

Georegistration of Earth Observing-1 (EO-1) Data Using Global Land Survey (GLS) Maps

Jacqueline Le Moigne¹, Patricia Sazama^{1&2}, Steve Swanson³, Vuong Ly¹ and Dan Mandl¹

- 1. NASA Goddard Space Flight Center, Software Engineering Division
- 2. University of Maryland, Computer Science Department
- 3. Princeton University, Computer Science Department

• What is Image Registration?

"Exact pixel-to-pixel matching of two different images or matching of one image to a map"

- Navigation or Model-Based Systematic Correction
 - Orbital, Attitude, Platform/Sensor Geometric Relationship, Sensor Characteristics, Earth Model, etc.
- Image Registration/Feature-Based Precision Correction
 - Navigation within a Few Pixels Accuracy
 - Image Registration Using Selected Features (or Control Points) to Refine Geo-Location Accuracy
- Image Registration as a Post-Processing or as a Feedback to Navigation Model

Image Registration Frameworks

- Mathematical Framework
 - I1(x,y) and I2(x,y): images or image/map
 - find the mapping (**f**,**g**) which transforms I1 into I2:

I2(x,y) = g(I1(fx(x,y),fy(x,y)))

- » **f** : spatial mapping
- » g: radiometric mapping
- Spatial Transformations "f"
 - Translation, Rigid, Affine, Projective, Perspective, Polynomial, ...
- Radiometric Transformations "g" (Resampling)
 - Nearest Neighbor, Bilinear, Cubic Convolution, ...
- Algorithmic Framework (Brown, 1992)
 - 1. Feature Extraction
 - 2. Feature Matching (Similarity Metrics & Matching Strategy)
 - 3. Image Resampling (if needed)

Image Registration Components

0 Pre-Processing

- Cloud Detection, Region of Interest Masking, ...
- 1 Feature Extraction ("Control Points")
 - Gray Levels, Salient Points (e.g., Edges, Edge-like such as Wavelet Coefficients, Corners), Lines, Contours, Regions, Scale Invariant Feature Transform (SIFT), etc.
- 2 Feature Matching
 - Choice of Spatial Transformation (function f: a-priori knowledge)
 - Choice of Search Strategy :
 - Global vs Local, Multi-Resolution, Optimization, ...
 - Choice of Similarity Metrics
 - L2-Norm, Normalized Cross-Correlation, Mutual Information, Hausdorff Distance, ...
- 3 Remapping/Resampling (function g: if necessary)

Wavelets and Wavelet-Like Features for Image Registration

Rotation- and Translation-Invariant Representations

• Spline Wavelets [Battle & Lemarié; Unser et al]

 $c_i \in l_2$ with scaling function $\varphi^n(x) = \sum_{k=0}^{+\infty} p(k)\beta^n(x-k)$ *p* arbitrary invertible convolution operator or filter, and $\beta^n(x)$ is a *B*-spline of order *n* (can be constructed by repeated convolution of *B*-Spline of order 0)

Example of B-Spline Scaling Function and Associated Wavelet

Matching Strategies

- Exhaustive Search
- Fast Fourier Transform
- Optimizations:
 - Gradient Descent $\sum_{i=1}^{n}$

$$\operatorname{nt} \begin{bmatrix} \sum f_x^2 & \sum f_x f_y & \sum Rf_x \end{bmatrix} \begin{bmatrix} \Delta x \end{bmatrix} \begin{bmatrix} \sum (f-g)f_x \\ \sum f_x f_y & \sum f_x^2 & \sum Rf_y \\ \sum Rf_x & \sum Rf_y & \sum R^2 \end{bmatrix} \Delta y = \begin{bmatrix} \sum (f-g)f_y \\ \sum (f-g)f_y \\ \sum (f-g)R \end{bmatrix}$$

- Modified Marquart-Levenberg: hybrid optimization approach between a pure gradient-descent approach and a more powerful but less robust Gauss-Newton method, implemented in a multi-resolution fashion
- Spall's Simultaneous Perturbation Stocchastic Approximation (SPSA): based on gradient approximation computed from objective function (200 iterations)
- Robust Feature Matching
 - Hierarchical Subdivisions of Search Space
 - Pruning of Search Space

Matching Strategies

- **Exhaustive Search**
- Fast Fourier Transform
- **Optimizations:**

- Gradient Descent $\begin{bmatrix} \sum f_x^2 & \sum f_x f_y & \sum Rf_x \end{bmatrix} \begin{bmatrix} \Delta x \end{bmatrix} \begin{bmatrix} \sum (f-g)f_x \\ \sum f_x f_y & \sum f_x^2 & \sum Rf_y \end{bmatrix} \begin{bmatrix} \Delta y \end{bmatrix} = \begin{bmatrix} \sum (f-g)f_y \\ \sum Rf_x & \sum Rf_y & \sum R^2 \end{bmatrix} \begin{bmatrix} \Delta \theta \end{bmatrix} \begin{bmatrix} \sum (f-g)f_y \\ \sum (f-g)R \end{bmatrix}$

- Modified Marquart-Levenberg: hybrid optimization approach between a pure gradient-descent approach and a more powerful but less robust Gauss-Newton method, implemented in a multi-resolution fashion
- Spall's Simultaneous Perturbation Stocchastic Approximation (SPSA): based on gradient approximation computed from objective function (200 iterations)
- **Robust Feature Matching** •
 - Hierarchical Subdivisions of Search Space
 - Pruning of Search Space

Global Land Survey (GLS) Maps

- A collection of Landsat-type satellite images from USGS
 - Near complete global coverage
 - Orthorectified
 - Each image has cloud cover of less than 10%
 - Four versions: 1970, 1990, 2000 and 2005
- Current Ground Truth or "Reference Chips" extracted from the GLS 2000 (can be updated when the GLS 2010 is completed)
- Reference Chips of size 256 X 256
- <u>http://landsat.usgs.gov/science_GLS.php</u>

Chip Registration

Overlapping chip from database

Area in EO1 scene where chip was extracted

Currently "chip database" created (in a brute-force fashion) by extracting successive 256x256 sub-images of all GLS scenes and storing them according to path and row

Chip extracted from EO1 scene

Automatic Registration of EO-1 Scenes Using Global Land Survey (GLS) Database

Scene 1 Before Automatic Registration Superimposed onto Google Earth

Scene 1 After Automatic Registration Superimposed onto Google Earth

Scene 2 Before Automatic Registration Superimposed onto Google Earth

Scene 2 After Automatic Registration Superimposed onto Google Earth

Quantitative Results With All Chips ("Wall-to-Wall)

- Scene 1 (EO1A1780772013325110KF)
 - Wavelet Registration (Median Global Transformation, after outlier elimination) Tx = -15.84, Ty = -18.17, Theta = -0.0083, Scale = 1.0
 - Manual registration (using ENVI):

Tx = -15.99, Ty = -20.49, Theta = 0.0224, Scale = 1.0

- Error in (Tx,Ty,Theta) = (0.15, 2.32, 0.03)
- Scene 2 (EO1A1300542014053110PZ)
 - Wavelet Registration (Median Global Transformation, after outlier elimination) Tx = -14.32, Ty = -3.12, Theta = -0.0211, Scale = 1.0
 - Manual registration (using ENVI):

Tx = -16.45, Ty = -4.99, Theta = 0.0218, Scale = 1.0

• Error in (Tx, Ty, Theta) = (2.13, 1.87, 0.04)

TIMING – Running Python Script : 19.36s

Chips Selection Using Entropy

- If Chips pre-selected based on the information content (e.g., using an entropy measure)
 - ⇒ Registration may be more accurate because transformation only computed on pairs that have a significant amount of features
 - \Rightarrow Registration faster because less local registrations
 - \Rightarrow Chip database smaller to be stored onboard
- Compute Entropy of all Chips Using Histogram: $H = -\sum_{i=0}^{255} p_i \log p_i \quad \text{where } p_i \text{ is the value of the histogram} \\ \text{for gray value } i$
- Keep only Chips with Entropy Above Threshold
- Number of Chips Scene 1/Scene 2:
 - Before Selection:
 - After Entropy Selection:

Quantitative Results Only Keeping Chips with High Entropy

- Scene 1 (EO1A1780772013325110KF)
 - Wavelet Registration (Median Global Transformation, after outlier elimination) Tx = Ty = Ty = Scale = 1.0
 - Manual registration (using ENVI):

Tx = -15.99, Ty = -20.49, Theta = 0.0224, Scale = 1.0

- Error in (Tx,Ty,Theta) = (,,)
- Scene 2 (EO1A1300542014053110PZ)
 - Wavelet Registration (Median Global Transformation, after outlier elimination) Tx = , Ty = , Theta = , Scale = 1.0
 - Manual registration (using ENVI):

Tx = -16.45, Ty = -4.99, Theta = 0.0218, Scale = 1.0

• Error in (Tx,Ty,Theta) = (,,)

TIMING – Running Python Script : s

Conclusions and Future Work

- Results visually acceptable with fast and real-time computations
- Applicable on the ground or on-board
- Computations can be made more accurate and faster by pre-selecting the chips for information content:
 - Initial experiments using entropy => better accuracy and faster computations
 - Potential future improvements:
 - Investigate other chip pre-selection methods, e.g., edgeness count, land cover classification, etc.
 - Use information content method also on extracted windows to only register pairs with sufficient information content
- Other Improvements:
 - Compute global transformation from the list of corners coordinates (GP's)
 - => after outlier elimination, compute rigid, affine or polynomial transformation
 - Include cloud and water masks
 - Implement automatic chip registration on SpaceCube or hybrid processor
 - If no database onboard, incorporate automatic "region of interest extraction"
 => change detection can be performed onboard without chip database