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ABSTRACT

Alfvénic fluctuations in the solar wind exhibit a high degree of velocities and magnetic field correlations consistent
with Alfvén waves propagating away and toward the Sun. Two remarkable properties of these fluctuations are the
tendencies to have either positive or negative magnetic helicity (−1 � σm � +1) associated with either left- or right-
topological handedness of the fluctuations and to have a constant magnetic field magnitude. This paper provides,
for the first time, a theoretical framework for reconstructing both the magnetic and velocity field fluctuations with
a divergence-free magnetic field, with any specified power spectral index and normalized magnetic- and cross-
helicity spectrum field fluctuations for any plasma species. The spectrum is constructed in the Fourier domain by
imposing two conditions—a divergence-free magnetic field and the preservation of the sense of magnetic helicity
in both spaces—as well as using Parseval’s theorem for the conservation of energy between configuration and
Fourier spaces. Applications to the one-dimensional spatial Alfvénic propagation are presented. The theoretical
construction is in agreement with typical time series and power spectra properties observed in the solar wind. The
theoretical ideas presented in this spectral reconstruction provide a foundation for more realistic simulations of
plasma waves, solar wind turbulence, and the propagation of energetic particles in such fluctuating fields.
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1. INTRODUCTION

Alfvénic fluctuations are ubiquitous and represent the
dominant component of low-frequency magnetohydrodynamic
(MHD) turbulence in the solar wind, and they are believed to
play an important role in the heating and acceleration of solar
wind ions (Marsch 2006; Bruno & Carbone 2013). Moreover,
an Alfvénic fluctuation propagating in a homogeneous plasma
represents an exact solution of the nonlinear MHD equations
provided that the total magnetic field intensity is constant.

Since the first in situ observations of Alfvén waves in the
solar wind by Belcher & Davis (1971), the problem of recon-
struction of an Alfvénic spectrum and its correlation with ve-
locity fluctuations have been a challenging paradigm in MHD
turbulence. Although the reality of these fluctuations is that
they are three-dimensional and broadband, the reconstruction
of these waves even for a one-dimensional field-aligned prop-
agation has resisted proper solution. Barnes (1981) treated the
fluctuating fields as a “random walk” on a sphere and showed
important properties that relates the alignment of the minimum-
variance propagation direction of these waves to the mean field
direction as well as their quasi-circular topology and the near
constancy of the field magnitude. Further studies of these waves
(e.g., Matthaeus & Goldstein 1982) emphasized the importance
of their topological structure by means of the magnetic- and
cross-helicities in describing these fluctuations in solar wind
turbulence. However, no reconstruction of the field fluctua-
tions constrained to all these physically based characteristics has
been suggested. Roberts (2012) has shown that even for a one-
dimension construction, which only imposes the divergence-
free (∇ · B = 0) condition, does not satisfactorily reproduce
(see Figure 1 of his paper) realistic fluctuations as observed
in the solar wind. His observationally motivated optimized
approach minimizing the magnetic field magnitude condition

has produced better results. The method uses a least-squares
scheme to get the phases that minimizes the field magnitude
variance. The model reasonably reproduces some of the solar
wind magnetic fluctuation properties such as the alignment of
the minimum variance of the field with the mean field direction
and a magnitude near constant. However, the Roberts (2012)
model is not motivated by first principles and it does not consider
the magnetic helicity and cross-helicity conditions required to
describe Alfvénic fluctuations (Matthaeus & Goldstein 1982).
Instead, it is mostly guided by the observations.

Reconstruction of either monochromatic or broadband spec-
trum of Alfvénic fluctuations is important for many studies
based upon the linearized MHD description to fully nonlin-
ear numerical simulations of the evolution of these waves in a
plasma medium (Cohen & Dewar 1974; Cohen 1975; Hoshino &
Goldstein 1989; Umeki & Terasawa 1992; Ghosh et al. 1994;
Agim et al. 1995; Araneda et al. 2008). The construction of a
broadband spectrum of Alfvénic fluctuations as input for the-
oretical and computational studies constrained by observations
has been an important aspect to physically based models ad-
dressing MHD turbulence (Podesta & Gary 2011; He et al.
2011, 2012; Wicks et al. 2012; Bruno & Carbone 2013), para-
metric instabilities (Matteini et al. 2010a, 2010b; Maneva et al.
2013), and nonlinear evolution (Moya et al. 2012) during the
last few decades. Within the context of broadband spectrum and
parametric instabilities, Malara & Velli (1996) studied large-
amplitude nonmonochromatic linearized ideal MHD Alfvén
waves using a numerical approach to obtain a description of the
fluctuating magnetic field components as a function of wave-
length to generate a spectral representation of the fluctuations
and to show that such a constant magnitude of the B spectrum
remained unstable to parametric decay.

In this paper, we provide an alternate approach to the
reconstruction of an initial self-consistent broadband spectrum
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Figure 1. Dispersion relation for Alfvén waves in a cold electron, proton and
alphas plasma. Red and green curves are left-hand polarized proton and alphas
cyclotron branches, black curves are the right-hand polarized fast magnetosonic
modes. Frequencies and wavenumbers are in units of proton gyrofrequency and
inertial length, respectively.

(A color version of this figure is available in the online journal.)

of Alfvénic fluctuations that is simpler, physically motivated,
and guided and constrained by the observations. The spectral
theory is formulated completely in the Fourier domain, which
is based on the linear superposition of wave modes. We have
assumed that the fluctuations propagate in one spatial dimension
and periodic boundary conditions are imposed. We impose two
physically based conditions: a divergence-free magnetic field
(∇ · B = 0); and the preservation of the magnetic helicity
Hmk between both domains, which can be either right- or left-
handed, and their sense of orientation and magnitude can be
constrained by theory or observations (Podesta & Gary 2011;
He et al. 2011, 2012; Wicks et al. 2012). We further make use of
Parseval’s theorem that imposes energy density conservation
between the Fourier and configuration domains. This final
condition is necessary if we want to characterize the wave
modes as Alfvénic fluctuations. The magnetic field magnitude
|B| is nonuniform due to the fluctuations produced at all scales
by beating between individual mode components, which are
themselves circularly polarized and therefore have a constant
magnitude of B associated with them. Since our model focused
on other Alfvénic characteristics (i.e., spectral energy, magnetic
helicity, cross-helicity, etc.) describing a turbulence broadband
spectrum, we do not impose the constraint of magnetic field
constancy, but provide an alternate approach using some of the
other conditions that have been measured in the solar wind.
Nonetheless, a comparison of our results with the magnetic
field constancy test is provided to mimic fluctuations with rms
amplitudes similar to those observed in the solar wind. In a study
of parametric decay instability by incoherent Alfvénic waves,
Umeki & Terasawa (1992) provided a spectral representation of
an initial spectrum. In their model of the spectral reconstruction,
they assumed random phases, a single helicity, a total maximum
power amplitude, and a spectral profile. These conditions are
similar to those used in our model reconstruction. The main
difference between the two models is that the spectral Fourier
amplitude coefficient of each wave mode in our model is
explicitly determined in terms of the conditions of divergence-
free field, the spectral representation of the magnetic helicity,
and the total magnetic energy. Furthermore, our model allows

for constant or random magnetic helicity for each wave mode
and the cross-helicity representation.

This paper is organized as follows. In the next section, we
present our model to reconstruct an Alfvénic broadband spec-
trum, including the details needed to relate magnetic field fluctu-
ations to the plasma properties. Section 3 shows applications of
the model for two-species solar-wind-like plasmas. In Section 4,
we summarize our results.

2. RECONSTRUCTION OF A BROADBAND SPECTRUM

Consider an initial magnetic field given by B(x) = B0 +
B⊥(x), where B0 = B0 x̂ is a constant ambient magnetic field
and B⊥ (x) represents the transverse wave field propagating
along the x axis. The transverse fluctuating part can be described
in Fourier space as a superposition of finite amplitude, circularly
polarized, left- and right-handed waves according to

B⊥(x) = Re

[ ∑
k>0

(
CL

k exp (iϕk)(ŷ + iẑ
)

+ CR
k exp (iψk)(ŷ − iẑ)) exp (ikx).

]
(1)

Here the constant pairs (CL
k , CR

k ) and (ϕk, ψk) are the Fourier
amplitude coefficients for left- (L) and right-handed (R) waves
and the random phases for each wave mode, respectively. The
divergence-free condition is fulfilled by construction. However,
without knowledge of the Fourier coefficients and the random
phases, we cannot represent the transverse broadband spectrum
of the fluctuations. We shall assume that the phases (ϕk, ψk) are
random, between ± (0, 2π ). By imposing the aforementioned
physical conditions in the fluctuation energy density and their
magnetic helicity, we can obtain relations that allow us to deter-
mine the Fourier coefficients (CL

k , CR
k ) in the Fourier domain.

This is an important aspect of our model since the Fourier coef-
ficients can be fully obtained in terms of the normalized spectral
magnetic helicity σmk for each Fourier mode k, the power spec-
tral energy density profile

(|Bk|2 = Bk · B∗
k

)
, and the maximum

rms amplitude (η = δB/B0) of the fluctuations, all of which are
observable quantities that can be modeled.

In components, Equation (1) reads:

By (x) = 2Re
[∑

k>0 Byk exp (ikx)
]

Bz (x) = 2Re
[∑

k>0 Bzk exp (ikx)
]
,

(2)

where we define

Byk = 1
2

(
CL

k exp (iϕk) + CR
k exp (iψk)

)
Bzk = i

2

(
CL

k exp (iϕk) − CR
k exp (iψk)

)
.

(3)

We make use of Parseval’s theorem condition (energy con-
servation in the Fourier domain), which is imposed by defining
the total transverse magnetic energy per unit length in terms of
the power spectral profile as

E = 1

2

∫
|B⊥(x)|2 dx ≡ 2Re

(∑
k>0

|Bk|2
)

≡ 2Re

(∑
k>0

[|Byk|2 + |Bzk|2
])

. (4)
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After some algebraic manipulation, it can be shown that the
relationship between the power spectral profile and the Fourier
coefficients is given by

|Bk|2 =
(∣∣CL

k

∣∣2
+

∣∣CR
k

∣∣2
)

. (5)

Let us now assume the ansatz |Bk|2 = C2 k−α , which
resembles a typical power spectrum in the solar wind where
α is the spectral index and C is a constant that can be easily
defined in terms of the maximum spectral wave amplitude (rms)
η as

C2 = η2 B2
0

2
∑

k>0 k−α
and η2 =

(
2
∑
k>0

|Bk|2
) /

B2
0

= (δB/B0)2 . (6)

The total transverse magnetic energy is conserved and can be
expressed in terms of the Fourier coefficients and η. However,
since there are two Fourier coefficients for each mode, we
require another condition that can be easily obtained from the
spectral representation of the magnetic helicity.

The magnetic helicity is defined as Hm = 〈A · B〉 /2, where
the operator 〈· · ·〉 represents the space average of the dot product
of the vector potential A and the magnetic field B or the
autocorrelation. The magnetic helicity Hm is a measure of the
spatial handedness of the magnetic field topology. Using the
vector potential representation B = ∇ × A and the reality
condition B−k = B∗

k of the Fourier modes (Matthaeus &
Goldstein 1982), Hm can be represented as a superposition of
the spectral magnetic helicity Hmk for each mode

Hm = 1

2

∑
k

Hmk = 1

2

∑
k

(Ak · B∗
k ) =

∑
k

k Im(A∗
yk Azk).

(7)

Thus, by representing the magnetic field and vector potential in
components in Equations (2) and (3), and after some algebraic
manipulations, we can express Hmk in terms of the coefficients
(CL

k , CR
k ) as

Hmk = 1

2k

(∣∣CL
k

∣∣2 − ∣∣CR
k

∣∣2)
. (8)

This result shows that for parallel propagation at least, the
magnetic helicity spectrum is independent of the Fourier spectral
phases and only depends on the Fourier amplitude coefficients.
To the best of our knowledge, this aspect seems to be an unknown
result for parallel propagating waves.

We can now define a normalized magnetic helicity for each
Fourier mode in terms of the spectral energy density and spectral
helicity as follows:

σmk = k Hmk∣∣Bk

∣∣2 =
(∣∣CL

k

∣∣2 − ∣∣CR
k

∣∣2)(∣∣CL
k

∣∣2
+

∣∣CR
k

∣∣2) . (9)

Therefore, the Fourier coefficients (CL
k , CR

k ) can be obtained
using Equations (5) to (9) as∣∣CL

k

∣∣2 = |Bk|2 (1 + σmk) = η2 B2
0

2

[
k−α(1+σmk)∑

k>0 k−α

]
∣∣CR

k

∣∣2 = |Bk|2 (1 − σmk) = η2 B2
0

2

[
k−α(1−σmk)∑

k>0 k−α

]
,

(10)

where the power spectral energy density profile |Bk|2 has been
defined as a power law and |σmk| � 1 for each wave mode,
where σmk = ±1 represents wave modes with left- (−) or right-
handed ( + ) circular structure. If |σmk| < 1, then the wave
is elliptical with an admixture of both left- and right-handed
structures. Once the Fourier coefficients have been determined
from Equation (10), an inverse Fourier transform can be carried
out to generate the magnetic fluctuations in the configuration
space.

2.1. Alfvénic Fluctuations

Although the previous theoretical calculations define the
magnitude of the Fourier coefficients, they are not representative
of Alfvénic fluctuations by themselves. To characterize the
type of the fluctuations, relating the magnetic fluctuations to
the plasma medium in which they propagate is required. In the
case of MHD fluctuations, this is simply carried out by solving
the multi-fluid equations describing the mass and momentum
conservation equations for a plasma of species s together with
Maxwell’s equations. Linearizing these equations for purely
parallel propagation, the transverse magnetic field and velocity
fluctuations in a drifting plasma are related according to:

δU±
s⊥k = −

[
(ω/k − U‖s)

(1 ∓ (ω − kU‖s)/Ωs)

]
δB±

⊥k

B0
. (11)

Here we have defined the velocity and magnetic compo-
nents in the usual rotating coordinate system (represented
by the ± superscripts) defined by B−

k = Byk − iBzk =
CL

k exp (iϕk) and B+
k = Byk + iBzk = CR

k exp (iψk), so the
∓ sign represents left- and right-handedness of the waves, re-
spectively. Ωs is the species cyclotron frequency, U‖s is the
species parallel drift velocity and ω/k is the phase velocity of
the fluctuations obtained from the dispersion relation ω = ω (k).
For example:

D(L,R)(ω, k) = 1−
∑

s

ω2
ps

k2c2

[(ω − kU‖s)/Ωs]2

[1 ∓ (ω − kU‖s)/Ωs]
= 0 . (12)

Here the ∓ sign corresponds to left and right circular polariza-
tion for positive wave number k. Once the fluctuating veloci-
ties have been determined using (11) and (12), the normalized
cross-helicity can be evaluated for each wave mode and for each
species. The cross-helicity provides the direction of wave en-
ergy propagation. The normalized cross-helicity is defined as
(Matthaeus & Goldstein 1982)

σcsk = (δUsk · δUAk)

|δUsk|2 + |δUAk|2
, (13)

where δUAk represents the transverse magnetic field in units of
the Alfvén speed in the Fourier domain. The sign of the cross-
helicity spectrum gives the propagation direction of the wave
energy. A negative sign corresponds to wave energy propagating
parallel to the mean field, whereas a positive sign represents
anti-parallel propagation. From the definition of the normalized
magnetic helicity and cross-helicity, the polarization (in the
plasma physics sense) can be determined. In the fluid limit,
if the product of the normalized helicities is positive (i.e.,
σmk · σck > 0) or negative (i.e., σmk · σck < 0), then the
fluctuations are left- or right-handed polarized waves in the
plasma physics sense, respectively (Smith et al. 1984; Viñas
et al. 1984; Goldstein et al. 1985).
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(a) (b)

(c) (d)

Figure 2. Power law magnetic field power spectrum k−5/3, amplitude η = 0.25, vs. normalized (a) wavenumber and (b) mode number. (c) Normalized magnetic
helicity spectrum σmk. (d) Magnetic field components in real space resulting from the power spectrum. Red, blue, solid black, and dashed black curves correspond to
δBy , δBz, |δB⊥ |, and |δB|, respectively. The field magnitude in (d) has been shifted for clarity.

(A color version of this figure is available in the online journal.)

3. RESULTS

We apply the developed theory for general type broadband
spectra of magnetic field fluctuations to construct a spectrum
of Alfvénic fluctuations propagating through an isotropic elec-
trons, protons plasma with a 5% alpha particles and no dif-
ferential ion streaming. The solution of the dispersion relation
(Equation (12)) for parallel wave propagation in such a plasma is
shown in Figure 1. Electrons are included only as a neutralizing
fluid background. We assumed a prescribed power-law power
spectrum with spectral index α = 5/3, rms amplitude η = 0.25,
and 10−5 % noise level as shown in Figure 2(a). We used a one-
dimensional grid of 512 cells of size 1.5 in units of the proton
inertial length (λp), and from all the 256 Fourier modes allowed
by the grid, we selected a spectral range between modes 5 and
55 (see Figure 2(b)) that correspond to fluctuations with wave
numbers between kλp ∼ 0.04 and 0.45. Using that particular
spectrum, we reconstructed the magnetic field for a left-handed
magnetic helicity [σmk = 1, Figure 2(c)]. Thus, once we have
selected the profile, amplitude, and helicity of the spectrum,
we can uniquely determine the Fourier coefficients (CL

k , CR
k )

in Equation (10) and carry out an inverse Fourier transform to
obtain the magnetic field in configuration space (Equation (1)).

In Figure 2(d), we show the resulting magnetic field com-
ponents, perpendicular amplitude, and total amplitude for left-
handed Alfvénic fluctuations (σmk = 1). In Figure 3, we show
the self-consistent bulk velocity components and their corre-
sponding cross-helicity spectra for protons and helium fluids.
These results are obtained following the left-hand alpha Alfvén
cyclotron branch on the dispersion relation (Figure 1, green
line) for k > 0. The results in these figures also indicate that
the resultant plasma physics polarization of the spectrum is self-
consistent (σmk · σck > 0) with the left-handed branch selected
in the solution to the dispersion relation (Equation (12)) and in
Figure 1 (green line) for the reconstruction of the broad spec-
trum. Moreover, the magnitude of the cross-helicity spectrum
is about σck = 1, suggesting that the energy flow of these fluc-
tuations is anti-parallel to the mean field. Both cross-helicity
spectra for protons and helium show a decrease at the upper end
of the spectra, which is due to a change in the dispersion curve
as the wave vector increases and the frequency approaches the
helium-cyclotron frequency. Although the reconstruction was
estimated with an amplitude fluctuation of η = 0.25, the re-
sultant module of the magnetic field magnitude (Figure 2(d),
dashed lines) is essentially constant, with a standard deviation
of the magnitude fluctuation about its mean near 0.03. This
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(a) (b)

(c) (d)

Figure 3. Transverse velocity fluctuations components in real space resulting for (a) protons and (b) alphas. Red, blue, and black curves correspond to δUy , δUz, and
|δU⊥|, respectively. Cross-helicity spectrum for (c) protons and (d) alphas. All velocities are in units of the Alfvén speed.

(A color version of this figure is available in the online journal.)

result is also independent of the seed used in the random gener-
ator. This small fluctuation is consistent with almost constancy
of the field magnitude expected for Alfvénic fluctuations ob-
served in the solar wind (see Roberts 2012).

Similar results were also obtained in Figure 4 for the right-
handed branch of the dispersion relation in Figure 1 (black line).
Figures 3(a)–(d) shows the reconstructed spectrum of right-
handed Alfvénic fluctuations assuming similar amplitudes as in
the previous case, but with a broader spectral range extending
slightly over the ion inertial length and for an initial magnetic
helicity of σmk = −1. Note the almost constant total magnetic
field magnitude and consistent right-handed plasma physics
polarization (σmk · σck < 0). Note also the appearance of
higher-frequency (shorter-scale) fluctuations. Furthermore, the
cross-helicity spectrum shows a significant decrease at shorter
wavelengths since the spectrum is becoming more dispersive
as the frequency approaches the alphas-cyclotron frequency.
Similar results were obtained for the magnetic helicity spectrum
by He et al. (2011) at shorter wavelengths. For scales above
the ion-inertial length, Equations (11) and (13) may no longer
be valid, thus the significance of the cross-helicity should be
revised.

Finally, to illustrate the application of our model, we chose
to represent and compare a similar time series of magnetic fluc-
tuations as recently studied by Roberts (2012). Figure 5 shows

the resulting magnetic fluctuations for a spectrum reconstructed
with similar parameters as those used by Roberts (2012; see his
Figure 4) in his observations. His spectrum is formed from a
time series of about 4000 data points at dt = 0.125 s, a maxi-
mum normalized rms amplitude of 1, and a spectrum of f −5/3.
We use similar parameters, but in the k–domain, where we gen-
erated a spatial magnetic field series of 4096 data points, with
dx = 0.125, a maximum normalized rms amplitude of η = 1,
and a spectrum of k−5/3. Since no information about the mag-
netic helicity spectrum was presented, we chose to generate the
spectrum using a fixed magnetic helicity magnitude |σmk| = 1,
but with a random sign fluctuation. The resulting magnetic fluc-
tuations for η = 1 are depicted in Figure 5(a), which shows the
components, the transverse magnitude, and the total magnitude
(shifted upward for clarity) of the magnetic field. An estimate
of the standard deviation for the magnitude in Figure 5(a) yields
0.33, which continues to be small even when the fluctuation
amplitudes used are on the order of one (η = 1). A quick com-
parison of these “time series” with Figure 4 in Roberts (2012)
shows that the magnetic fluctuations present sudden changes
(“discontinuities”) similar to those he observed. Furthermore,
our results also depict Alfvénic fluctuations with essentially
constant magnetic field magnitudes consistent with the results
of Roberts (2012). Similar results are obtained increasing the
fluctuation amplitude to η = 2 in Figure 5(b). In this case, the

5



The Astrophysical Journal, 786:86 (7pp), 2014 May 10 Viñas et al.

(a) (b)

(c) (d)

Figure 4. (a) Power law magnetic field power spectrum k−5/3, amplitude η = 0.25, vs. normalized wavenumber. (b) Magnetic field components in real space resulting
from the power spectrum. Red, blue, solid black, and dashed black curves correspond to δBy , δBz, |δB⊥ |, and |δB|, respectively. (c) Normalized magnetic helicity
spectrum σmk. (d) Corresponding proton cross-helicity spectrum.

(A color version of this figure is available in the online journal.)

standard deviation of the field magnitude fluctuation increases
to about 0.83, indicating that the constancy of the magnetic field
magnitude breaks down as η increases. Thus, for very large am-
plitudes, the reconstruction scheme presented here may require
an optimized approach similar to that used by Roberts (2012) to
account for the near constancy of the magnetic field magnitude.
Nonetheless, the constraints introduced by the magnetic helicity
and cross-helicity are also necessary in describing the Alfvénic
fluctuations.

4. DISCUSSION AND CONCLUSIONS

We have described a new approach for the reconstruction of
a broadband spectrum of parallel-propagating Alfvénic waves,
including the self-consistent velocity fluctuations of the plasma.
This physically motivated model constrained by observables
allows us to initiate theoretical and simulation turbulence studies
directed toward the understanding of finite amplitude waves
in many scales of the solar wind. Starting from particular
chosen parameters typical to those observed in the solar wind
and solving the multifluid wave dispersion relation for parallel
propagation, we have shown the reconstruction of magnetic and
velocity fluctuations as well as the calculation of the cross-
helicity needed to obtain the plasma physics polarization of

fluctuations used in both observational and theoretical studies
of plasmas.

Our results show rapid magnetic field changes despite the
prescribed (fixed) spectral shape and sense of magnetic helicity.
This result seems consistent with what Roberts (2012) called
“discontinuities” as determined by his phase optimization ap-
proach. It is remarkable that even though we do not impose the
constancy of the field magnitude, our theoretical model provides
consistently similar results as those of Roberts (2012). It is clear
that the magnetic field magnitude constancy in the reconstruc-
tion approach presented here breaks down as the amplitude of
the fluctuation is increased well beyond η � 2. The usage of the
energy conservation, magnetic helicity preservation, and cross-
helicity imposes further constraints that seem to help reduce the
standard deviations of the magnitude fluctuations for moderate
amplitudes (η � 1). This is independent of the random phases.

A generalization of the concepts presented here for the
reconstruction of a two-dimensional case is being carried out
at present, and should reveal interesting comparisons with
simulation results for obliquely propagating fluctuations. The
results presented here and motivated in combination with those
of Roberts (2012), Malara & Velli (1996), and Umeki &
Terasawa (1992) may lead us to a robust reconstruction and
representation of the spectrum of Alfvénic fluctuations in the
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(a)

(b)

Figure 5. Magnetic field components in real space similar to Figure 4 in Roberts
(2012). Red, blue, solid black, and dashed black curves correspond to δBy , δBz,
|δB⊥ |, and |δB|, respectively, for (a) η = 1 and (b) η = 2.

(A color version of this figure is available in the online journal.)

solar wind. The model presented here provides an alternate
approach to the reconstruction of a broadband spectrum of

Alfvénic fluctuations. These physically motivated theoretical
models form the basis of initial conditions for many types of
simulations that include nonlinear codes, from the MHD inertial
range throughout the kinetic ions or electron scales, and provide
a framework for more realistic simulations of plasma waves,
solar wind turbulence, and the propagation of energetic particles
in such fluctuating fields.
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Goldstein, M. L., Wong, H. K., Viñas, A. F., & Smith, C. W. 1985, JGR, 90, 302
He, J., Marsch, E., Tu, C., Yao, S., & Tian, H. 2011, ApJ, 731, 85
He, J., Tu, C., Marsch, E., & Yao, S. 2012, ApJ, 749, 86
Hoshino, M., & Goldstein, M. L. 1989, PhFlB, 1, 1405
Malara, F., & Velli, M. 1996, PhPl, 3, 4427
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