

# Preparing GMAT for Operational Maneuver Planning of the Advanced Composition Explorer (ACE)



2014 AIAA/AAS Astrodynamics Specialist Conference. San Diego, CA

Rizwan H. Qureshi and Steven P. Hughes



NAVIGATION & MISSION DESIGN BRANCH Code 595 NASA GSFC

#### **Outline**

- GMAT Overview
- ACE Mission Overview
- Operational Certification Cycle
- ACE Operations Overview
- Results/Analysis
- Conclusions/Impact/Benefits

#### What is GMAT?

- GMAT is a mission design, analysis & trajectory optimization tool that is:
  - In-house
  - Open source
  - High fidelity
- GMAT R2013a
  - Released April, 2013
  - 6<sup>th</sup> public release
  - 1st major non-beta release
- GMAT R2013b
  - Released August, 2013
  - Certification candidate
  - Meets ACE requirements







#### What is GMAT?... cont.

Download and find out more: gmatcentral.org

#### • GMAT can support flight regimes ranging from:

- LEO
- GEO
- HEO
- Libration
- Lunar
- Interplanetary & Deep space

#### GMAT has supported

- LCROSS
- LRO
- ARTEMIS
- MAVEN
- OSIRIS
- TESS & more...



**Optimal Lunar Flyby** 



Optimal Mars Trajectories



**Outer Planet Transfers** 



Asteroid (RQ36) Survey





#### **ACE Mission Overview**

- Sun-Earth L1 Orbiter (Lissajous orbit)
  - Spin stabilized & launched in August, 1997
  - Design amplitudes are:
    - Ax = 81,755 km
    - Ay = 264,071 km
    - Az = 157,406 km
  - Sun-Earth-Vehicle (SEV) angle must be between
     4° & 20° nominal
- Station-keeping maneuvers:
  - 2-3 months apart
  - Nominal delta-V's averaging 0.33 m/sec
- Attitude Maneuvers:
  - Performed weekly
  - Perturb ACE orbit







### Flight Operational Certification Cycle

- Began on August 2012
- Milestones
  - Requirements gathering
  - Gaps analysis for ACE requirements
  - Development/Testing/Documentation of new ACE related features
  - Develop ACE maneuver planning/product generation scripts & validate output
  - Write/perform Operational Procedures & Test Plans documents
  - Provide training to ACE Maneuver Team
  - Test Readiness Review
  - Non-Interfering Shadow Ops
  - Operational Readiness Review



### **Current ACE Operations Overview**

- OD performed via GTDS
- Impulsive targeting/trajectory propagation performed via FreeFlyer
- Initial targeting done in ACE Eng. Coord. sys. Final targeting done in Attitude coord. sys.
- Finite-burn modeling is performed using GMAN
- GMAN generates Maneuver Cmd. File
- FreeFlyer delivers 28 days long ephem to NOAA



We focused on tools/interfaces in red box



### **ACE Maneuver Targeting Strategy:**

- 1. Get an updated OD state
- 2. Prop to attitude re-orientation epoch & apply perturbations due to att. maneuver
- 3. Next: Prop to maneuver epoch & enter Target Loop:

#### **Target Loop:**

Vary Z-component to Achieve RLP Vx = 0 @ RLP XZ plane crossing (i.e. When RLP Y = 0)



#### Requirements Gathering

- Requirements for ACE maneuver Ops gathered by working with maneuver planning team (97 requirements)
- Requirements had to be verifiable & unambiguous
- After 3.5 months of validation, final ACE Requirements approved
- ACE requirements areas:
  - Coordinate System
  - Force Model
  - Maneuver Targeting
  - Orbit Propagation
  - Product Output (SK dV, Code 500 & NOAA ephems & Maneuver summary report)
  - Spacecraft model



#### **Gaps Analysis**

- Missing features:
  - 1. Parse through a vector hold file
  - 2. Write code-500 ephemeris file
  - 3. Develop new ACE Coordinate Sys. for maneuver targeting
  - 4. Report spacecraft acceleration
- 3 months of Development, Testing & Documentation efforts led to release of GMAT version R2013b (August, 2013)!
- R2013b is an internal release for Ops certification testing

10

# Gaps Analysis...Cont.







FileInterface resource and Set command

Code 500 ephemeris Format

Spacecraft.ForceModel.Acceleration Spacecraft.ForceModel.AccelerationX Spacecraft.ForceModel.AccelerationY Spacecraft.ForceModel.AccelerationZ

LocalAlignedConstrained Coord. Axis Type

## **Pre-Shadow Operations**

- There are two FreeFlyer scripts used for maneuver planning & product generation:
  - ACE\_impulsive\_vec###.MissionPlan
    - Generates weekly ΔV necessary to predict future SK maneuvers
    - Used for both initial and final impulsive ΔV targeting
  - ACE\_impulsive\_NOAA28day\_vec###.MissionPlan
    - Generates 28 days long ephem. delivered to NOAA
- GMAT scripts were written using similar design philosophy:
  - ACE\_impulsive\_vec###.script
  - ACE\_impulsive\_NOAA28day\_vec###.script

#### **Local Operating Procedures (LOP) Development**

- ACE Maneuver team uses LOP document for End-to-End Ops support using FreeFlyer scripts
- Wrote detailed 45 page long LOP that instructs how to use GMAT scripts for ACE Ops:
  - Procedures for obtaining weekly ACE ΔV for Future Station-keeping Maneuver
  - Procedures for ACE Maneuver planning one week prior to the maneuver
  - Procedures for ACE Maneuver planning one day prior to maneuver
  - Procedures for final SK Maneuver planning (Post-Attitude Maneuver)
  - Procedures for generating NOAA 28-day Ephemeris
  - Procedures for delivering products via DataViewer
- Our LOP doc has been reviewed & approved by maneuver planning team

### **Test Plans Development**

- Wrote test plans for 97 requirements sub-divided in 6 areas:
  - Coordinate System
  - Force Model
  - Maneuver Targeting
  - Orbit Propagation
  - Product Output
  - Spacecraft model
- Each test plan:
  - Has detailed test procedures to test & verify each requirement
  - References separate GMAT ACE scripts to test each requirement
- ACE team implemented test plans & GMAT passes all test plans & meets all requirements!

## Requirements to Test Traceability

#### Test Plans for Maneuver Targeting area:

| REQID 🔽 | Object Text                                                                                 | Test Plans                                                   |
|---------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|         | The ground system must be capable of ingesting the state vector from the TCOPS Vector Hold  | Follow procedure in FDSS-FORM-0015 Maneuver targeting Test   |
| MT01    | Files without user input.                                                                   | Plan.docx and use ACE_impulsive_Burn_450.script GMAT script. |
|         | The ground system must be capable of ingesting the epoch from the TCOPS Vector Hold Files   | Follow procedure in FDSS-FORM-0015 Maneuver targeting Test   |
| MT02    | without user input.                                                                         | Plan.docx and use ACE_impulsive_Burn_450.script GMAT script. |
|         | The ground system must be capable of ingesting C_r from the TCOPS Vector Hold Files         | Follow procedure in FDSS-FORM-0015 Maneuver targeting Test   |
| MT03    | without user input.                                                                         | Plan.docx and use ACE_impulsive_Burn_450.script GMAT script. |
|         |                                                                                             | Follow procedure in FDSS-FORM-0015 Maneuver targeting Test   |
| MT04    | The ground system shall use a user-input maneuver epoch for impulsive targeting.            | Plan.docx and use ACE_impulsive_Burn_450.script GMAT script. |
|         |                                                                                             | Follow procedure in FDSS-FORM-0015 Maneuver targeting Test   |
| MT05    | differential correction of impulsive maneuver targeting.                                    | Plan.docx and use ACE_impulsive_Burn_450.script GMAT script. |
|         | Ground system shall propagate spacecraft to a user-specified number of XZ plane crossings   |                                                              |
|         | in the Rotating Libration Point (RLP) frame during differential correction of impulsive     | Follow procedure in FDSS-FORM-0015 Maneuver targeting Test   |
| MT06    | maneuver targeting.                                                                         | Plan.docx and use ACE_impulsive_Burn_450.script GMAT script. |
|         | The differential corrector shall compute a delta-V vector which achieves an accuracy better |                                                              |
|         | than 0.00000 ± 0.000001 km/s along X component of the velocity in the RLP frame (e.g., the  | Follow procedure in FDSS-FORM-0015 Maneuver targeting Test   |
| MT07    | Earth-Sun line) on the fourth X-Z plane crossing.                                           | Plan.docx and use ACE_impulsive_Burn_450.script GMAT script. |

# Test Readiness Review (TRR)

- On 09/10/2013: Presented TRR to ACE Ops Team
- Verify environment & tools are ready for shadow operations
- GMAT passed TRR!

#### **FDF Training**

- Although GMAT ACE LOP document serves as training & instructions manual to support ACE Ops, extra hands-on training was provided
- On 09/16/2013, gave training to maneuver team & demonstrated how to use:
  - GMAT's ACE\_impulsive\_vec###.script
  - ACE\_impulsive\_NOAA28day\_vec###.script
- Maneuver team now fully trained to use GMAT ACE maneuver planning & product generation scripts

#### Results/Analysis

- Delta-V comparisons
- Propagation comparisons
- Shadow Ops
- Operational Readiness Review

## **ΔV Comparisons**

SK ΔV validated against FreeFlyer using historical OD solutions

ΔV diff. (perturbations from attitude re-orientation maneuver **not** modeled):

| TVHF file  | Maneuver Epoch<br>[UTCG] | GMAT SK ΔV<br>[cm/sec] | ΔV diff.<br>[mm/sec] |
|------------|--------------------------|------------------------|----------------------|
| Vec424.txt | 15 Jan 2013 17:30:00.000 | 15.01                  | 0.024                |
| Vec433.txt | 15 Apr 2013 16:00:00.000 | 22.75                  | 0.017                |
| Vec440.txt | 19 Mar 2013 16:00:00.000 | 12.53                  | 0.018                |
| Vec456.txt | 25 Jun 2013 19:15:00.000 | 27.98                  | 0.016                |

ΔV difference must be < 0.05 mm/sec

## **ΔV Comparisons...Cont.**

#### ΔV diff. (perturbations from attitude maneuver modeled):

| TVHF file | Att. Re-orientation<br>Epoch [UTCG] | Maneuver Epoch<br>[UTCG] | GMAT SK ΔV<br>[cm/sec] | ΔV diff. [mm/sec] |
|-----------|-------------------------------------|--------------------------|------------------------|-------------------|
| Vec420    | 19 Nov 2012 15:59:50.000            | 19 Nov 201217:30:00.000  | 29.65                  | 0.021             |
| Vec430    | 15 Jan 2013 16:03:08.000            | 15 Jan 201317:30:00.000  | 19.97                  | 0.015             |
| Vec450    | 02 Apr 2013 17:49:36.899            | 02 Apr 2013 19:15:00.000 | 19.47                  | 0.018             |
| Vec472    | 09 Jul 2013 16:42:37.000            | 09 Jul 2013 17:40:00.000 | 15.30                  | 0.012             |

#### ΔV difference must be < 0.05 mm/sec

### **Propagation Comparisons**

Propagation compares using OD solutions from 4 TVHF files

Short & Long term propagation comparison between GMAT & FreeFlyer:

| TVHF file used | RSS position error after 28<br>days in EarthMJ2000Eq<br>[mm] | RSS position error after 180<br>days in EarthMJ2000Eq<br>[meters] |
|----------------|--------------------------------------------------------------|-------------------------------------------------------------------|
| Vec433.txt     | 0.50                                                         | 2.72                                                              |
| Vec440.txt     | 2.9                                                          | 3.04                                                              |
| Vec450.txt     | 6.1                                                          | 2.62                                                              |
| Vec456.txt     | 1.6                                                          | 4.73                                                              |

RSS pos. error (28 Days) must be < 10 mm RSS pos. error (180 Days) must be < 5 meters

#### Non-Interfering Shadow Ops

- On 09/23/2013, ACE maneuver team used GMAT & performed shadow operations during ACE SK maneuver:
  - Delivery products from GMAT verified against FreeFlyer

 $\Delta V$  diff. (perturbations from attitude re-orientation maneuver modeled):

| TVHF file used | Initial State Epoch<br>[UTCG] | ΔV diff. [mm/sec] | RSS position error after 28 days in EarthMJ2000Eq [mm] |
|----------------|-------------------------------|-------------------|--------------------------------------------------------|
| Vec493.txt     | 23 Sep 2013 00:00:00.000      | 0.015             | 1.83                                                   |

ΔV difference must be < 0.05 mm/s RSS pos. error (28 Days) must be < 10 mm

### Operational Readiness Review (ORR)

- On 11/19/2013: Presented ORR to ACE Maneuver Team
- Presented results from shadow Ops & test plans:
  - GMAT meets all requirements & passes all tests for ACE Maneuver Planning
- GMAT was deemed Flight Certified to support operational maneuver planning for ACE!

#### Conclusions/Impact/Benefits

- Demonstrated GMAT is flight quality software & is now Ops certified for ACE
- Laid groundwork for broad adoption of GMAT as an Ops tool for other GSFC missions
- Goddard's GMAT R2013b and recently R2014a:
  - Robust trajectory optimization tool available to all!
  - Provided a tool that Goddard controls to meet its unique and strategic needs
  - Provided a system for development of new mission design and nav.
     technology
  - In-house tool that complements other tools like FreeFlyer and STK



# Backup Slides

# Software Development History/Status

- Requirements Gathering, 2001
- Architectural design, 2002
- Implementation of System Core, 2003
- First Beta Release, 2007
- Second Beta Release, 2008
- Decision to use as Primary Operational Software, 2010
- R2011a Release, 2011
- R2012a Release, 2012
- R2013a Release, April 2013 (Production Release)
- R2013b Release, Aug 2013 (Ready for Ops Testing)
- Sep. 2013: NPR/GPR 7150.2 compliant
- R2014a Release, May 2014

## Pre-Shadow Ops...Cont.

Basic Design methodology for GMAT's ACE\_impulsive\_vec###.script:



#### **ACE Station-keeping & Attitude Maneuver Context**

- Initial Maneuver targeting is performed in ACE Engineering CS defined as follows:
  - Z-axis: Defined by Earth center to ACE radial vector
  - X-axis: up orthogonal to z-axis, in plane formed by z-axis & North Ecliptic Pole (NEP)
  - Y-axis: Z cross X
- **Final** maneuver targeting is performed using *Spin-axis Attitude CS* once spin axis attitude is known prior to maneuver
  - Z-axis: Defined by spin-axis attitude expressed in mean J2000 RA/DEC
  - X-axis: Up orthogonal to z-axis, in plane formed by z-axis & NEP
  - Y-axis: Z cross X
- Weekly spin-axis attitude re-orientation maneuvers perturb ACE orbit & perturbations modeled using Local Vertical Local Horizontal (LVLH) CS

# GMAT ACE\_impulsive\_vec###.script "User Inputs" ScriptEvent







## **GMAT ACE Graphics**



#### **GMAT ACE SK Maneuver Report**







## Pre-Shadow Ops...Cont.

Basic Design methodology for GMAT's ACE\_impulsive\_NOAA28day\_vec###.script:

