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ABSTRACT

This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl
broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic
quasi-linear wave–particle interaction. Making use of static analytical electron distribution in an inhomogeneous
field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of
scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution
significantly. The present theoretical results provide an alternative or complementary explanation to the usual
whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a
key role in broadening the solar wind strahl during quiet solar conditions.
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1. INTRODUCTION

Continuous measurements of the solar wind electrons
have shown pronounced deviations from the distribution that
would be expected in thermal equilibrium conditions, i.e., the
Maxwellian distribution. Actual distributions usually feature
different electron components covering a wide range in en-
ergy. These velocity distribution functions (VDFs) are usually
composed of an isotropic thermal core below about 10 eV, an
energetic quasi-isotropic halo, which usually lies in the range of
10–100 eV, and an ubiquitous field-aligned anti-sunward ener-
getic component called the strahl. The strahl is usually observed
in the range of about 40 eV to 1.5 keV. A highly energetic
quasi-isotropic population, known as the superhalo, may also
be found within the energy range of several tens of keV up to
about 100 keV (Marsch 2006; Hammond et al. 1996; Lemaire
et al. 2007; Štverák et al. 2009; Pierrard et al. 1999, 2001;
Gosling 1990; Gosling et al. 1993; Lin 1998).

While a number of theoretical explanations for these features
may be conceived, there is still no general consensus on the
origin of the halo and strahl components. Although some aspects
of the formation of the strahl component via magnetic focusing
effects are understood, there is no general agreement as to what
produces its broad pitch-angle width (Maksimovic et al. 2005b;
Štverák et al. 2009; Scudder & Olbert 1979; Pavan et al. 2010;
Ryu et al. 2009; Owens et al. 2008; Gary & Saito 2007; Vocks
et al. 2005; Vocks & Mann 2003; Vocks 2002; Hammond et al.
1996; Potter et al. 1980; Lin 1985; Gosling et al. 2003).

Recent observations of solar bursts (de Koning et al. 2006,
2007) indicate frequent bursts of electron strahls that reach down
to energies below 1.4 keV as measured by the ACE spacecraft
at 1 AU (astronomical unit). Their survey analysis shows that
all bursts measured have similar pre-burst strahl angular widths
and flux intensities. As a consequence, the authors concluded
that the broad angular width associated with the beam does not
depend on the existing pre-burst conditions but suggested that
rather the angular broadening of the pitch-angle distribution
function during solar electron bursts is almost certainly a
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consequence of particle scattering. Because the angular width
broadening of the pitch-angle distribution function during bursts
is independent of pre-burst conditions, while they do depend on
burst characteristics, they further suggested that scattering may
result from self-generated fluctuations which should increase in
magnitude as the energy density of the burst strahl increases.

The strahl feature is observed ubiquitously in solar wind mea-
surements, either under bursty or quiet conditions (Anderson
et al. 2012; de Koning et al. 2006, 2007; Wang et al. 2012).
Bursty conditions means a sudden enhancement of energetic
electrons, which are usually related to impulsive solar events
such as flares and coronal mass ejections. When the strahl fea-
ture is observed in the absence of such sudden enhancements,
we consider this a quiet event.

This Letter shows the results of numerical simulations that
could provide a possible explanation for the strahl broadening
during quiet solar conditions. On the basis of de Koning et al.
(2006, 2007) observational results and inference that self-
generated electrostatic waves could be capable of broadening
the strahl, we carry out a series of kinetic simulations based on
a Fokker–Planck model in order to confirm these observational
results. Unlike the simulation results with whistler waves by
Vocks et al. (2005) and Vocks & Mann (2003), the present
calculations will focus on wave–particle interaction with self-
generated electrostatic plasma (or Langmuir) waves.

The present analysis finds that Langmuir waves with fre-
quency near the plasma frequency are capable of scattering
the strahl component resulting in energy and pitch-angle diffu-
sion that broadens its particle velocity distribution significantly.
The present theoretical results provide an alternative or comple-
mentary explanation to the whistler diffusion scenario, suggest-
ing that self-induced Langmuir waves might play a key role in
broadening the solar wind strahl during quiet solar conditions.

The next section presents a suitable kinetic Fokker–Planck
model that accounts for the large-scale effects, such as magnetic
mirroring and spatial transport, as well as small-scale processes,
namely, those related to wave–particle interaction. This model is
used to address the issue of strahl broadening by wave–particle
interaction involving self-generated Langmuir waves. Section 3
shows steady-state solutions of the Fokker–Planck model under
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suitable approximate boundary conditions in space. Section 4
presents the complete numerical results of the Fokker–Planck
simulations and a discussion of the relevant results within the
context of the solar wind electrons.

2. MODEL FRAMEWORK

The following Fokker–Planck equation is considered for the
electrons:

∂f

∂t
+ v · ∂f

∂ r
+

F
m

· ∂f

∂v
=

(
∂f

∂t

)
wp

. (1)

Here, “wp” stands for “wave–particle” processes. The force
F includes the customary large-scale forces such as magnetic
mirroring, ambipolar electric field, and gravity. Along with
Coulomb collisions and spatial transport, these processes de-
termine the strahl shape and its related features. In order to limit
the scope of the present discussion, the effects of wave–particle
interaction, spatial transport, and magnetic mirroring shall be
taken into account only in one spatial dimension. However, we
shall consider two dimensions for velocity and wave vectors.
The problem is split in two parts, one related to large-scale ef-
fects and the other related to small-scale or local effects. An
analytical steady-state solution is sought for the large-scale ef-
fects. Next, this solution for the distribution function is used as
the initial distribution for the wave–particle interaction process.
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while the wave–particle effects are dictated by
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where the diffusion coefficient is given by

Dij = πe2

m2
e
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Iσ (k)δ[σω(k) − k · v]. (4)

The spectral wave energy density Iσ (k) evolves according to the
wave kinetic equation

∂Iσ (k)

∂t
= CIσ (k), (5)

where the coefficient C is given by

C = πω2
pe

k2

∫
dvδ[σω(k) − k · v]σω(k)k · ∂f

∂v
. (6)

Here, the spectral wave density, Iσ (k) = |Eσ (k)|2, corresponds
to the square of the wave electric field spectral component,
σ stands for the sign of phase velocity, and s stands for the
heliocentric radial distance. The remaining quantities have their
usual meanings.

Langmuir waves are the simplest type of oscillations that can
take place in a plasma. If we are concerned with frequency
lying in the vicinity of the plasma frequency, then we may
approximate ω(k) = ωpe. This expression replaces the well-
known thermal Langmuir dispersion relation. The initial wave
spectrum is assigned a constant seed level.

Two source points are considered, one located at 10 R� (solar
radius) from the Sun, at the “Sun side,” and the other one located
at 210 R�, (∼1 AU), at the “Earth side.” Particles streaming
from the Sun side and the Earth side are assigned positive and
negative parallel velocities, respectively.

3. STEADY-STATE SOLUTION

The system can be described in terms of the velocity magni-
tude and pitch angle by a change of variables,

v =
√

v2
‖ + v2

⊥, θ = arctan

(
v⊥
v‖

)
. (7)

Thus, Equation (2) reads
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With the ambient magnetic field assumed to behave as B ∼ s−2

(Parker 1958), it can be verified that the following expressions
are steady solutions (∂f/∂t = 0) of Equation (8) for positive
(>) and negative (<) parallel velocities, respectively,
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]
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s

)
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]
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The quantities si and sf stand for the source locations at the
Sun side and the Earth side, respectively (si = 10 R� and
sf = 210 R�). Consequently, the general solution is given by

f (v, θ, s) = f

[
v, arcsin

(
s sin θ

si

)
, si

]
H(>)

+ f

[
v, arcsin

(
sf sin θ

s

)
, sf

]
H(<). (10)

The Heaviside step function H is defined as follows:

H(>) =
(

1, 0 � θ < π
2

0, π
2 < θ � π

,

H(<) =
(

0, 0 � θ < π
2

1, π
2 < θ � π

. (11)

For v‖ = 0, Equation (8) yields the condition

∂f

∂θ
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θ=π/2

= 0. (12)

The above solutions define “cones” in velocity space, and they
are the regions within which the solution exists. For velocities
outside the cones, instead of assigning a null value to the
distribution, we assign the original equilibrium value. Therefore,
at an arbitrary point in space, the distribution is composed
of three distinct components, namely, loss cone, “gain cone”
(strahl), and the Maxwellian background. In essence, the steady
solution assigns a “cone” of each source Maxwellian to the
velocity distribution at a spatial point in between. Hence, all the
components of the initial distribution are Maxwellian shaped,
and therefore vanish at the high speed limit.
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Figure 1. Drift velocity spatial profile.

Normalization requires further interpretation. In contrast to
magnetic mirroring, magnetic focusing cannot constrain parti-
cle spatial accessibility. As consequence, the number per unit
volume of particles streaming from the Sun side is constant
throughout the space in the steady state (considering spher-
ical coordinates). However, a spherical unit volume bears a
dependence proportional to s2, yielding a dependence of ac-
tual density proportional to 1/s2, consistent with observational
data. Therefore, the density, taken as the number of particles
per spherical unit volume, of the strahl component is eventually
given by n0(si)/2, in the steady state, where n0 stands for the
background density. Operationally, f> is normalized to unit by
ni(s), and assigned density n0(si)/2, where ni(s) = n0(si)θi/π
and θi = arcsin(si/s). The total normalization is thus given by

n(s) = n0(si)

2
+ nf (s) + nl(s), (13)

where

nf (s) = n0(sf )
θf

π
,

nl(s) = n0(s)

[
1 − θi + θf

π

]
, (14)

and

θf = arcsin

(
s

sf

)
. (15)

Note that, in principle, the steady solution depends only on
the VDF at the source points (nl = 0). Information of points in
between is required only if the choice of assigning a non-null
value to the VDF outside the loss and gain cones is made. The
choice for the last option is based on numerical convenience.
Also note that, considering only the strahl component, it can be
verified that the drift velocity, vd , taken as the average parallel
velocity, is given by vd = (

√
πve/2)(si/s)/ arcsin(si/s), ve

being the local background thermal velocity. Figure 1 shows
the profile of the resulting drift velocity vd as a function of
the spatial position in units of solar radius, from the Sun side
to 1 AU, which clearly shows acceleration of the solar wind
electrons and the attainment of a steady level near 1 AU. This
result is also consistent with other models and simulations of
solar wind (e.g., Pierrard et al. 1999).

4. NUMERICAL APPROACH, RESULTS,
AND DISCUSSION

Although the set of Equations (3) and (5) is not particularly
complicated, they do not lend themselves to analytical treatment,
and they must be solved by numerical means. We employ a novel
numerical scheme that involves a combination with the additive
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Figure 2. Time evolution of integrated wave power I. The reduced spectra Ik
and Iφ are shown for tωpe = 10, 20, 30.

splitting method (ASM; Faragó et al. 2008; Hamilton et al.
1990). The method involves the splitting of an equation into a
subset of (simpler) equations.

The advantage of this method is that, since the more complex
original equation is broken into a number of simpler equations,
these simplified equations may lend themselves to analytical
treatment. The updated state can thus be obtained by advanc-
ing the equation numerically, using the respective analytical
solution. We thus refer to this approach as semi-analytical
method (SAM). The SAM is applied to the wave equation (5),
while the particle equation (3) is handled by the ASM combined
with the implicit method (Carnahan et al. 1969).
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Figure 3. Time evolution of diffusion coefficients for tωpe = 10, 20, 30.

The density and temperature ratios between the Sun-side
and Earth-side boundaries are taken as n0(si)/n0(sf ) = 441
and T0(si)/T0(sf ) � 6, where T0 stands for the background
temperature. These values match the profiles for density and
temperature, n ∼ s−2 and T ∼ s−0.6, which are typical in the
solar wind (Issautier et al. 1998; Maksimovic et al. 2005a).
Note, however, as mentioned above, that the establishment of
profiles is not indispensable. In principle, only parameters at the
boundaries are required.

The integrated wave power I is followed, and the final stage
is taken as the point when the exponential growth slows down
to a nearly steady level. In Figure 2 one can see that this point
corresponds to tωpe ∼ 30. Figure 2 also shows the reduced
spectra Ik and Iφ , which are obtained upon integration of Iσ

over either the angular (φ) or radial (k) variable, respectively.
The reduced spectra are shown for three distinct normalized
times, namely, tωpe = 10, 20, 30, and only the range of k over
which the wave amplification occurs is plotted.

Note that even though we have resorted to the simplified
Langmuir wave dispersion relation, i.e., ω(k) = ωpe, the wave
spectra are nevertheless observed to be spread in k space over
a relatively broad region. We attribute the broad k spectrum
to the spread associated with the particle velocity distribution
along parallel direction. The spectral angular intensity for later
times peaks around 35◦, which we believe is closely related to
the initial gain-cone angle. Further investigation on the spectral
and VDF shape dependence on physical parameters and spatial
location shall be addressed in the future.

The physical reason why the Langmuir waves are excited by
the strahl electrons is because the gain cone associated with
the strahl, when viewed in cylindrical coordinate, possess the
population inversion feature when plotted along parallel velocity
component. Of course, the population inversion is associated
only along the narrow strip of pitch angles defined along the
strahl boundary, but this is sufficient to initiate the self-consistent

excitation of Langmuir turbulence, and the subsequent pitch-
angle diffusion.

Information on the diffusion coefficients is shown in Figure 3,
where Dθv = Dvθ . The plotted quantities result from integration
over either the pitch-angle or velocity variable. The coefficients
are shown for three distinct normalized times, namely, tωpe =
10, 20, 30. The results are consistent with diffusion being
effective over a velocity range of nearly 0–2 v/ve, and over
a pitch-angle range of nearly 0◦–140◦, for the present run.

The resulting diffusion coefficients suggest the occurrence
of diffusion in energy. This feature is relevant since, according
to the work by Gurgiolo et al. (2012), energy diffusion might
be a signature of scattering of strahl electrons to the halo. In
bursty conditions, however, energy diffusion should take place
in higher energies.

In Figure 4, the time evolution of electron VDF shows the
broadening of the strahl component by the self-generated plasma
oscillations at the Earth-side boundary (∼1 AU).

The analytical solution (9) assigns both a loss cone and
a gain cone to the VDF at an arbitrary point in space be-
tween the Sun-side boundary (s = si) and the Earth-side bound-
ary (s = sf ). The cone angles, θi and θf , vary accordingly
to the spatial position, and the cone features are enhanced as
the corresponding angle decreases. At the Earth-side boundary,
the loss-cone (half) angle is 90◦, hence no loss-cone feature is
present. Therefore, in this case, the waves are generated from
the nonthermal features related to the gain cone only. The free
energy for the wave excitation is, as mentioned, associated with
the population inversion along the gain-cone boundary defined
with respect to the parallel velocity.

The initial free energy is primarily associated with the gain-
cone boundary defined by the pitch-angle anisotropy, which is
highly directed along the background magnetic field. As the
Langmuir waves (or, more precisely, the plasma oscillations)
are excited, the resulting instability causes a strong pitch-angle
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Figure 4. Time evolution of VDF at “1 AU.”

scattering toward perpendicular velocity component. This is
dictated by quasi-linear theory, and the result is that the initial
VDF evolves toward the flattening of the parallel gradients. This
process causes the parallel gradients to be displaced to higher
perpendicular velocities while becoming less steep.

In order to determine the strahl width and its dependence on
energy, let us define the “bulk pitch angle” Θ,

Θ = v2
e

∫
θf (v, θ, s)dθ∫
f (v, s)dv

. (16)

Within this definition, the strahl half-width is given by Θ =
Θ(v). Figure 5 shows Θ at the final stage.

A great variability in the strahl width and in the respective
dependence with energy is found in observational data (Owens
et al. 2008; Gary & Saito 2007; de Koning et al. 2007, 2006;
Hammond et al. 1996). The comprehensive survey reported by
Anderson et al. (2012) concludes, given the wide range of strahl
widths observed, that the strahl cannot be characterized by any
typical width. Furthermore, in what concerns the strahl width
dependence with energy, they verify that the strahl width can
either increase or decrease with energy. Therefore, it seems that
comparisons with observational data, in this case, are not able to
clearly validate a theory. In essence, all that could be expected
is that the resulting strahl width be broader than it would be if
the system was subject to adiabatic magnetic field effects only.

It is important to distinguish between two situations, as
discussed below. First, impulsive or bursty events are related to
the beam formation and the consequent bump-in-tail instability
in the traditional sense. Systems with these characteristics have
been well studied. The work by Gary & Saito (2007) and Pavan
et al. (2010) are representative examples of simulations that aim

to provide an explanation to the observed features of particle
distributions in the solar wind based on beam–plasma systems.
Such beam–core featured systems show diffusion, or beam
broadening, mainly between the beam and the core. Therefore,
the related strahl width dependence with energy can be expected
to be a function of the beam drift velocity (e.g., Gary & Saito
2007). The reason for this behavior is that the unstable feature of
these systems is dictated by the positive slope in velocity space,
which is concentrated around the beam drift velocity.

A second situation arises when quiet conditions are consid-
ered, and it is what the present model aims to address. The
basic difference in the present model is that positive slope in
velocity space in the parallel direction is found throughout the
initial gain-cone boundary defined in pitch-angle space. There-
fore, the dependence of strahl width with energy is expected
to be somewhat different from the classical beam–plasma sys-
tem. Furthermore, in contrast to the transient characteristics of a
beam featured system, the present model must be viewed from
an asymptotic standpoint.

Given the numerical effort required to reach a steady state
of the former system, mainly due to the disparity in the time
scales involved in the wave–particle diffusion and the large-
scale processes, the present model treats the problem as an
initial value problem in which the large-scale effects deter-
mine the narrow strahl gain cone, which is subsequently treated
as an initial condition. We then turn on the wave–particle in-
teraction term to determine the pitch-angle broadening. How-
ever, it is possible to draw further conclusions considering the
system being continuously fed with particles streaming from
the Sun side. In this case, the strahl feature is continuously
built up by the large-scale transport and magnetic focusing,
while, concomitantly, wave–particle diffusion acts to scatter
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Figure 5. Bulk pitch angle as a function of velocity.

the strahl particles. Conceivably, this process might form the
strahl–halo–superhalo feature found ubiquitously in the solar
wind particle measurements. This continuous relatively smooth
feeding of the particles is suitable in quiet solar conditions, and
no bursty wave enhancements would be expected (Wang et al.
2012).

A difference can also be pointed out with respect to the free
energy source for the waves. A beam gains energy from an
impulsive event, and consequently a drift that produces positive
slope in the VDF. On the other hand, in quiet conditions,
described by the present model, the nonthermal feature is built
up by magnetic focusing, which also produces positive slope
in the VDF, although with a distinct form. Importantly, in the
beam case energy is injected in the system in order to generate
the beam feature, while in quiet conditions there is no energy
injection, since the magnetic field maintains the system energy
invariant.

The strahl width characteristics in the present model eventu-
ally depend on density and temperature at the Sun side, in such
way that the conditions at the Sun side control the strahl feature.
This dependence shall be addressed elsewhere.

The main result in this Letter is to provide a possible explana-
tion for the persistence of broad strahl widths during quiet solar
conditions via electrostatic plasma (Langmuir) waves.

The present model considers self-generated electrostatic
plasma oscillations at the electron plasma frequency that are
shown to be efficient in broadening the strahl component.

These plasma waves represent an alternative mechanism to
the broadening by sunward-propagating whistler waves (Vocks
et al. 2005; Viñas et al. 2010), whose existence is speculative
(Gurgiolo et al. 2012). Nevertheless, considering the general
existence of whistler frequency range solar wind turbulence,
both mechanisms could combine to produce the observed strahl
widths, since the whistler instability could be triggered by the
broadened strahl.
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