can be run easily by specifying the test categories in the test system
configuration. Finally, there are several higher-level classifications of script tests used during the development

Table 2. V&V Logical Component Groupings

Component Area Description/Features
Dynamics/Models Numerical models for orbit and attitude propagation, solar system and coordinate

system models including spacecraft orbit state representations, spacecraft ballistic
and mass properties, spacecraft epoch representations, spacecraft attitude
representations, spacecraft kinematic attitude modelling, solar system
ephemerides, celestial body modelling, SPICE propagator, numerical integrators,
orbital dynamics models, formations, coordinate systems, barycenters, libration
points, and the propagation command.

Powered Flight Numerical models for impulsive and finite maneuvering including tanks, thrusters,
impulsive maneuver, finite maneuver, and the commands to control maneuvers
during the simulation.

Solver Infrastructure Algorithms and infrastructure for solving boundary value and optimization
problems. Includes differential corrector and Nonlinear Programming (NLP)
solvers, and the commands used to define control variables, cost, and constraint
functions in the simulation.

Programming
Infrastructure

Algorithms and features for customization including custom scripting, user defined
variables and arrays, scripted custom equations, built-in astrodynamic
computations, control flow, and external interfaces.

Output\Utils Components to support graphical and data output such as xy-plots, 3-D graphics,
report files, and ephemeris files, as well as the command infrastructure to control
output behavior during the simulation.

Application Control Inherently interface elements such as file menus, command line interfaces, and the
script editor.

American Institute of Aeronautics and Astronautics
4

process before committing new code or used nightly to determine if code additions or changes have caused
unexpected adverse effects. These higher level categories such as “Smoke” and “System Tests” are groupings of
lower level test cases and provide developers and testers insight into the system without running the entire test suite.

The GMAT GUI test environment uses SmartBear Software’s TestComplete to perform automated GUI testing
on the Windows platforms. At its most basic level, GUI testing requires clicking on every button and widget in the
GMAT GUI, entering valid, invalid, and boundary conditions input into every text widget, and assessing that the
GUI responds to all inputs and displays all results correctly. Manually performing these actions is error-prone, labor-
intensive, and impossible to repeat every time a change is made to the system. At a more advanced level, GUI
testing requires inputting all user data to solve complex engineering problems and verifying the results against
benchmark data. Similarly to the script test environment, the GUI test environment is executed from a high level
driver that automatically executes GUI tests by test classification and reports on test status and coverage. GUI tests
are subcategorized into Unit, Smoke and System tests to allow testers to run subsets of the GUI test cases as the
entire test suite currently takes approximately 5 days to run and analyze.

We generated external benchmark data from legacy systems and simple standalone MATLAB implementations
depending upon several factors including availability, ease of use, supported features, and trustworthiness of the
models and results. Benchmark data and test approaches are discussed in detail with the component discussions in
the next section as benchmark tools were selected on a component basis. However, some tools were used more
often than others, and we present high-level benchmark tools here. For orbit propagation and other dynamics and
modeling evaluation, STK4, FreeFlyer5 and MATLAB propagators were employed to create independent benchmark
data. For 3-D graphics comparisons, we used Celestia6 and STK. For 2-D plots, we used MATLAB as the external
benchmark. Finally, for testing of the script language, and especially mathematical equation parsing, we also used
MATLAB as the benchmark tool.

III. Dynamics and Modelling Test Methodology and Results
The core of an astrodynamics simulation and design environment are its physical models. For the V&V

program, the Dynamics and Modelling feature group was composed of the following GMAT features: spacecraft
orbit state representations, spacecraft ballistic and mass properties, spacecraft epoch representations, spacecraft
attitude representations, spacecraft kinematic attitude modelling, solar system ephemerides, celestial body
modelling, SPICE propagator, numerical integrators, orbital dynamics models, formations, coordinate systems,
barycenters, Libration points, and the propagation command. (Note: GMAT supports impulsive and finite
maneuvers models and those are categorized in the Powered Flight component group.) For this paper, we chose to
present tests results for Force Modelling, Coordinate Systems, and Numerical Integrators. However, we performed
extensive, systematic testing on all components in this group using similar methods for the limited subset we have
space to address in this work. The last subsection in this section describes at a high level the test methodology used
for other Dynamics and Modelling components not addressed in detail in this paper.

A. Dynamics Models

The orbital dynamics model test approach compared numerical propagation results from GMAT to propagation
performed in independent tools such as STK, MATLAB, and FreeFlyer. Orbit test cases included the following
regimes: LEO, MEO, HEO, GEO, Lunar, interplanetary, planetary, planetary moon, asteroid, Earth Moon Libration
point, and Sun-Earth Moon Libration point. We tested dynamics models individually for selected orbit test cases,
and tested the superposition of all applicable models for selected orbit test cases. The force models tested included
harmonic gravity, point-mass perturbations, drag (spherical with MSISE-90, MSISE-86, and MSISE-NRL), solar
radiation pressure, solid Earth tides, and relativity. When selecting from all permutations of orbit types and
dynamics models, and for different solar system configurations, we created approximately 270 unique propagation
tests of which approximately 70 are presented below.

Initial state vectors for selected orbital regimes are presented in Table 3 Many Earth orbit state vectors and
epochs are consistent with those used by Vallado7. All state vectors are expressed with respect to the natural central
body for the orbit test case (i.e. the Moon test case has Moon at the origin) and with respect to the Earth’s mean
equator of J2000 axis system. The dynamics model tests employed a single integrator that is available in both
GMAT and STK (RKV89). We selected integrator settings to allow precise comparison between tools. These tests
employed, for the most part, fixed flux settings for SRP and Drag, and a fixed error control setting. Table 4 contains
the initial epochs, time of flight, and output frequency for selected test cases.

American Institute of Aeronautics and Astronautics
5

Representative test comparison data is shown below for selected orbit propagation test cases in Table 5. Test data is
the maximum RSS position error in meters over the test case propagation duration. Velocity comparisons were also
included in the test analysis, and were consistently two to four orders of magnitude lower than the position error. In
almost all test cases, RSS comparisons demonstrated sub meter level agreement between tools. In most cases, cm
to mm level agreement is seen.

Table 4 Dynamics Model Test Epochs and Durations
Test Case TOF (days) Initial Epoch Output Step

LEO (SunSync) 1 01 Jun 2004 12:00:00.000 60 sec
LEO (ISS) 1 01 Jun 2004 12:00:00.000 60 sec
GEO 7 01 Jun 2004 12:00:00.000 600 sec
MEO 2 01 Jun 2004 12:00:00.000 120 sec
HEO 3 01 Jun 2004 12:00:00.000 300 sec
Venus 3 01 Jun 2004 12:00:00.000 300 sec
Luna 3 01 Jun 2004 12:00:00.000 300 sec
Mars 3 01 Jun 2004 12:00:00.000 300 sec
Asteroid/Comet 0.3125 13 Dec 2019 18:01:15.433 N/A
Titan 1 01 Jun 2004 12:00:00.000 100 sec
Sun-Earth L2 180 05 Feb 2006 17:05:48.772 1/2 day
Earth-Moon L2 14.028 23 Jan 2010 00:00:04.000 2400 sec
Deep Space 365 01 Jan 2000 12:00:00.000 1 day
Lunar Flyby 5.78 23 Jul 2014 20:49:23.867 2000 sec
Mars Transfer 312 18 Nov 2013 19:57:09.235 1 day

Table 3 Dynamics Model Test Initial State Vectors
X (km) Y (km) Z (km) VX (km/s) VY (km/s) VZ (km/s)

LEO (Sun-
Sync) -2290.30106 -6379.47194 0 -0.883923 0.317338 7.610832
LEO (ISS) -4453.78359 -5038.20376 -426.384456 3.831888 -2.887221 -6.018232
GEO 36607.35826 -20921.7237 0 1.525636 2.669451 0
MEO 5525.33668 -15871.1849 -20998.9924 2.750341 2.434198 -1.068884
HEO -1529.89429 -2672.87736 -6150.11534 8.717518 -4.989709 0
Venus -4832.07438 0 4832.074381 -0.64535679 -7.3662402 0.645356787
Luna -1486.79212 0 1486.792117 -0.14292773 -1.63140762 0.142927729
Mars -2737.48165 0 2737.481646 -0.31132169 -3.55349231 0.311321695
Asteroid/Comet -0.32956666 0.189673215 -0.30304989 1.78534E-05 -8.8048E-05 -7.4522E-05
Titan 250.4443812 -2420.44525 -1049.39145 1.832446416 0.159603524 0.069196596
Sun-Earth L2 1010800.968 -910963.538 -295145.631 0.264285265 0.286744175 0.07338745
Earth-Moon L2 406326.2266 177458.3876 145838.5808 -0.51727467 0.774650367 0.331416603
Deep Space 56937994.01 -1713823.5 1657873.06 0.045105343 10.61438285 4.735060583
Lunar Flyby 7482.854524 -4114.93842 -1171.25835 4.436048586 8.268589685 -1.56960804
Mars Transfer 3757.045995 4552.470526 -2656.97254 -9.5153199 6.14681789 -2.66380712

American Institute of Aeronautics and Astronautics
6

For selected orbital test cases, we performed superposition tests where all or nearly all supported dynamics models
were included simultaneously. Approximately 80 superposition tests were performed, with representative results
shown in Table 6. Propagator sectioning tests -- where the propagation origin is changed at the sphere of influence –
were performed for the Lunar Transfer and Mars Transfer test cases. In general, all tests agreed at the meter level,
and many tests agree at the centimeter level.

Table 6 Combined Dyanamics Model Test Results

Test Case ID
Max Position
Diff. RSS (m)

GEO (TBPM,HG,Drag,SRP,Tide) 9.2227E-01
GEO (TBPM,HG,Drag,SRP) 1.7184E-04
GPS (TBPM,HG,Drag,SRP,Tide) 5.2289E-01
GPS (TBPM,HG,Drag,SRP) 7.5020E-02
ISS (TBPM,HG,Drag,SRP,Tide) 1.9932E+00
ISS (TBPM,HG,Drag,SRP) 1.6639E+00
Molniya (TBPM,HG,Drag,SRP,Tide) 6.3083E+00
Molniya (TBPM,HG,Drag,SRP) 5.1301E-01
SunSync (TBPM,HG,Drag,SRP,Tide) 1.4991E+00
SunSync (TBPM,HG,Drag,SRP) 3.3214E-01
Lunar Transfer (TBPM, HG, SRP) 8.6480E-01
Mars Transfer (TBPM, HG, SRP) 5.2626E+00
Asteroid (TBPM, HG, SRP) 4.6731E-03
Earth Moon L2 (TBPM, SRP) 8.0749E-01
Deep Space (TBPM, Rel) 3.8275E-02
Titan(TBPM, SRP) 2.5002E-01

Table 5 Individual Dynamics Model Test Results
Dynamics Model

Orbital
Regime

Sp
he

ric
al

 G
ra

vi
ty

H
ar

m
on

ic
 g

ra
vi

ty

Ti
de

s

Po
in

t m
as

s p
er

tu
rb

at
io

n

SR
P

M
SI

SE
90

N
R

LM
SI

SE
00

Ja
cc

hi
a-

R
ob

er
ts

R
el

at
iv

is
tic

 C
or

re
ct

io
n

ISS 7.1E-06 2.5E-03 3.3E-01 1.5E-05 1.3E-01 1.8E-01 1.1E+00 1.9E+00 3.8E-02
Sun Sync 3.9E-05 5.0E-04 5.7E-01 3.6E-05 1.7E-01 1.8E-02 5.8E+00 2.0E+00 x
GPS 2.7E-06 1.5E-04 2.5E-02 2.3E-05 4.7E-02 1.4E-05 4.2E-06 2.7E-06 x
GEO 6.3E-06 2.8E-05 5.0E-02 1.8E-04 2.4E-05 6.3E-06 5.2E-05 6.3E-06 2.3E-03
Molniya 2.4E-04 6.1E-03 6.0E+00 2.0E-04 5.8E-01 1.8E-03 4.3E+00 1.3E-01 x
Luna 7.3E-05 1.9E-04 N/A 2.2E-04 1.1E-04 N/A N/A N/A x
Venus 9.0E-03 1.1E-02 N/A 1.4E-02 3.7E-02 N/A N/A N/A x
Mars 6.1E-02 1.2E-01 N/A 3.2E-01 6.0E-01 N/A N/A N/A x

American Institute of Aeronautics and Astronautics
7

Vallado7 compared orbit propagation results from several software systems including TRACE, GEODYN, GTDS,
Special K, and STK HPOP. A detailed case-by-case comparison is beyond the scope of this work. However, we
analyzed results from Vallado and extracted the maximum RSS propagation difference for selected orbits tested and
compared those differences to those between STK and GMAT. High-level order of magnitude comparisons are
shown in Table 7. Note that most test cases presented by Vallado had significantly better agreement than those
presented in the table, and the data presented only compares worst case agreement among tools to aid in identifying
an upper bound on expected agreement. The differences between STK and GMAT are in line with the differences
seen between STK and other programs with the notable exception that point mass perturbations and drag
propagations are orders of magnitude smaller between GMAT and STK than between STK and other programs
tested when comparing worse case scenarios.

B. Numerical Integrators

We tested GMAT’s numerical integrators using “closure” tests that apply each integrator to a set of cases that
demonstrate the integrator’s accuracy and performance characteristics in different orbital regimes. Closure is tested
by integrating an initial state forward for an appropriate duration, then integrating backwards to the initial epoch and
comparing the integrated solution to the initial state vector. An ideal integrator would yield the identical initial state
after propagation to within round-off error dictated by precision of the computer. We tested 6 orbit types described
in Table 8. For all test cases, the error control setting was set to relative error with respect to the step size where the
relative error tolerance was set to 1e-12 for all integrators except for Adams-Bashfourth-Moulton (45), which was
set to 1e-11 because of poor performance. For more information on the integrators implemented in GMAT, see the
GMAT User Guide8

.

Table 9 contains integrator accuracy and performance data for numerical integrator tests. The error values in the
table are the RSS difference of the final position after forward and backward propagation to the initial epoch. The
run time data for each orbit type is normalized on the integrator with the fastest run time for that orbit type.

Table 8 Integator Test Case Descriptions
Orbit Dynamics Model Duration

LEO Earth 20x20, Sun, Moon, MSISE90 density, SRP 1 day

Molniya Earth 20x20, Sun, Moon, Jacchia Roberts, SRP 3 days

Mars Transfer

Near Earth: Earth 8x8, Sun, Moon, SRP

333 days
Deep Space: All planets as point mass
perturbations
Near Mars: Mars 8x8 SRP

Lunar Transfer Earth central body with all planets as point mass
perturbations 5.8 days

Finite Burn (case 1 and 2) Point mass gravity. (1) Blow down, (2) Pressure
Regulated. 7200 sec.

Table 7 Worst Case, Max RSS Position Differences (m) for Selected Orbit Test Cases
Between DifferentOrbit Propagation Software and STK.

Software
Harmonic
Gravity

Point
Masses SRP Drag

GTDS 0.07 0.06 2.50 575.00
TRACE 0.0020 0.02 1.50 750.00
Special K N/A 0.07 N/A N/A
GMAT 0.01 0.0002 0.58 5.77
GEODYN N/A N/A N/A 1000

American Institute of Aeronautics and Astronautics
8

In most cases, mm to cm accuracy is achieved, especially for higher order integrators such as the Runge Kutta
Verner (89) and the Prince Dormand (78). Comparing the run time data for each integrator shown in the table below
we see that the PrinceDormand78 integrator was the fastest for 4 of the 6 cases and tied with the RungeKutta89
integrator for LEO test case. For the Lunar flyby case, the RungeKutta89 was the fastest integrator; however, in this
case the PrinceDormand78 integrator was at least 2 orders of magnitude more accurate given equivalent accuracy
settings. Notice that the AdamsBashforthMoulton integrator has km level errors for some orbits because it is a low-
order integrator (45). The RKN68 is a second order integrator and cannot be used for finite burn modelling so results
are not presented for those cases.

C. Coordinate Systems

GMAT supports numerous coordinate system types ranging from standard inertial systems such as Fifth
Fundamental Catalogue (FK5) and the International Celestial Reference Frame (ICRF), as well as time varying
systems such as Local Vertical Local Horizontal (LVLH), Velocity Normal Bi-Normal (VNB), Body Fixed, and
Earth Mean of Date Equator to name a few. In R2013a, 19 axis types are supported. For a more detailed discussion
of the coordinate systems in GMAT see the GMAT User Guide8.

All coordinate systems were extensively tested by performing transformations to and from all supported
coordinate system types resulting in approximately 450 unique coordinate conversion test cases. Some time
dependent coordinate systems, such as the International Terrestrial Reference Frame (ITRF), were tested by
propagating representative orbits using a two-body dynamics model, and comparing the propagated state vectors at
each propagation time to benchmark data. The primary source of benchmark data was STK; however, MATLAB
was used for Object Referenced (LVLH, VNB, etc.) axes, the Geocentric Solar Magnetic (GSM) axes, and for body
fixed axes of the celestial bodies other than Earth and Moon.

Comparison test data for selected test cases is shown in Table 10 for conversion of a circular LEO state vector
with semi major axis of 6800 km. We include RSS differences and angular differences for both position and velocity
transformations. Angular position differences are all on the order of 5e-8 degrees and in many cases much smaller,
with position differences at the mm level or better. Velocity RSS comparisons show micro-meter per second
agreement and angular comparisons are on the order of 5e-8 degrees or smaller.

Table 9 Integrator Test Data
Orbit Data RKV89 RKN68 RK56 PD45 PD78 ABM

ISS Run Time 1.53 1.00 2.14 2.78 1.46 3.41
Error (m) 0.003 64.060 0.022 0.002 0.006 0.012

Molniya Run Time 1.32 1.47 1.99 3.08 1.00 3.35
Error (m) 0.007 0.601 0.059 0.032 0.043 380.125

Lunar Flyby Run Time 1.00 1.01 2.26 2.98 2.21 3.30
Error (m) 0.063 0.017 0.002 0.023 0.000 0.236

Mars
Transfer

Run Time 1.02 1.04 1.14 1.40 1.00 3.07
Error (m) 0.030 0.001 0.043 0.194 0.009 25.231

Finite burn 1 Run Time 1.27 N/A 1.24 1.26 1.00 1.45
Error (m) 0.002 N/A 0.006 0.002 0.002 0.000

Finite burn 2 Run Time 1.03 N/A 1.18 1.31 1.00 1.54
Error (m) 0.002 N/A 0.000 0.000 0.001 0.003

American Institute of Aeronautics and Astronautics
9

D. Other Dynamics and Modelling Components

The Dynamics and Modelling component group contained 13 components, and in this paper we only presented
test results for three of those components. The remaining 10 components all received equally rigorous testing
during the V&V program. Table 11 contains brief descriptions--focusing on numeric system tests descriptions--of
the baseline data source and methodology used for other components in the dynamics group.

Table 10 Coordinate System Test Results
Conversion Type Position Comparison Velocity Comparison

RSS

Diff (m)
 Angle Diff

(deg.)
RSS

Diff (m/s)
Angle Diff

(deg.)
FK5 To BodyFixed 5.79E-03 4.88E-08 5.65E-06 4.23E-08
FK5 To BodySpinSun 2.17E-04 1.83E-09 1.35E-07 1.01E-09
FK5 To GSE 1.11E-05 9.36E-11 1.22E-08 9.14E-11
FK5 To GSM 2.13E-04 1.79E-09 3.66E-06 2.74E-08
FK5 To ICRF 7.80E-03 6.57E-08 1.97E-06 1.47E-08
FK5 To MJ2000Ec 9.19E-05 7.74E-10 1.05E-07 7.84E-10
FK5 To MJ2000Eq 0.00E+00 0.00E+00 6.39E-12 4.78E-14
FK5 To MODEc 3.33E-07 2.80E-12 2.31E-11 1.73E-13
FK5 To MODEq 9.37E-10 7.90E-15 6.53E-12 4.89E-14
FK5 To MOEEc 6.75E-09 5.69E-14 5.42E-12 4.06E-14
FK5 To MOEEq 4.90E-09 4.13E-14 6.14E-12 4.59E-14
FK5 To ObjectReferenced 1.11E-05 9.36E-11 1.22E-08 9.14E-11
FK5 To TODEc 2.00E-04 1.69E-09 2.20E-07 1.65E-09
FK5 To TODEq 1.98E-04 1.67E-09 2.38E-07 1.78E-09
FK5 To TOEEc 6.55E-05 5.52E-10 7.20E-08 5.39E-10
FK5 To TOEEq 2.05E-04 1.72E-09 2.57E-07 1.92E-09
FK5 To Topocentric 5.92E-03 4.99E-08 5.68E-06 4.25E-08

American Institute of Aeronautics and Astronautics
10

IV. Powered Flight Methodology and Results

The GMAT Powered Flight feature area consists of resources (i.e., objects) and commands needed to model both
impulsive and finite maneuvers. Components in the Powered Flight Group include fuel tanks and thrusters,
maneuver models, and commands to control when maneuvers occur in the simulation. The Powered Flight tests
presented here focus on the numerical results obtained as a result of a maneuver, such as spacecraft position,
velocity, and mass, and are categorized by maneuver type. Section A describes the impulsive maneuver test
methodology and results, and Section B describes the finite burn maneuver test methodology and results.

Table 11 Baseline Data Sources and Test Methodology for Other Model Components
Component Test Methodology
Solar System
Ephemerides

Tested against MATLAB DE file implementation and the MICE toolkit. We
compared state vectors to baseline data at different epochs and with respect to
multiple coordinate system origins. Results demonstrated excellent agreement.

Libration Point Tested using MATLAB implementations and off-the shelf MATLAB DE
ephemeris readers and the MICE toolkit. We compared Libration point locations
(all 5) to baseline data at different epochs and with respect to multiple
coordinate system origins. Results demonstrated excellent agreement.

Barycenter Tested using MATLAB implementations and off-the shelf MATLAB DE
ephemeris readers and the MICE toolkit. We compared solar system and user
defined barycenter locations to baseline data at different epochs and with respect
to multiple coordinate system origins. Results demonstrated excellent
agreement.

Spacecraft Kinematic
Attitude Propagation

Tested against MATLAB implementations. Attitude configurations were
propagated and compared to benchmark data. Additionally, mode change tests
were performed. Results demonstrated excellent agreement.

Spacecraft Attitude
Representations

Tested against STK and MATLAB implementations. Attitude initial state
conversions were tested to and from all supported representations and compared
to benchmark data. Results demonstrated excellent agreement.

Spacecraft Orbit State
Representations

Tested against FreeFlyer, STK, and MATLAB implementations. Orbit state
representations were converted to and from all supported representations, for
each orbit type (Circular, Elliptic, and Hyperbolic) supported by the
representation. Results demonstrated excellent agreement.

Celestial Body Model Tested against STK and MATLAB implementations. Shape and orientations
models were tested against baseline data for all built-in bodies and all supported
types of user-defined celestial body. Results demonstrated excellent agreement.

Propagate Command Tested against STK and MATLAB implementations. Numeric propagation tests
were documented in a previous section. Extensive stopping condition testing
was performed comparing GMAT to benchmark data. Additionally, multiple
spacecraft propagation was extensively tested. Results demonstrated excellent
agreement.

Spacecraft Ballistic and
Mass Properties

Tested against STK and MATLAB implementations. Various configurations of
high and low ballistic coefficient were tested in various orbit regimes such as
LEO and HEO and compared to benchmark data. Results demonstrated
excellent agreement.

Spacecraft Epoch Tested against STK and MATLAB implementations. Conversion of various
test epochs in all supported systems to all other supported systems was
performed. Test epochs included leap seconds and leap years. One significant
issue was found and is tracked as ticket GMT-2561 in the project issue tracker.

American Institute of Aeronautics and Astronautics
11

A. Impulsive Maneuvers

We performed over 700 numerical tests to verify GMAT’s implementation of impulsive maneuvers. The tests
are categorized by orbit type, spacecraft configuration, impulsive burn configuration, choice of maneuver coordinate
system (CS), and fuel tank configuration. We modeled three different orbit types, corresponding to a spacecraft in
an Earth orbit, a lunar orbit, and a Mars orbit. The initial conditions, at a TAI modified Julian epoch of 21545, are
specified in Table 12 in Earth mean equator J2000 (MJ2000Eq) coordinates relative to the body specified in the
orbit type.

For all the orbit types above, we used a simple point mass force model, with no other perturbing forces, designed
to make it easier to analyze the effects of maneuvers. The Earth orbit case models only Earth gravity with equal
to 398600.4415 km3 s-2. Analogously, the Moon and Mars cases use values of 4902.7991 km3 s-2 and 42828.2866
km3 s-2, respectively.

We modeled seven different impulsive burn configurations which use different values for the V vector,
gravitational acceleration and ISP values used to calculate fuel use, and choice of whether or not to model fuel
depletion. We also modeled five different choices of maneuver coordinate systems (CS). These include both
inertial and non-inertial coordinate systems as defined in Table 13.

GMAT models two types of fuel tank, a blow down (BD) tank and a pressure regulated (PR) tank. As shown in
Table 14, there were 22 different fuel tank configurations modeled, 11 blow down tank configurations and 11
pressure regulated tank configurations. Except for the pressure model used, the 11 blow down tank configurations
are identical to the pressure regulated configurations. The 11 different configurations used different values of fuel
tank characteristics such as initial fuel mass, fuel density, temperature, reference temperature, initial pressure, and

Table 13 Coordinate Systems Used in Impulsive Maneuver Testing
Coordinate System Designation Description

MJ2000Eq CS0 J2000-based Earth-centered Earth mean equator inertial
Earth VNB

CS1

Earth Velocity-Normal-Binormal (VNB) is a non-inertial
coordinate system based upon the motion of the spacecraft
with respect to the Earth. The X-axis of this coordinate
system is along the velocity of the spacecraft with respect to
the Earth, the Y-axis is along the instantaneous orbit normal
(with respect to the Earth) of the spacecraft, and the Z-axis
completes the right-handed set.

Earth LVLH CS2 Earth Local Vertical Local Horizontal (LVLH) is a non-
inertial coordinate system based upon the motion of the
spacecraft with respect to the Earth. The X-axis of this
coordinate system is the position of the spacecraft with
respect to the Earth, the Z-axis is the instantaneous orbit
normal (with respect to the Earth) of the spacecraft, and the
Y-axis completes the right-handed set.

SpacecraftBody CS3 SpacecraftBody is the attitude system of the spacecraft. Since
the thrust is applied in this system, GMAT uses the attitude of
the spacecraft, a spacecraft attribute, to determine the inertial
thrust direction.

Custom Designed Earth
VNB

CS4 Same coordinate system as Earth VNB. (created using a
different user interface)

Table 12 Impulsive Maneuvers Test Initial State Vectors
Orbit Type X (km) Y (km) Z (km) VX (km/s) VY (km/s) VZ (km/s)

Earth 7653.768 0 0 0 7.2166 0
Moon 2085.84 0 0 0 1.5331 0

Mars 4076.4 0 0 0 3.2414 0

American Institute of Aeronautics and Astronautics
12

volume. For the test results we will show, we used Tank A as the baseline tank. Values that differ from the baseline
tank are highlighted in red.

The various test cases have names such as IBurn_Earth_ScA_IBA_CS0_TankA, which we now explain. “IBurn”
is used to indicate that this is an Impulsive Burn test. “Earth” indicates that we are using the Earth orbit type.
“ScA” is used to indicate that we are using the Spacecraft A configuration. “IBA” indicates that we are using the
Impulsive Burn A configuration. “CS0” indicates that we are using the maneuver coordinate system CS0
configuration. Finally, “TankA” indicates that we are using the Fuel Tank A configuration. The impulsive burn
tests applied an impulsive V and then checked the final position, velocity, and mass against MATLAB-generated
truth results and FreeFlyer. The test case IBurn_Earth_ScA_IBA_CS0_TankA is the baseline test for the impulsive
burn tests. In all the test results that follow, each test used the same configuration as the baseline test except for the
one parameter that is varied in each table. The table of results below varies the orbit type.

Table 15 Orbit Type Results for Impulsive Maneuvers
Orbit Position RSS Error

(m)
Velocity RSS Error

(m/s)
Mass Error

(g)
Earth 0 0 2.27374E-10
Moon 2.59206E-08 0 2.27374E-10
Mars 5.96083E-06 1.7764E-12 2.27374E-10

The position RSS error ranged from 0 to approximately 6.0e-6 m, the velocity RSS error ranged from 0 to
approximately 1.8e-12 m/s. All of the cases had a mass error of approximately 2.3e-10 g. We note that the Earth
case had the smallest overall error. This is probably because both the spacecraft state and the V vector are
specified in the same coordinate system (MJ2000Eq) and thus no coordinate transformations had to be performed.

Table 14 Fuel Tank Configurations
Tank Description Mass

(kg)
Pressure

(kPa)
Temp

(C)
Ref

Temp
(C)

Volume
(m3)

Fuel
Density
(kg/m3)

Pressure
Model

A Baseline 725 1200 20 12 0.8 1029 PR
B High Mass 820 1200 20 12 0.8 1029 PR
C High Pressure 725 2500 20 12 0.8 1029 PR
D Low Pressure 725 725 20 12 0.8 1029 PR
E High Temp 725 1200 200 12 0.8 1029 PR
F Low Temp 725 1200 2 12 0.8 1029 PR
G High Ref

Temp 725 1200 20 100 0.8 1029 PR

H Low Ref
Temp 725 1200 20 2 0.8 1029 PR

I High Volume 725 1200 20 12 80 1029 PR
J Low Density 725 1200 20 12 8.0 101.325 PR
K High Density 725 1200 20 12 0.8 2500 PR
L Baseline (BD) 725 1200 20 12 0.8 1029 BD
M High Mass 820 1200 20 12 0.8 1029 BD
N High Pressure 725 2500 20 12 0.8 1029 BD
O Low Pressure 725 725 20 12 0.8 1029 BD
P High Temp 725 1200 200 12 0.8 1029 BD
Q Low Temp 725 1200 2 12 0.8 1029 BD
R High Ref

Temp 725 1200 20 100 0.8 1029 BD

S Low Ref
Temp 725 1200 20 2 0.8 1029 BD

T High Volume 725 1200 20 12 80 1029 BD
U Low Density 725 1200 20 12 8.0 101.325 BD
V High Density 725 1200 20 12 0.8 2500 BD

American Institute of Aeronautics and Astronautics
13

Table 16 varies the maneuver coordinate system. All of the cases had zero position and velocity RSS error and a
mass error of approximately 2.3e-10kg.

Table 16 Maneuver Coordinate System Results for Impulsive Maneuvers
Coordinate System Position RSS Error

(m)
Velocity RSS Error

(m/s)
Mass Error

(g)
Earth Mean Equator J2000 (CS0) 0 0 2.27374E-10

Earth VNB (CS1) 0 0 2.27374E-10
Earth LVLH (CS2) 0 0 2.27374E-10

SpacecraftBody (CS3) 0 0 2.27374E-10
Custom Designed Earth VNB (CS4) 0 0 2.27374E-10

Table 17 varies the tank configuration. All of the cases had zero position and velocity RSS error. All of the
cases had 0 mass error except for the high mass tanks, Tanks B and M, which had a mass error of approximately
2.3e-10 grams.

Table 17 Tank Configuration Results for Impulsive Maneuvers
Tank

Configuration
Position RSS

Error
(m)

Velocity RSS
Error
(m/s)

Mass Error
(g)

A 0 0 2.27374E-10
B 0 0 0
C 0 0 2.27374E-10
D 0 0 2.27374E-10
E 0 0 2.27374E-10
F 0 0 2.27374E-10
G 0 0 2.27374E-10
H 0 0 2.27374E-10
I 0 0 2.27374E-10
J 0 0 2.27374E-10
K 0 0 2.27374E-10
L 0 0 2.27374E-10
M 0 0 0
N 0 0 2.27374E-10
O 0 0 2.27374E-10
P 0 0 2.27374E-10
Q 0 0 2.27374E-10
R 0 0 2.27374E-10
S 0 0 2.27374E-10
T 0 0 2.27374E-10
U 0 0 2.27374E-10
V 0 0 2.27374E-10

As shown in Table 18 below, summarizing all impulsive maneuver results, the position RSS error ranged from 0
to approximately 6.0e-6 m, the velocity RSS error ranged from 0 to approximately 1.8e-12 m, and the mass error
ranged from 0 to approximately 2.3e-10 g.

American Institute of Aeronautics and Astronautics
14

Table 18 Summary of Impulsive Maneuver Results
Test Category Position RSS Error (m) Velocity RSS Error (m/s) Mass Error (g)

Low High Low High Low High
Orbit 0 6.0e-6 0 1.8e-12 2.3e-10 2.3e-10

Maneuver Coordinate System 0 0 0 0 2.3e-10 2.3e-10
Tank Configuration 0 0 0 0 0 2.3e-

10
All 0 6.0e-6 0 1.8e-12 0 2.3e-

10

B. Finite Maneuvers

We performed over 900 numerical tests to verify GMAT’s implementation of finite burn maneuvers. The tests
are categorized by orbit type, spacecraft configuration, thruster configuration, choice of maneuver coordinate system
(CS), and fuel tank configuration.

We modeled ten different orbit types, corresponding to a spacecraft in an orbit about each of the planets, Pluto,
and the moon. As was the case for impulsive maneuvers, for all the orbit types above, we used a simple point mass
force model with no other perturbing forces, designed to make it easier to analyze the effects of maneuvers. The
initial conditions, at a TAI modified Julian epoch of 21545, are specified below in Earth mean equator J2000
coordinates (MJ2000Eq) relative to the body specified in the orbit type. In addition, the Table 19 below includes the

value used for each orbit type.

Table 19 Finite Maneuvers Test Initial State Vectors
Orbit Type (km3/s2) X (km) Y (km) Z (km) VX (km/s) VY (km/s) VZ (km/s)
Mercury 22032.0805 2927.64 0 0 0 2.7433 0
Venus 324858.7656 7262.28 0 0 0 6.6882 0
Earth 398600.4415 7653.768 0 0 0 7.2166 0
Moon 4902.7991 2085.84 0 0 0 1.5331 0
Mars 42828.2866 4076.4 0 0 0 3.2414 0
Jupiter 126712597.0818 85790.4 0 0 0 38.4318 0
Saturn 37939519.7088 72321.6 0 0 0 22.904 0
Uranus 5780158.5336 30670.8 0 0 0 13.728 0
Neptune 6871307.7715 30322.8 0 0 0 15.0534 0
Pluto 1020.8649 1381.2 0 0 0 0.85972 0

The finite burn maneuver tests used a single spacecraft configuration with specific values for spacecraft
characteristics such as dry mass, coefficient of drag, coefficient of SRP, drag area, SRP area, and attitude. As was
previously noted, because of the simple force model used, the values for most of the spacecraft parameters above
(coefficient of drag, coefficient of SRP, drag area, and SRP area) have no effect on the test results.

As shown in the table below, we used seven thruster configurations with different values for thrust direction,
duty cycle, scale factor, thrust and ISP polynomial coefficients, choice of whether or not to model fuel depletion,
and the gravitational acceleration value used to calculate fuel use. We considered Thruster A as the baseline
thruster for the tests performed. In the table below, we highlight in red values that differ from those of the baseline
thruster.

American Institute of Aeronautics and Astronautics
15

Table 17 Thruster Configurations
T

hr
us

te
r

D
es

cr
ip

tio
n

T
hr

us
t

V
ec

to
r

D
ut

y
C

yc
le

Sc
al

e
Fa

ct
or

G
ra

v
A

cc
el

(m
/s

2)

T
hr

us
t P

ol
y

IS
P

Po
ly

Fu
el

D

ep
le

tio
n

A Baseline (1,0,0) 1 1 9.81
10 0.25 0.25(/)refP T T

300 0.25 0.25(/)refP T T Y

B All Components (x,x,x)
x=.5774

1 1 9.81 10 0.25 0.25(/)refP T T 300 0.25 0.25(/)refP T T Y

C Low Duty Cycle (1,0,0) 0.1 1 9.81 10 0.25 0.25(/)refP T T 300 0.25 0.25(/)refP T T Y

D Low Scale
Factor

(1,0,0) 1 0.1 9.81 10 0.25 0.25(/)refP T T 300 0.25 0.25(/)refP T T Y

E High Grav Acel (1,0,0) 1 1 12.14 10 0.25 0.25(/)refP T T 300 0.25 0.25(/)refP T T Y

F Loaded Thrust
Poly

(1,0,0) 1 1 9.81 See text 300 0.25 0.25(/)refP T T Y

H No Fuel Use (1,0,0) 1 1 9.81 10 0.25 0.25(/)refP T T 300 0.25 0.25(/)refP T T
N

In the table above, note that the gravitational acceleration entry is only used to calculate fuel depletion. In
particular, it is not the value of acceleration used by the force model. The thrust, represented by the thrust
polynomial, is output in Newtons (N) and the ISP, represented by the ISP polynomial, is output in seconds (s). For
both the thrust and ISP polynomial, the Pressure (P) units are kilo-Pascals (kPa) and the temperature (T and Tref)
units are Celsius (C). The form of the thrust polynomial for Thruster F is given below.

15 16

147 9 11

1

2

1 2 3 4 5 6 8 10 12 13

C C P

C PC C C

ref

T
C C P C C P C P C P C P C P C C

T
where

C1 = 1.23758251293888
C2 = 0.00730193081644684
C3 = 1.06710728099668
C4 = 1.44084613514414
C5 = 1.12975859384182
C6 = 0.866449276427312
C7 = 1.26090987550771
C8 = 1.12890566239368
C9 = 1.25439122773649
C10 = 1.78577524273692
C11 = 0.523539555272069
C12 = 1.15120028332336
C13 = 0.832532168870019
C14 = 1.26666006242687
C15 = 1.09502172813843
C16 = -0.702022868622232

We modeled four different choices of maneuver coordinate systems (CS0-CS3), and twenty-two different fuel
tank configurations as described in the impulsive maneuver section. The various test cases have names such as
Thruster_FBurn_Earth_ScA_ThrusterA_CS0_TankA, which we now explain. “Thruster_FBurn” indicates that this
is a Finite Burn test using the GMAT Thruster object. “Earth” indicates that we are using the Earth orbit type.
“ScA” indicates that we are using the Spacecraft A configuration. “ThrusterA” indicates that we are using the
Thruster A configuration. “CS0” is used to indicate that we are using the maneuver coordinate system CS0
configuration. Finally, “TankA” indicates that we are using the Fuel Tank A configuration.

Most finite burn tests apply a finite burn for 120 minutes. The test writes out the position, velocity and total
mass of the spacecraft every minute to create 120 rows of data. Each row of the GMAT output is then compared to
a MATLAB and FreeFlyer baseline data for the Position RSS Error, Velocity RSS Error, and Mass Error are
calculated. For a given test case, the error reported is the worst-case error obtained from the 120 data values in the

American Institute of Aeronautics and Astronautics
16

output. The test case Thruster_FBurn_Earth_ScA_ThrusterA_CS0_TankA was the baseline test for the finite burn
tests. In all the tests that follow, each test used the same configuration as the baseline test except for the one
parameter that is varied in each table. The table of results below varies the orbit type. The position RSS difference
ranged from approximately 1.1e-3 to 5.0e-2 m, the velocity RSS difference ranged from approximately 6.4e-7 to
7.7e-4 m/s, and the mass difference ranged from approximately 3.4e-6 to 1.1e-4 g.

Table 21 Orbit Type Results for Finite Maneuvers
Orbit Position RSS Error

(m)
Velocity RSS Error

(m/s)
Mass Error

(g)
Earth 2.644E-03 3.415E-06 1.547E-05

Jupiter 2.170E-02 1.066E-05 2.593E-05
Luna 1.054E-02 3.728E-05 8.752E-05
Mars 1.222E-03 1.195E-06 2.009E-05

Mercury 1.129E-03 2.450E-06 1.097E-05
Neptune 2.791E-02 1.720E-05 2.417E-05

Pluto 5.000E-02 7.739E-04 1.098E-04
Saturn 1.877E-03 6.404E-07 3.369E-06
Uranus 7.388E-03 4.442E-06 1.211E-05
Venus 1.198E-03 1.553E-06 5.555E-06

The table of results below varies the thruster configuration. The position RSS error ranged from approximately
3.0e-4 to 5.0e-3 m, the velocity RSS error ranged from approximately 3.8e-7 to 6.4e-6 m/s, and the mass error
ranged from approximately 2.7e-8 to 2.4e-5 g. We note that the high gravitational acceleration thruster, which
corresponds to a lower fuel mass flow rate, Thruster E, had the overall worst error. The thruster that did not model
fuel use, Thruster H, had the lowest error.

Table 22 Thruster Configuration Results for Finite Maneuvers
Thruster

Configuration
Position RSS Error

(m)
Velocity RSS Error

(m/s)
Mass Error

(g)
A 2.644E-03 3.415E-06 1.547E-05
B 1.940E-03 2.421E-06 1.147E-05
C 7.279E-04 7.070E-07 5.189E-07
D 3.004E-03 2.922E-06 2.145E-05
E 5.000E-03 6.436E-06 2.371E-05
F 1.135E-03 1.080E-06 2.938E-07
H 2.993E-04 3.802E-07 2.728E-08

The table of results below varies the maneuver coordinate system. The position RSS error ranged from
approximately 2.3e-3 to 4.3e-3 m, the velocity RSS error ranged from approximately 2.2e-6 to 4.5e-6 m/s, and the
mass error ranged from approximately 1.5e-5 to 3.0e-5 g.

Table 23 Maneuver Coordinate System Results for Finite Maneuvers
Coordinate System Position RSS Error

(m)
Velocity RSS Error

(m/s)
Mass Error

(g)
Earth Mean Equator J2000 (CS0) 2.644E-03 3.415E-06 1.547E-05

Earth VNB (CS1) 2.303E-03 2.169E-06 1.679E-05
Earth LVLH (CS2) 4.338E-03 4.452E-06 2.994E-05

Attitude (CS3) 2.644E-03 3.415E-06 1.547E-05

The table of results below varies the tank configuration where we use the same tank configuration definitions
used for the impulsive burn analysis. The position RSS error ranged from approximately 2.4e-4 to 9.7e-2 m, the
velocity RSS error ranged from approximately 2.3e-7 to 7.7e-5 m/s, and the mass error ranged from approximately
3.5e-7 to 4.8e-3 g. The high mass blow down tank, Tank M, had the worst-case error for position, mass, and
velocity. The pressure-regulated tank corresponding to Tank M, Tank B, had medium level errors. The low
constant pressure tank, Tank D, had the least error for position, mass, and velocity.

American Institute of Aeronautics and Astronautics
17

Table 24 Tank Configuration Results for Finite Maneuvers
Tank Configuration Position RSS Error

(m)
Velocity RSS Error

(m/s)
Mass Error

(g)
A 2.644E-03 3.415E-06 1.547E-05
B 1.348E-03 1.709E-06 8.041E-06
C 1.565E-03 2.855E-06 9.941E-06
D 2.370E-04 2.312E-07 3.547E-07
E 1.273E-03 1.651E-06 7.503E-06
F 4.926E-03 6.360E-06 2.882E-05
G 2.702E-03 3.489E-06 1.581E-05
H 3.599E-03 4.660E-06 2.111E-05
I 2.644E-03 3.415E-06 1.547E-05
J 2.644E-03 3.415E-06 1.547E-05
K 2.644E-03 3.415E-06 1.547E-05
L 1.730E-03 1.977E-06 1.096E-05
M 9.725E-02 7.728E-05 4.786E-03
N 3.777E-03 5.065E-06 2.870E-05
O 1.405E-03 1.367E-06 2.103E-06
P 3.060E-03 3.507E-06 1.929E-05
Q 5.681E-03 6.489E-06 3.537E-05
R 3.642E-03 4.159E-06 2.287E-05
S 2.423E-03 2.773E-06 1.536E-05
T 4.402E-03 5.684E-06 2.577E-05
U 9.262E-04 1.050E-06 5.981E-06
V 1.838E-03 2.330E-06 1.089E-05

As shown in the table below, summarizing all finite burn maneuver results, the position RSS error ranged from
approximately 2.4e-4 to 5.0e-2 m, the velocity RSS error ranged from approximately 2.3e-7 to 7.7e-4 m/s, and the
mass error ranged from approximately 2.7e-8 to 4.8e-3 g.

Table 25 Summary of Finite Burn Maneuver Results
Test Category Position RSS Error (m) Velocity RSS Error (m/s) Mass Error (g)

Low High Low High Low High
Orbit 1.1e-3 5.0e-2 6.4e-7 7.7e-4 3.4e-6 1.1e-4
Thruster Configuration 3.0e-4 5.0e-3 3.8e-7 6.4e-6 2.7e-8 2.4e-5
Coordinate System 2.3e-3 4.3e-3 2.2e-6 4.5e-6 1.5e-5 3.0e-5
Tank Configuration 2.4e-4 9.7e-2 2.3e-7 7.7e-5 3.5e-7 4.8e-3
All 2.4e-4 5.0e-2 2.3e-7 7.7e-4 2.7e-8 4.8e-3

We not that for most of the test cases above, for performance reasons, the numerical integration parameters were
not set at the highest (most accurate) settings. For any particular test case, if increased accuracy was desired, better
results could have been obtained by tightening up the numerical propagator tolerances. As expected, as a result of
the finite vs. impulsive burn times and the corresponding increased numerical processing required for finite burns,
the finite burn errors were larger than the impulsive burn errors.

V. Solvers Methodology and Results

The Solvers feature group includes the numerical algorithms, such as Differential Correction (DC) and Non-linear
Programming (NLP), used to solve problems, as well as the commands needed for defining and controlling the
simulation sequence. The types of numerical algorithms that GMAT uses to solve problems are broken up into two
types, Targeters and Optimizers. Section A describes the Targeters testing methodology and results and Section B
describes the Optimizers testing methodology and results.

American Institute of Aeronautics and Astronautics
18

A. Targeters

GMAT uses a single targeting method, a differential corrector (DC), to solve boundary value problems. When
using the DC, the user specifies a choice of which algorithm to use (Newton-Raphson, Broyden, Modified Broyden)
and which derivative method to use (forward, backward, and central difference). We tested and verified all
permutations of these settings on both orbit dynamics and algebraic problem classes. For an orbit type problem, we
verified that certain orbit related goals can be obtained within a desired tolerance. Examples of orbit parameter
targets included B-plane components, semi-major axis, inclination, and velocity components. The orbit test cases
utilized both impulsive and finite burns. The algebraic tests included solving the roots of a polynomial equation.

When using a DC, the user defines both the number of control variables (parameters that can vary) and the
number of goals. A problem where the number of control variables equals the number of goals is called a ‘square’
problem. We tested the DC using both square and non-square problems.

We give an example test case below, showing the actual GMAT script syntax, where we use a finite burn along
the spacecraft velocity component to achieve an orbit apogee of 12000 km. This is an example of a square problem
as we have one control variable, the duration of a maneuver along the spacecraft velocity direction, and one goal, the
desired orbit apogee radius value.

Create Spacecraft DefaultSC;
Create Propagator DefaultProp;
Create Thruster Thruster1;
Thruster1.C1 = 1000; %defines thrust polynomial as constant at 1000 N
Thruster1.DecrementMass = true;
Create FuelTank FuelTank1;
Thruster1.Tank = {FuelTank1};
Create FiniteBurn FiniteBurn1;
FiniteBurn1.Thrusters = {Thruster1};
DefaultSC.Tanks = {FuelTank1};
DefaultSC.Thrusters = {Thruster1};
Create Variable BurnDuration;
Create DifferentialCorrector DC1;

BeginMissionSequence;

Propagate DefaultProp(DefaultSC) {DefaultSC.Earth.Periapsis};
Target DC1;
Vary DC1(BurnDuration = 200, {Upper = 10000});
BeginFiniteBurn FiniteBurn1(DefaultSC);
Propagate DefaultProp(DefaultSC){DefaultSC.ElapsedSecs=BurnDuration};
EndFiniteBurn FiniteBurn1(DefaultSC);
Propagate DefaultProp(DefaultSC) {DefaultSC.Earth.Apoapsis};
Achieve DC1(DefaultSC.Earth.RMAG = 12000, {Tolerance = 1e-6});
EndTarget;

Example 1 Target Finite Burn to Raise Apogee

GMAT scripting is based upon user-created objects. All of the commands before the
BeginMissionSequence command define the objects needed for our analysis. Here, we have created a
spacecraft, a fuel tank, a thruster, a propagator, a finite burn object, a differential corrector object, and finally a
variable, BurnDuration, used to hold the length of our finite burn.

The first action after the BeginMissionSequence command is to propagate our spacecraft to perigee. The
Target DC1 and Vary DC1(BurnDuration = 200, {Upper = 10000}) commands tell GMAT that
we want to solve our problem using a DC process where our initial guess for the burn duration is 200 seconds.
Next, we propagate our spacecraft to orbit apogee. Finally, the Achieve DC1(DefaultSC.Earth.RMAG =
12000, {Tolerance = 1e-6}) command tells GMAT that, as part of the DC process, we want our desired
apogee radius value to be achieved within a 1e-6 km tolerance.

American Institute of Aeronautics and Astronautics
19

The script above converged to a burn duration value of 1213.19316046 seconds in six iterations and took 0.109
seconds to finish. The apogee radius value achieved differed from the target value by 6.955e-007 km, which is
within our desired tolerance of 1e-6 km. For more details regarding the syntax used in this example, see the Target
Finite Burn to Raise Apogee tutorial in the GMAT User Guide8.

B. Optimizers

GMAT allows you to solve optimization problems by using a NLP solver. Currently, you can choose from one
of two available solvers, the fmincon solver object available to all GMAT users with access to the MATLAB
optimization toolbox, and the VF13AD solver that can be built from source code available in the Harwell Subroutine
Library. For the VF13AD solver, you can choose to use the forward or central derivative method. We tested all of
these user options on sample problems. As was the case for the DC, we tested the optimizers on both orbit dynamics
and algebraic type of problems. For an orbit type problem, we verified that certain orbit related quantities, such as
fuel used or V , can be minimized while simultaneously constraining other orbit parameters. The algebraic
problems included minimizing the height of a point constrained to lie on a circle.

We give an example test case below, showing the actual GMAT script syntax, where we use a VF13AD solver
object to perform an impulsive burn to raise orbit apogee to a desired value. In this example, we have two control
variables, the impulsive V to be applied in the spacecraft velocity direction and the true anomaly (TA) of where to
perform the burn. For the goals, we have one quantity to be minimized and one quantity to be constrained. We
want to minimize the V while simultaneously constraining the position vector magnitude at orbit apogee to 42164
km to a 1 m tolerance.

Create Spacecraft aSat;

Create Propagator aPropagator;
Create ImpulsiveBurn aBurn;
Create VF13ad VF13ad1;
VF13ad1.Tolerance = 1e-008;
Create OrbitView EarthView
EarthView.Add = {Earth, aSat}
EarthView.ViewScaleFactor = 5
Create Variable ApogeeRadius DVCost;
BeginMissionSequence;
Optimize VF13ad1

Vary VF13ad1(aSat.TA = 100, {MaxStep = 10});
Vary VF13ad1(aBurn.Element1 = 1, {MaxStep = 1});
Maneuver aBurn(aSat);
Propagate aPropagator(aSat) {aSat.Apoapsis};
ApogeeRadius = aSat.RMAG;
NonlinearConstraint VF13ad1(ApogeeRadius=42164,{Tolerance = 0.001);
DVCost = aBurn.Element1;
Minimize VF13ad1(DVCost);

EndOptimize;

Example 2 Optimize Impulsive Burn to Raise Apogee

As was previously discussed, GMAT scripting is based upon user-created objects. As such, all of the commands
before the BeginMissionSequence command define the objects needed for our analysis. Here, we have
created a spacecraft, a propagator, an impulsive burn, a VF13ad optimizer, and two variables, ApogeeRadius and
DVCost, to hold the current values for apogee radius and V cost, respectively.

The first three commands after the BeginMissionSequence command setup the optimization problem. The
Optimize VF13ad1 command tells GMAT that we will be performing optimization using the VF13ad1 solver
object. The Vary VF13ad1(aSat.TA = 100, {MaxStep = 10}) command tells GMAT that the true
anomaly where the burn is performed is a control variable with an initial value of 100 degrees. The Vary

American Institute of Aeronautics and Astronautics
20

VF13ad1(aBurn.Element1 = 1, {MaxStep = 1}) command tells GMAT that the impulsive
V component along the spacecraft’s velocity vector is a control variable with an initial value of 1 km/s.

The next command propagates the spacecraft to orbit apogee and sets our user defined variable, ApogeeRadius,
to the current value of the apogee radius. The next command NonlinearConstraint
VF13ad1(ApogeeRadius=42164) tells GMAT that, as part of the optimization process, we have a goal of
constraining the apogee radius to 42164 km within a 1 m tolerance. The next command sets the user defined
variable, DVCost, to the current value of the control variable representing the impulsive V component along the
spacecraft’s velocity vector. Finally, the Minimize VF13ad1(DVCost) command tells GMAT that, as part of
the optimization process, we want to minimize the V applied.

The script above converged to a V value of 2.2431611641 km/s applied at a TA of -0.528860880875 degrees
requiring 24 iterations that were completed in 2.135000 seconds. As expected, the best (V minimizing) orbit
location to perform an apogee raising burn is near perigee (i.e., near TA = 0). In this example, since the force model
in use in not perfectly a two body Keplerian, the optimal TA value obtained is close to but not exactly 0. The
apogee radius achieved was within 5.43e-005 km of the desired value. For more details about the syntax used in this
example, see the discussion of the Optimize Resource as well as the Optimal Lunar Flyby using Multiple Shooting
tutorial in the GMAT User Guide8.

VI. Output and Utilities Methodology and Results

For the V&V program, GMAT’s Output and Utilities feature group contained the following features: orbit view,
spacecraft visualization properties, ground track plot, xy plot, report file, and ephemeris file. Additionally, the
group contained commands used to control output during the simulation process such as report, toggle, clear plot,
mark point command, and pen up and pen down commands. In this paper, we only present test results for 2-D
graphics, 3-D graphics, and ephemeris file. Although we present limited results in this paper, we performed
extensive, systematic testing of all components found in Output and Utilities feature group. The last subsection
describes at a high level the testing methodology that was used for other Output and Utilities features not presented
in this paper.

A. 2-D Graphics

GMAT’s ground track plot is a 2-D graphics feature used to plot the longitude and latitude time-history for
spacecraft. The V&V testing methodology for the ground track plot feature employed standard GMAT GUI testing
plans and procedures. The first phase of testing involved visually inspecting each functional element of the ground
track plot by the test engineer and either comparing graphical output to expected results in external tools or
evaluating by using engineering judgment. For each element, the test engineer visually verified that ground track
functionality performed as expected, and then prepared data for automated GUI regression testing for each ground
track plot element. We considered testing complete when automated GUI tests were implemented by the GUI test
engineer in the GUI regression test environment. Additionally, we implemented a suite of stress tests for this feature
by writing tests that make heavy use of the graphical components during complex mission scenarios with numerous
spacecraft displays.

GMAT supports 2-D xy data plots for graphical display of simulation data. The testing methodology for the xy
plot feature used MATLAB as the external benchmark. We generated equivalent xy data plots in MATLAB and
GMAT, and overlaid the plots to allow visual comparison of the graphical data. This comparison of the graphics
from GMAT and MATLAB verified that the xy plot component accurately draws graphics on 2-D Cartesian axes.
Similar to the ground track test procedures, we initially verified all xy plot functional elements and design
requirements through visual inspection. Then, we implemented more rigorous and automated GUI testing of xy
plot’s 2-D graphics by writing test scripts for each element. These test scripts were used by GUI test engineers to
create screenshot images of the expected behavior for all graphical elements of xy-plot. These xy plot screenshots
are used as the baseline truth data for GUI regression tests. Additionally, we conducted additional rigorous testing
on xy plot functionality by writing stress tests designed to make excessive use of this feature.

B. 3-D Graphics

American Institute of Aeronautics and Astronautics
21

GMAT supports 3-D graphics used to visualize orbital trajectories of spacecraft and celestial bodies. Users can
define 3-D view properties such as the coordinate system, and view definition properties such as camera reference
location and view directions. The 3-D graphics can optionally display coordinate system axes, constellations, xy or
celestial planes, and the sun line. During iterative processes such as differential correction or optimization, orbit
view provides the option to plot all perturbed trajectories or draw only the final converged trajectory.

We performed preliminary testing of 3-D graphics elements by visually inspecting the 3-D graphics behavior.
We implemented more rigorous, automated GUI testing of the 3-D graphics by writing test scripts that automatically
tested each orbit view functional element. The test scripts were used in GUI regression tests to automate the testing
of 3-D graphics. Key elements of the graphics were verified by comparing GMAT’s 3-D graphics against Celestia
and STK benchmarks. Elements compared against external tools include drawing orbits, planes, sun-lines, stars, and
constellations. Additionally, we wrote stress test scripts designed make heavy use of 3-D graphics to ensure no
graphics failures occur in those cases.

Figure 3 and Figure 4 illustrate the types of comparisons performed. Those figures illustrate the comparison of a
spacecraft in a sun-centered trajectory (drawn in yellow), with ecliptic plane (shown in red), xy plane (blue), in the
sun-centered mean J2000 axis system.

Figure 3 GMAT 3-D graphics output showing spacecraft trajectory, ecliptic plane, xy plane and
sun-centered MJ2000Eq coordinate system

American Institute of Aeronautics and Astronautics
22

GMAT’s 3-D graphics allow you to optionally display star constellations, and comparisons were made with
Celestia as the baseline. In order to compare star constellations from both tools, the constellations were drawn at the
same epoch. Figure 5 and 6 illustrate constellations drawn in GMAT and Celestia, respectively.

Figure 5 GMAT 3-D graphics output showing star constellations

Figure 4 STK 3-D graphics output showing spacecraft trajectory, ecliptic plane, xy plane and sun-
centered MJ2000Eq coordinate system

American Institute of Aeronautics and Astronautics
23

C. Ephemeris File

In GMAT R2013a, spacecraft orbit ephemeris data can be generated in either the standard Consultative
Committee for Space Data Systems (CCSDS) or SPK file formats. The CCSDS ephemeris output is a standard
ASCII text file while SPK ephemeris output is in binary format. Extensive, automated testing of the ephemeris file
component was conducted through GMAT’s script test system. We wrote script tests for all functional elements of
the ephemeris file feature. We compared interpolation to MATLAB and STK implementations for CCSDS
ephemeris files and tested SPK ephemeris output by comparing the results to STK and the MICE toolbox.
Additionally, we implemented stress tests that verify ephemeris output in simulations employing complex targeting
and control flow.

D. Other Output and Utilities Components

The Output and Utilities feature group contained 11 components. In this paper, we only discussed the testing
methodology for four of those components. The remaining 7 components went through equally rigorous and
systematic testing during the V&V program. Table 26 contains brief descriptions of the testing methodology used
for the remaining 7 components in the Output and Utilities group.

Figure 6 Celestia 3-D graphics output showing star constellations

American Institute of Aeronautics and Astronautics
24

Table 26: Test Methodology for Other Output and Utilities Components
Component Test Methodology
Report File Tested reporting different data types such as user-defined variables, arrays, array elements,

strings, and parameters to report files. GMAT’s report file output was visually inspected for
correctness. Those report files are used as baseline data in regression testing.

Report Command Tested reporting that different data types are correctly reported during the simulation when
using the report command. GMAT’s report file output was visually inspected for correctness.
Those report files are used as baseline data in regression testing.

Toggle
Command

Tested toggle command on ReportFile and EphemerisFile subscribers through combination of
both manual visual inspection and by creating baseline truth files using GMAT. Tested toggle
command on XYPlot, OrbitView and GroundTrackPlot by creating automated GUI tests
which are included in GUI regression tests.

Spacecraft
Visualization
Properties

Tested spacecraft visualization properties primarily through manual visual inspection and also
through automated GUI test system.

Clear Plot Tested clear plot command via the automated GUI test system and manual inspection.
MarkPoint Tested mark point command via the automated GUI test system and manual inspection.
PenUp/PenDown Tested pen up and pen down commands on the following subscribers: XYPlot, OrbitView and

GroundTrackPlot primarily through the automated GUI test system and manual inspection.

VII. Programming Infrastructure
GMAT features extensive support for custom scripting of the mission sequence, a requirement to support the

complex needs of operational users. This support consists of a custom text-based script language along with a
complement of data types, operators, interfaces, and components to enable users to implement complex sequences of
events and perform mission-specific calculations. In the V&V program, the Programming Infrastructure component
group consisted of the following components: numeric, array, and string variables; assignment and mathematics;
mission data access; external interfaces to MATLAB; control flow; utility features such as named scripting
environments and initialization; and the basic syntax and parsing of the script language itself. The V&V approach
for all of these features can be divided into two major components: the script language and mission data calculation
parameters.

A. Script Language

The goal of the script language V&V effort was to demonstrate that the various components that make up
GMAT’s script language function as required and as expected when presented with both allowed and disallowed
input. We divided the basic data types documented in the Script Language reference in the GMAT User Guide into
the following basic classes of input:

1) literals: numeric, strings
2) resources: variables, arrays, array elements, string variables, calculated parameters
3) mathematical expressions

We tested each component of the script language with all applicable input types, in all permutations. For
example, we tested setting a variable using numeric literals, array elements, other variables, spacecraft calculated
parameters, etc. We tested setting and retrieving from arrays in multiple dimensions and at their size limits. For
complex statements such as assignment and control flow (if, for, and while), we tested each syntax element (such as
each logical operator argument) with all allowed input types. We followed this methodology for all components of
the script language.

Additionally, we tested each functional element for proper behavior. For control flow statements, we tested each
logical operator (and, or, not) in combination with all input types. We verified the behavior of the script environment
by choosing a set of representative system tests and wrapped each in a script environment, making sure the output
remained unchanged. For the external interface to MATLAB, we wrote tests that pass each input type to MATLAB

American Institute of Aeronautics and Astronautics
25

Table 18. Script language mathematical
operators and functions.

Operators Functions
+ (addition) sin exp
- (subtraction) cos DegToRad
* (multiplication) tan RadToDeg
/ (division) asin abs
' (transpose) acos sqrt
^ (power) atan norm
 atan2 det
 log inv
 log10

and then return it to GMAT, and then verify that the values are identical. We further tested the interface by calling
different types of functions, including built-in, custom, and those with names that shadow existing names in GMAT.

GMAT’s assignment command fulfills two roles:
assignment of one element to another (copying data), and
performing mathematical calculations with a suite of built-in
operators and simple functions. We verified the data assignment
behavior by assigning each input type to each other input type
and verifying that the data was copied correctly. We performed
this step for each complex type (e.g. spacecraft, thruster) as part
of the V&V program for that type. To test the mathematical
role of the assignment command, we decomposed the syntax
into the operators and functions shown in Table 18.

We tested each operator and mathematical function with
each input data type and compared to either known results (for
trivial calculations) or the output of the corresponding equation
in MATLAB.

To test more complex expressions, we implemented a custom random mathematical expression generator in
MATLAB. The generator builds an arbitrary random number of expressions of arbitrary random length from the
component elements listed in Table 18, and with all variations of input data types. These equations are populated
with sample data and evaluated in MATLAB to obtain a baseline value. Malformed equations and non-real results
are discarded and replaced with new generated expressions. For added complexity, language-level elements are also
added at random intervals, including whitespace and line-continuation characters. We applied this generator to
create tests for the mathematical expression parser that included thousands of extremely complex equations, which
led to over a dozen issues being identified and fixed. Additionally, one hundred scripts, each with a random number
of generated expressions, are run in the nightly regression testing process to maintain quality.

We tested the parsing of the script language itself by documenting every syntax element and testing each
individually with a range of input types. Elements include comments, whitespace handling, literal data types
(integers, real numbers, string literals, arrays), line-continuation characters, and allowed characters and character
sets. We paid nearly equal attention to the graceful rejection of invalid input, including malformed syntax elements
and unreadable files. We used random file generation to test GMAT for crashes on loading invalid files.

B. Mission Data Calculation Parameters
One of GMAT’s unique features as a mission analysis tool is its extensive and flexible data parameter

subsystem. GMAT contains many objects, like spacecraft, thrusters, maneuver models, etc. Each of these utilize
properties that can be used to configure the objects, such as the spacecraft’s coefficient of drag, or the thruster’s Isp
value. However, they also expose a set of output data parameters that can be calculated at the request of the user
during the execution of the mission sequence. These include calculated quantities such as spacecraft altitude with
respect to a central body, or the B-plane angle with respect to a targeting coordinate system. Often a property is both
configurable and can be used as a calculated parameter; these include orbit state representation elements, such as
semi-major axis. The semi-major axis of a spacecraft can both be set as an object property, or it can be calculated as
a data parameter, often with respect to a different central body than that of the spacecraft itself. These dual-role
parameters are called “read/write parameters.” Purely calculated parameters are called “read-only parameters.” The
flexibility of the parameter subsystem is that certain parameters depend on either a celestial body (such as altitude)
or a coordinate system (such as the B-plane vector). By specifying any available celestial body or coordinate system
as the dependency, the parameter value is converted automatically. Examples of different parameters GMAT offers
for certain objects are listed in Table 19.

American Institute of Aeronautics and Astronautics
26

We tested all read/write parameters, such as spacecraft state representations and thruster properties, as a part of
the individual parent features in the V&V program, and we performed nominal testing here to confirm simple
operation in an output context. For the numeric parameter-specific testing discussed here, we focused on read-only
parameters, all of which are related to the spacecraft object.

We divided the full set of parameters into two classes: celestial-body dependent and coordinate-system-
dependent. We tested both sets in a similar manner, by defining a set of reference orbits and calculating (and
reporting) the value of each parameter in GMAT. We then defined identical reference orbits in the benchmark tools,
and compared the reported values to a numeric tolerance. For the benchmark tools, we primarily used
STK/Astrogator, and for trivial parameters, custom calculations implemented in MATLAB or GMAT’s script
language. Table 20 and Table 21 summarize the cases tested and the numeric results.

Table 19: Examples of GMAT data parameters.
Access is read/wrote (RW) or read-only (RO).
Parameter Access Dependency
Spacecraft
Cartesian position RW Coordinate system
Cartesian velocity RW Coordinate system
Keplerian elements RW Coordinate system,

celestial body
Epoch RW (None)
Attitude quaternion RW (None)
Drag coefficient RW (None)
Altitude RO Celestial body
Elapsed time RO (None)
Orbit period RO Celestial body
Orbital energy RO Celestial body
B-plane parameters RO Coordinate system
State transition matrix RO (None)
Thruster
Duty cycle RW (None)
Thrust scale factor
Thrust polynomial
coefficients
Cartesian thrust
vector
Fuel tank
Fuel mass RW (None)
Fuel density
Tank volume
Fuel pressure
Fuel temperature
Impulsive maneuver
Cartesian maneuver
direction

RW (None)

American Institute of Aeronautics and Astronautics
27

All orbits are identical to those shown in Table 3. The state vectors for the additional Hyperbolic and
Hyperbolic2 cases are shown in Table 22.

We judged the results shown here as acceptable to prove the accuracy of the parameter calculations for different
orbit regimes and dependency values, and determined that the remaining error was caused by differences in
modeling between the benchmark tool and GMAT.

Table 20 Selected test results for celestial-body-dependent calculated parameters. Benchmark tools
are indicated as STK/Astrogator (AST), GMAT, and custom scripting implemented in each tool.
Results are relative error between GMAT and the benchmark. A value of 1 indicates 100% error.

Orbit Celestial
body

Altitude
(AST)

Beta angle
(cust.
GMAT)

Orbit
energy
(cust.
AST)

Mean
motion
(cust.
AST)

Angular
momentum
(AST)

Velocity at
periapsis
(cust. AST)

GEO Earth 5e-12 < 1e-16 5e-14 8e-12 2e-11
Venus 2e-12 2e-12 8e-11 6e-14 2e-11 4e-11

Hyperbolic Earth 3e-9 7e-15 6e-8 2e-11 2e-7 9e-8
Venus 2e-11 3e-14 3e-8 1e-8 2e-8 2e-8

Mars Earth 2e-12 < 1e-16 3e-9 4e-9 2e-9 2e-9
Mars 4e-8 < 1e-16 2e-9 2e-12 5e-10 5e-10

Luna Earth 2e-11 < 1e-16 5e-8 3e-14 9e-9 9e-9
Luna 3e-9 < 1e-16 7e-10 6e-13 4e-10 4e-10

Table 22: Additional test cases for calculated parameters. States are relative to Earth J2000.
Orbit Epoch X Y Z VX VY VZ
Hyperbolic 01 Jun 2004

12:00 UTC
12371.7915 5050.7627 5050.7627 -7.985992 2.445201 2.445201

Hyperbolic2 01 Jan 2000
12:00 TAI

-29840 0 -5463.8 4.1326 -3.787324 0.24139

Table 21: Selected test results for coordinate-system-dependent calculated parameters. STK/Astrogator
was used as the benchmark tool in all cases. Results are relative error between GMAT and the

benchmark. A value of 1 indicates 100% error.
Orbit Coordinate

system
Velocity
magnitude

RAAN Declination Right
ascension
of velocity

Right
ascension of
hyperbolic
asymptote

Declination
of hyperblic
asymptote

GEO Earth J2000 4e-12 5e-14 5e-14 2e-9
Saturn Fixed 8e-12 2e-5 8e-13 2e-5

Hyperbolic Earth J2000 3e-8 1e-13 4e-9 4e-9
Saturn Fixed 6e-13 2e-6 7e-13 2e-5

Hyperbolic2 Earth J2000 7e-8 3e-8
Saturn Fixed 7e-8 4e-8

Mars Mars J2000 5e-9 2e-11 2e-5 9e-7
Saturn Fixed 6e-13 6e-6 3e-13 6e-6

Luna Moon J2000 5e-10 6e-13 2e-6 3e-7
Saturn Fixed 4e-13 3e-6 4e-13 2e-5

American Institute of Aeronautics and Astronautics
28

Figure 7 GATS Test Driver Interface

VIII. GUI Testing

The goal of the GMAT GUI testing effort was, and is, to provide complete test coverage for GMAT. We needed
to ensure 100% coverage of the GUI (every button, every text box, every menu, etc. gets tested at least once) and
100% requirements fulfillment (every GUI-related requirement is fulfilled by the GUI). Most importantly, GUI
testing had to be automatable and repeatable. Testing the GUI once every release cycle or even once a month was
not acceptable. To ensure consistent quality, GMAT GUI regression testing needed to happen as automatically and
hopefully almost as often as script testing.

The GMAT project uses SmartBear Software’s TestComplete to perform automated GUI testing on Windows
platforms. TestComplete allows users to easily create, maintain, and execute automated tests for exercising the
widgets of their GUI. It allows the GMAT GUI Test Team to perform functional and regression testing of the
GMAT GUI.

A. Methodology

For GMAT, we divided the GUI tests into 2 different types: “unit” tests and system tests. Unit tests ensure
verification and acceptance testing of every button, menu, text box, etc. for complete coverage of the GMAT GUI
and GMAT GUI requirements. Every unit test project exercises one object (resource, command, script window,
mission sequence, etc) in the GMAT system and its specific GUI. System tests seek to validate the GMAT GUI by
testing the entire application using end-to-end test cases by simulating typical end-user interactions with the system
with the intent of qualifying GMAT as a fully functional application.

The GMAT script test team is aggressive in performing regression testing frequently to catch new errors early
and as they happen. For GMAT 2013a, we performed the full suite of script tests nightly. This process had been
automated and in place for years (though it grew significantly during the V&V program). The goal of the GMAT
GUI test team was to perform GUI regression testing in a similar manner. After selection of SmartBear’s
TestComplete, it took over a year to develop a full suite of GUI unit and system tests. Even though it is easy to
create GUI tests with TestComplete, it is labor intensive to create good, maintainable tests. Initial efforts made it
clear that we needed to refactor how we developed GUI unit tests. The re-factorization efforts paid off - with the
use of new templates, we were able to generate much more robust unit tests in a fraction of the time. Due to
schedule factors, refactoring of GUI System tests did not occur until after the R2013a release. While the System
tests performed well and provided much needed GUI testing while we developing the GUI unit tests, they required a
lot of manual intervention.

American Institute of Aeronautics and Astronautics
29

Figure 8 GATS Sample Test Results

Figure 9 Sample GUI System Test Tracking

We developed an automated GUI test execution tool, the GMAT Automated Test Suite (GATS), to automate the
execution of the GUI unit tests (and eventually GUI System tests), map tests to requirements, and report results.
GATS ingests a requirements-to-test matrix (RTTM) spreadsheet, executes every test, saves the recorded results,
and provides analysis help. Figure 7 shows a sample GATS RTTM. GMAT testers used GATS to analyze results,
re-execute failed tests, associate bugs with tests (to be able to track expected failures in the future), and report GUI
Regression test results to the GMAT team.

GATS significantly reduced GUI regression test effort and analysis. In January 2012, it took approximately 14
days to manually execute and analyze 53 Unit test projects (totaling approximately 1000 tests). By March 2013,
GATS was autonomously executing 90 GUI unit test projects (totaling approximately 3400 tests) in 4 days,
requiring only 1-2 days of manual analysis (a 10x reduction in effort while providing 3.4x the coverage). GMAT
developers had the primary responsibility to analyze regression reports and address test regressions due to code
modifications and additions. If analysis indicated a regression appeared to be the result of a poorly designed or
flawed test, then it was the responsibility of test analysts to modify the test accordingly.

B. Results

For GMAT 2013a, the GUI System testing
was performed semi-automatically 1.3 times
per week and was in place early to help identify
software issues. After the release of GMAT
R2012a in May 2012, we were executing 38
system tests in a 2-hour period. By 2013a, we
were executing a total of 45 system tests in a 3-
hour period. Figure 9 shows the GUI system
testing results in the final year before release.
As you can see, GUI System testing helped us
track bug fixes and immediately see failures
such as the failure spike for the November 6th,
2012 build.

We also had a baseline for GUI Unit
Regression testing in place in May 2012 with 1650 tests. The first baseline took 6 days to run as we had to rerun
tests continuously to get everything working smoothly, even with use of GATS. We gave ourselves a goal of
performing GUI Unit testing every 2-4 weeks based on that experience.

Over the R2013a development cycle, we
continually improved the unit test suite and
reduced the time to perform unit regression
testing (See Figure 9). By the time of the
GMAT 2013a release, we performed GUI Unit
Regression testing every 1 to 2 weeks, which is
remarkable considering we had almost doubled
the number of tests. By March, GUI Unit
testing automatically executed 2937 tests in
approximately 77 hours.

Proper GUI testing is a matter of continuous
improvement. Since GMAT R2013a, we have
continued to improve our GUI testing
processes. GMAT GUI Unit Testing now
includes over 3400 individual tests executed
automatically every weekend (taking approximately 70 hours). Since it is not feasible to execute the full suite of
GUI unit tests nightly, we selected 400 tests as a representative subset of the full suite to execute nightly as a GUI
Smoke test. In addition, GMAT GUI System testing are now completely refactored and automated. We execute
109 GUI System tests nightly; it takes approximately 11 hours. The combination of the GUI System tests and the
GUI Unit Smoke tests gives us a nightly regression test giving acceptable confidence in the daily GMAT build. In a
related effort, we automated every GMAT GUI tutorial, allowing us to catch interface changes between releases that
might break the user tutorials.

American Institute of Aeronautics and Astronautics
30

Figure 10 Sample GUI Unit Test Tracking

GMAT GUI testing has been a remarkable success. GMAT’s GUI is the best tested (and retested) application that
the GMAT team has ever developed in their careers for NASA. It provides a significant complement to the large
nightly script test suite to enable our customers’ confidence in GMAT’s quality.

IX. Conclusion
This paper documents the verification and validation of GMAT resulting in version R2013a, the first Gold

version of the software. The V&V program began in the winter of 2012, after GMAT had been in Beta form for
approximately 5 years and used extensively as a preliminary design tool. As of the completion of the V&V effort,
GMAT was rigorously tested on the Windows 7 platform, and nightly regression tests included approximately
13,000 test scripts and approximately 3400 automated GUI tests.

We achieved all technical and programmatic goals of the effort:

Systematically evaluated and validated all models, components, and functionality
Fixed nearly all critical system defects
Updated working specifications that define system behavior
Provided high quality end user documentation and training material
Prepared for system maintenance and further development of a NASA Class B flight qualified system
Positioned GMAT for larger community adoption
Positioned GMAT for flight qualification

We consider GMAT to be the best tested (and retested) system that we have encountered in our work for NASA.
As evidence, we presented high-level test results in most system areas, and detailed test results for key areas. For
key numeric areas such as dynamics and modelling, coordinate systems, and numerical integration, we presented
results showing excellent agreement with industry-standard baseline systems. As of the time of writing, R2013a has
received approximately 6000 downloads of the Windows application files, an approximately 50% increase from the
equivalent time before the V&V program. The GMAT V&V effort continues to pay dividends and has withstood
constant expansion and revision. The GMAT R2013a V&V effort led to a smooth follow-on effort for flight
qualification, described by Qureshi1, resulting in version R2013b, the first flight qualified version of GMAT.

References

1Qureshi, Rizwan, and Hughes, Steven, P., “Preparing the General Mission Analysis Tool for Operational Maneuver
Planning of the Advanced Composition Explorer Mission (ACE).” AIAA/AAS Astrodynamics Specialist Conference, San Diego,
CA, 2014, (submitted for publication).

2MATLAB, Software Package, Version R2013a, Mathworks, Natick, MA, 2013.
3Test Complete, Software Package, Version 9.3, SmartBear, Beverly, MA, 2013.
4STK, Satelite Tool Kit, Software Package, Version 8.1.3 and 9.2.3, Analytical Graphics, Inc., Exton, PA, 2008.
5FreeFlyer, Software Package, Version 6.7.2, a.i. solutions, Lanham, MD, 2012.
6Celestia, Software Package, Version 1.6.1, Celestia Development Team, 2010.

American Institute of Aeronautics and Astronautics
31

7Vallado, David, A. “An Analysis of State Vector Propagation Using Differing Flight Dynamics Programs”, AAS/AIAA
Space Flight Mechanics Conference, 2005.

8GMAT, General Mission Analysis Tool, Software Package, Version R2013a, NASA Goddard Space Flight Center,
Greenbelt, MD, 2013.

9Hughes, Steven, P. “GMAT Software Management Plan (SMP)”, NASA Goddard Space Flight Center, Greenbelt, MD,
2013.

10Grubb, Thomas, G., “GMAT Test Plan”, NASA Goddard Space Flight Center, Greenbelt, MD, 2013.

American Institute of Aeronautics and Astronautics
32

