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Abstract 

When the air traffic demand is expected to 
exceed the available airport’s capacity for a short 
period of time, Ground Stop (GS) operations are 
implemented by Federal Aviation Administration 
(FAA) Traffic Flow Management (TFM). The GS 
requires departing aircraft meeting specific criteria to 
remain on the ground to achieve reduced demands at 
the constrained destination airport until the end of the 
GS.  This paper provides a high-level overview of the 
statistical distributions as well as causal factors for 
the GSs at the major airports in the United States. 
The GS’s character, the weather impact on GSs, GS 
variations with delays, and the interaction between 
GSs and Ground Delay Programs (GDPs) at Newark 
Liberty International Airport (EWR) are investigated. 
The machine learning methods are used to generate 
classification models that map the historical airport 
weather forecast, schedule traffic, and other airport 
conditions to implemented GS/GDP operations and 
the models are evaluated using the cross-validations. 
This modeling approach produced promising results 
as it yielded an 85% overall classification accuracy to 
distinguish the implemented GS days from the 
normal days without GS and GDP operations and a 
71% accuracy to differentiate the GS and GDP 
implemented days from the GDP only days. 

1. Introduction 
Air traffic congestion at the major commercial 

airports has been a serious problem in the National 
Airspace System (NAS), especially during inclement 
weather. FAA’s TFM manages air traffic flow to 
balance the air traffic arrival demand against airport 
capacity in cases of adverse weather or other 
circumstances while the latter is reduced. At the 
airports in the United States, when the air traffic 
demand is estimated to exceed the airport’s capacity 
for a short period of time, a GS, one of tactical TFM 
actions, may be enacted by FAA air traffic control.  

A GS is a procedure requiring aircraft that meet 
specific criteria to remain on the ground at their 
origin airports, to ensure that aircraft destined for the 

affected airport are not released until the operational 
situation allows [1]. Normally GSs are reactive to the 
current situation when traffic control is unable to 
safely accommodate additional aircraft in the system.  
They are most frequently used to preclude extended 
periods of airborne holding or to prevent the airports 
from reaching gridlock. GSs are considered to be one 
of the most restrictive Traffic Management Initiatives 
(TMIs) and they override all other TMIs that are used 
to manage air traffic flows in the National Airspace 
System (NAS).   

When the projected arrival traffic demand 
exceeds the airport capabilities for a long period of 
time, GDPs are implemented by TFM as strategic 
actions. A GDP is a procedure requesting delays of 
some flights at their departure airport in order to 
reconcile demand with capacity at their arrival 
airport. GDPs are usually a result of adverse weather 
conditions. Unlike GS, a GDP is more sophisticated 
and user-friendly; TFM issues not only GDP 
parameter, such as GDP start time, GDP duration, 
etc., but also an Expected Departure Clearance Time 
(EDCT) assigned for each affected flight. Therefore 
the airlines know the amount of delay for each 
aircraft and could manage its EDCT in their best 
interests. Without the information for the aircraft’s 
EDCT during GS operations, it is very hard for any 
airline to determine the departure times for GS 
affected flights. Furthermore, if the projected time 
during a GS is longer than that expected due to 
inaccurate prediction of demand and forecast, TFM 
may extend the GS duration, use multiple GSs or 
make a TMI transition from a GS into a GDP. These 
TMI’s interactions could cause some results less 
predictable and desirable [2].  

In recent years, a number of weather induced 
TMI studies have been emerged in the literatures [3-
7].  In spite of that, to the best of the author’s 
knowledge, there have not been any published studies 
seeking to analyze and predict whether a GS 
operation is necessary or not.  This study provides a 
high-level overview of the GS statistical 
distributions, cause factors, and the weather impacts 
on GSs at the major airports in the United States. The 



GS’s characters, GS variation with airport demands 
and delays, and the interactions of GSs and GDPs at 
Newark Liberty International Airport (EWR) were 
investigated. Machine learning classification 
algorithms were employed for providing predictions 
about whether a particular GS alone or GS and GDP 
combined may be applied to manage arrivals destined 
for EWR airport. 

The paper makes the use of Ensemble Bagging 
Decision Tree (BDT) classifications to predict GS or 
GS/GDP operations during bad weather. The strategy 
is to develop predictive BDT models utilizing 
historical GS, GDP, and weather forecast training 
data, and then to apply these models on test data to 
suggest whether a GS or GS/GDP should be planned. 
The prediction outlooks are then discussed.   

The data mining algorithm and cross validation 
approach is described in Section 2.  The National 
Traffic Management Log (NTML), the FAA Aviation 
System Performance Metrics (ASPM), and Rapid 
Updated Cycle (RUC) data sources are outlined in 
Section 3.  The historical analysis of GS operations is 
presented in Section 4, while the data mining 
predictions are described in Section 5.  Finally a 
summary of the results is submitted in Section 6. 

2. APPROACH AND MODELING 
METHODOLOGY 

The Ensemble Bagging Decision Tree model 
(BDT) was used to predict the requirement of GS 
operations on both normal and GDP implemented 
days.  The supervised machine learning was 
applied on training data to generate the BDT 
models and the models were validated by the 
cross validation methods. 

Ensemble Bagging Decision Tree 

Ensemble methods adopt multiple machine 
learning decision tree models to obtain a better 
predictive performance than that any of its 
individual constituent members can produce. 
Bagging stands for bootstrap aggregation. Bootstrap 
aggregation is a machine learning ensemble meta-
algorithm designed to improve the stability and 
accuracy of machine learning algorithms used in 
statistical classification and regression [8]. In 

classification scenarios, the random resampling 
procedure in bagging induces some classification 
margin over the dataset. Additionally, when 
bagging is performed in different feature 
subspaces, the resulting classification margins are 
likely to be diverse, which is essential for an 
ensemble to be accurate. The method takes into 
account of the diversity of classification margins 
in feature subspaces to enhance the behavior of 
bagging. First, it studies the average error rate of 
bagging, converts the task into an optimization 
problem for determining some weights for feature 
subspaces. Then, it assigns the weights to the 
subspaces via a randomized fashion in classifier 
construction. Experimental results demonstrate 
that the ensemble method is robust to 
classification noise and often generates superior 
predictions than any single classifier can do (see 
for example, [9-10]). In this study, the BDT 
classification model is implemented using the 
MATLAB TreeBagger function [11].  

Several features of bagged decision trees make 
TreeBagger a unique algorithm. Drawing the same 
number of samples out of all training observations 
with replacement is expected to have a 63.2% of 
unique observations for a large number of training 
data. So the process omits on average 36.8% of 
observations for each decision tree, called as "out-of-
bag" observations. These "out-of-bag" observations 
can then be used to estimate the feature importance 
by randomly permuting out-of-bag data across one 
input variable at a time and estimating the increase in 
the out-of-bag error due to this permutation. The 
larger the error increases, the more important the 
feature is. Thus, the feature importance can be 
obtained in the process of training, which is an 
attractive character of the TreeBagger.  

Model Validation Methods 

The machine learning models are constructed 
from an initial random state and ending with a 
trained state using training data sets and are 
tested or validated using a different data set. 
There are a number of validation approaches 
available. Among them, the very popular cross-
validation approach has been frequently used by 
researchers. 



In cross-validation, a series of BDT models 
are constructed each time by dropping a different 
part of the data from the training set and applying 
the resulting model to the dropped data to predict 
the target. The merged series of predictions for 
dropped or test data are checked for accuracy 
against the observations. In one version of the 
cross-validation approach, called group cross-
validation approach, data are divided into N 
groups. A total of N models are then constructed 
one by one using N-1 data groups for model 
training, and the remaining group is used for 
testing. At the end of this procedure, all 
predictions assembled from the dropped cases are 
compared with the observed targets to compute 
validation of model error for the cross-validation 
result. The ten-fold cross-validation is used in this 
study. 

Performance Measures 

A number of methods are available to evaluate 
the performance of binary classifiers. For a classifier 
with any given discrimination threshold, the number 
of cases correctly and incorrectly classified can be 
computed. This gives a confusion matrix with four 
numbers as shown in Table 1. YY is the number of 
true positives, i.e., how many cases are estimated by 
classifier as “Yes” events, which actually are “Yes” 
events. Similarly we can define NN as the number of 
true negatives, NY as the number of false positives 
and YN as the number of false negatives.  Using the 
statistics generated in Table 1, some frequently 
adapted classifier performance evaluation methods 
are described briefly below. More information about 
these methods can be found, for example, in Refs. 
[12-13]. 

Table 1. Confusion Matrix for Dichotomous 
(“Yes”/”No”) Events 

 Actual Observation 
Yes No 

Classifier 
Prediction 

Yes YY YN 
No NY NN 

The Overall Accuracy Rate (OAR) is defined as 
OAR= (YY+NN) / (YY+YN+NY+NN). It has a range 
of 0 to 1. “1” is the best classification performance 
score. The probability of detection (POD), also called 

as precision, is the proportion of “Yes” observed 
events that were correctly predicted, POD=YY / 
(YY+NY). The probability of false alarm (PFA), also 
called as false alarm ratio, is the proportion of “No” 
observed events that were not correctly estimated as 
“Yes” predicted events, PFA = YN / (YY + YN). Its 
values also range from 0 to 1. If YN= 0, then the 
score goes to 0, the best one can expect. The Critical 
Success Index (CSI) is the proportion of true 
positives that were either estimated or observed. CSI 
= YY / (YY + YN + NY). Its values range from 0 to 1 
with a value of 1 indicating a perfect classification 
performance score. The PFA can be controlled by 
deliberately under-predicting the event; such a 
strategy risks increasing the number of missed 
events, which is not considered in the PFA. For this 
reason, the POD and the PFA should both be 
considered for a better understanding of the 
performance of the forecast. 

The OAR, POD, PFA, and CSI classifier 
performance measures are used in this research. 

3. DATA USED IN THE STUDY 
This section describes FAA National Traffic 

Management Log (NTML), the FAA Aviation 
System Performance Metrics (ASPM), and Rapid 
Updated Cycle (RUC) weather forecast analysis data. 
The FAA NTML provides a single system for 
automated coordination, logging, and communication 
of Traffic Management Initiatives (TMIs), such as 
GS and GDP events, throughout the National 
Airspace System. The ASPM source provides airport 
specific information such as arrival delays, schedule 
arrival, and arrival demand for the major US airports. 
The RUC was a National Oceanic and Atmospheric 
Administration (NOAA) operational weather 
prediction system which generated high-frequency 
numerical weather forecast until May, 2012 [14]. All 
data over the years 2007 through 2009 were derived 
from these data sources.  

GS and GDP Event Data 
More than 8000 GS operation data at the major 

US airports were collected for the years 2007-2009 
from the NTML database. The data were used for a 
high-level statistical study on GS airport distributions 
and causal factors. 



Among these US airports, EWR airport has one 
of the highest GS and GDP event rates over the years 
2007-2009. During these three years, GSs and GDPs 
were implemented at EWR approximately 56% and 
54% of the days, respectively. On these impacted 
days, the actual durations were about 1.5 hours and 9 
hours on average for GS and GDP, respectively. 

The EWR GS and GDP data were collected for 
each hour and for each day for the years 2007-2009. 
The hourly or daily data were partitioned into four 
sets based on whether the GS and GDP operations 
during a particular hour or day were carried out 
or not at EWR. The four groups are labeled as 
follows: GS/GDP for the one in which both GS and 
GDP carried out; GS/Non-GDP for the one with GS 
only; GDP/Non-GS for that GDP implemented 
without GS; and Non-GS/Non-GDP as the one 
without both for the hour or day investigated. Both 
hourly and daily data were used in GS statistical 
studies. Only the daily data were used to generate and 
test the classification model for predicting the GS 
operations.  

ASPM Data 
Observed airport hourly delays, schedule arrival, 

arrival demand, airport arrival rates (AAR), and 
terminal weather data were collected from the ASPM 
database. AAR is a dynamic parameter specifying the 
number of arrival aircraft that an airport, in 
conjunction with terminal airspace, can accept under 
specific conditions throughout any consecutive hour. 
Actual hourly airport surface weather observation 
reports (METAR) including wind, ceiling, visibility, 
and meteorological condition flags are predominantly 
used by air traffic controller in air traffic 
management and by meteorologists in the weather 
forecast modeling. ASPM data were preprocessed to 
convert character records to numerical values with 
missing data being filtered out. The processed ASPM 
data were used in the statistical analysis and also as 
inputs for generating and validating the machine 
learning GS models. 

RUC Weather Data 
The RUC weather data were designed to provide 

accurate numerical forecast guidance about severe 
weather and hazards for aviation users for the next 
several hour time period. RUC assimilates recent 

weather observations aloft and at the surface to 
provide hourly updates of current conditions and 
short-range forecasts using a sophisticated mesoscale 
model. The RUC model uses optimum interpolation 
analyses and incorporates the surface analysis within 
3-D analysis to produce 3-D grids which cover a 
geographical domain over much of North America, 
including the entire contiguous United States and 40 
levels in vertical. The RUC grid, used for the 
modeling, has 40-km horizontal resolution with 151 x 
113 grid points on surface.  

  RUC weather forecasts in 6-hour look-ahead 
time periods over the years 2007 through 2009 were 
collected from the NOAA servers. Each forecast has 
151X113 grid points; there are 315 weather 
parameters per grid point. The data were 
preprocessed to select the grid point that is the closest 
to EWR. Wind and storm moving speeds and 
directions were calculated utilizing their RUC U and 
V components. Only ten weather parameters were 
chosen based on the EWR GS weather causal factors 
(wind and thunderstorm) and the feature importance 
analysis (see Section 2) using the TreeBagger [15]. 

Table 2 lists the 10 RUC surface weather 
parameters and the numbers associated with them. 
These picked parameters carry very important 
weather information for air traffic control. These 
variables can be categorized as follows: pressure 
(#1), wind and max wind (#2 to #5), visibility (#6), 
storm (#7 to #8), and lifted indexes (#9 to #10) which 
offer energy information on the intensities of severe 
weather. 

Table 2. RUC Forecast Parameters 

# RUC Forecast Parameters 
1 Surface Pressure Tendency (PTEND) [Pa/s] 

2 10 m above ground Wind Speed (WSGRD) [m/s] 

3 max wind Pressure (MWPRES) [Pa] 

4 max wind Speed (MWS) [m/s] 

5 Surface Gust Wind Speed (GUST) [m/s] 

6 Surface Visibility (VIS) [m] 

7 Surface Storm Relative Helicity (HLCY) 
[m^2/s^2] 

8 Surface Storm Motion Speed (SSMS) [m/s] 

9 Surface Lifted Index (LFTX)[K] 

10 Surface Best Lifted Index to 500 mb (BLI) [K] 



 

4. STATISTICS OF GROUND STOPS 
More than 8000 GS events for all US airports 

from the year 2007 through 2009 were collected 
from NTML. This data was used to generate the 
distributions reflecting the GS activities at the US 
airports. Section 4.1 describes the activity levels as 
well as the underlying factors that normally drive 
the events. In the remainder of this section, 
historical GS analysis at EWR airport is presented 
in terms of the time series distribution, demand 
and delay analysis, and the usage in conjunction 
with GDP programs.  

4.1 GS Analysis of the U.S. Airports 
A distribution of the GSs at U.S. airports over 

years 2007-2009 is given in Fig. 1.  The top six 
impacted airports were Newark Liberty 
International Airport (EWR), LaGuardia Airport 
(LGA), Atlanta International Airport (ATL), 
Chicago O’Hare International Airport (ORD), 
Philadelphia International Airport (PHL), and John 
F. Kennedy International Airport (JFK). They 
accounted for 13%, 9%, 8%, 7%, 7%, and 6% of all 
GSs respectively and the other airports (with less 
than 4% for each) took up the remaining 50% of 
the operations.   

 

Figure 1. GS Distribution at the U.S. Airports 

The causal factors, as recorded in the NTML 
database are shown in Fig. 2.  As can be seen from 
this plot, “Weather” was the predominant stated 

cause (80%) for the GSs at all airports.  For the 
other “non-weather” causal factors, the presence 
of “Volume” related GSs at these airports was also 
noteworthy, since they account for more than 
12% of all GSs.  In this figure, “Volume” is used to 
indicate the air traffic congestion at the arrival 
airports.  

 

Figure 2. Causal Factors for GSs at the U.S. 
Airports 

The diverse weather causes at the sub-
category level for the U.S. airports through the 
years 2007-2009 are shown in Fig. 3. It 
demonstrates that the most serious weather 
component for GS operations was the 
“Thunderstorms” which accounted for 46% of 
weather impacted GSs. 

 

Figure 3. Weather Subcategory Causal Factors 
for GSs at the U.S. Airports 



The diverse weather causes for each of the 
top–six U.S. airports over the years 2007-2009 are 
shown in Fig. 4. The weather causal factors were 
different for different airports. For GSs at EWR 
airport, the top three causal factors were “Wind” 
with 41%, “Thunderstorms” with 26%, and “Low 
Ceilings/Fog” with 20% of the total number of GSs 
caused by weather.  

 

Figure 4. Weather Causal Factors for GSs at the 
Top 6 U.S. Airports 

Table 3. GS Durations (hours) for the Top 6 
Airports 

 
Airport 

Weather Non-Weather 
Average 
Planned 
Duration 

Average 
Actual 

Duration 

Average 
Planned 
Duration 

Average 
Actual 

Duration 
EWR 1:14 1:30 1:07 1:08 
LGA 1:12 1:37 1:04 1:01 
ATL 1:06 1:11 1:05 0:54 
ORD 1:09 1:20 1:01 1:15 
PHL 1:11 1:24 1:04 0.58 
JFK 1:18 1:49 1:09 1:10 

The GS start time and planned stop time were 
issued by TFM when a GS was implemented. The 
GS planned duration is defined as the difference 
between the GS planned stop and the GS start 
time. During a GS, these program parameters 
might need to be revised because of changing 
weather or operation conditions. GS revisions may 
lead to further GS stop time substitutions and the 
actual duration is the time duration between the 

actual GS stop time and the GS start time. Table 3 
shows the average of planned and actual 
durations for the GSs caused by weather and non-
weather at the top six airports. The averages of GS 
durations were all around one hour. For those GSs 
caused by weather for the six airports, the 
averages of actual durations were up to 30 
minutes longer than that originally planned. The 
differences between averages of actual and 
planned durations for those GS caused by 
runway/equipment, volume, or other non-
weather reasons were relatively small, around a 
few minutes.  

The remainder of this paper focused on the 
study of those GSs implemented at EWR airport 
where the highest GSs incidence of 13% took 
place, as shown in Fig. 1. 

4.2 EWR GS Statistics 
Temporal usage statistics (e.g., monthly, daily 

and hourly) for GS operations at EWR are 
exhibited in Fig. 5.  

 

Figure 5. Temporal Usage Statistics for GSs at 
EWR Airport 

 The data were divided in terms of weather 
(blue bars) and non-weather (red bars) events.  
Starting with the monthly usage statistics, which 
appears in the upper-most image in Fig. 5, it is 
noted that there tends to be more weather-related 
GS operations in the summer months (June 
through August), while “Non-weather” related GS 
operations are almost flat - no consistent pattern of 



monthly peaking. In terms of the weekly usage of 
GS operations at EWR (see the middle image in 
Fig. 5), the number of operations was fairly 
constant with a noticeable decreased in the usage 
on Saturdays, which was to be expected since the 
arrival demand also tended to be lower on 
Saturdays.  Finally, the hourly patterns of the 
profiles (see the bottom image in Fig. 5) are fairly 
apparent, i.e. the GS operations tended to peak 
between 10:00am and 8:00 pm local time (Eastern 
Daylight Time, EDT), which coincided with the 
more arrivals destined for the airport.   

Using the TMI report time as the TMI issue 
time, the time difference between the TMI 
implemented start time and the TMI issue time 
may indicate how well the TMI action is planned. 
The time differences for the EWR GS events and 
GDP events without GS interactions from the year 
2007 through 2009 are shown in Fig. 6 (a) and (b) 
respectively. The fact that the GS at EWR 
frequently started at the issue time (see in Fig. 6 a) 
suggests that in general the GS was the reactive 
response when a sudden and unexpected 
imbalance of airport demand and capacity 
occurred. In contrast to GS, the EWR GDP issue 
time was earlier than GDP start time by two hours 
on average (see Fig. 6 b).  

 

Figure 6. The Time Difference between Start Time 
and Issue Time for GSs (a) and GDPs (b) at EWR 

Airport 

The GS planned duration and actual duration 
versus the GS start time for all EWR GS operations 

from 2007 through 2009 are shown in Fig. 7. The 
time distributions of GS planned and actual 
durations are list in Table 4. As expected, the GS 
planned duration was relative short, it was less 
than 2 hours 98% of time (see Table 4), and not 
influenced by the start time (Fig. 7 a).   However, 
the actual durations often extended and 
occasionally (with a 4% of time, see Table 4) 
lasted for 3 to 6 hours (Fig. 7 b).   

 

Figure 7. EWR GS Planned (a) and Actual (b) 
Duration versus GS Start Time 

Table 4. EWR Planned and Actual GS Time 
Distributed Percentages 

GS Counts 
Percentage 

< 1 
Hour 

>=1 & 
< 2 Hour 

>=2 & 
<3 Hour 

>=3 
Hour 

Planned 
Duration 19% 79% 2% 0% 

Actual 
Duration 27% 61% 8% 4% 

4.3 GS Variations with Demands and Delays 
Conceptually, GS or GDP operations are used 

during the hours with imbalance of arrival 
demand and airport capacity. It may lead to higher 
delays for the airport arrivals.  To test this, the 
EWR demand and delay data from 2007-2009 
were partitioned into four sets based on whether 
the GS and GDP were operated or not during the 
hour.  

The EWR hourly GS and GDP count 
percentages from local time 5 am to midnight over 
2007-2009 are listed in Table 5. During this time 
period, it can be seen that non-GS and non-GDP 
incidence accounted for 68% of time; followed by 
GDP only operations at 20% and GS with/without 



GDP actions each occupied only a small portion, 
i.e. 6% of time. 

Table 5. EWR Hourly GS and GDP Count 
Percentages 

Hour 
Counts 

GS/ 
GDP 

GS/ 
Non-GDP 

GDP/   
Non-GS 

Non-GS/ 
Non-GDP 

Percentage 6% 6% 20% 68% 
The ratios of EWR arrival demand over the 

airport capacity, AAR, are presented in Figure 8 
where the histogram (a) presents the hourly ratio 
counts for the hours with both GS and GDP 
operated (GDP/GS), (b) or (c) for the hours with 
GDP only (GDP/Non-GS) or GS only (GS/Non-GDP) 
events, and (d) for the hours without both GDP 
and GS operations (Non-GDP/Non-GS). The ratio 
would be greater than one when the arrival 
demand exceeds the airport capacity. Fig. 8 
reveals that the ratio of EWR demand and AAR 
was much larger than 1 during GDP operation 
hours, just above 1 during GS implemented hours, 
and surely, the ratio on the normal days without 
any GDP and GS hours was peaked at less than 1. 
The fact that the ratio for the GDP hours is larger 
than that for the GS hours suggests that the GSs 
were mostly required for resolving relatively 
small imbalances while GDPs were used to 
recover the arrival demands. 

 

Figure 8. The Ratio of Hourly Demand and AAR 
for EWR GS and GDP Events 

The hourly scheduled arrival delays in 
minutes are presented in Figure 9 where the 
histogram (a) is for GDP/GS hours, (b) or (c) for 
GDP/Non-GS or GS/Non-GDP hours, and (d) for 
Non-GDP/Non-GS hours. Fig. 9 shows that as 

anticipated, the arrival delays during GDP hours 
were greater than that from GS only delays, and 
naturally, the corresponding delays without GDP 
and GS were the least among all.  

 

Figure 9. Effect of GSs and GDPs on EWR Hourly 
Schedule Arrival Delays 

The airborne delay minutes are presented in 
Figure 10 where the histogram (a) is for GDP/GS 
hours, (b) or (c) for GDP/Non-GS or GS/Non-GDP 
hours, and (d) for Non-GDP/Non-GS hours. Fig. 10 
reveals that the airborne delays during GS 
implemented hours were greater than the delays 
during GDP hours. And the airborne delays for 
non-GDP/non-GS hours were similar to the 
GDP/non-GS hours.  The fact that the GS involved 
airborne delays were longer than that for other 
cases signifies that the implementation of the GS 
was affected by the airborne delays and was used 
to preclude extended period of airborne holding 
for the arrivals destined to the airport.  

 

Figure 10. Influence of GSs and GDPs on EWR 
Hourly Airborne Delays 



4.4 GS and GDP Interactions 
The EWR GDP time durations were about 

nine hours on average [5], so only one GDP could 
be implemented per day (from local time 2 AM to 
next 2 AM) for the years 2007-2009. The GSs were 
much shorter; sometimes multiple GSs could be 
enacted on the same day. The EWR daily GS/GDP 
implementation percentages for the years 2007-
2009 with 1096 days in total are listed in Table 6. 
It shows that there’s a 56% of days on which GSs 
were enacted; a 35% of days that both GS and GDP 
were implemented; a 25% of days that none of 
them required, and 21% and 19% of days for GS 
only and GDP only operations, respectively.  

Table 6. EWR Daily GS and GDP Percentages 

Days 
GS/ 
GDP 

GS/ 
Non-GDP 

GDP/ 
Non-GS 

Non-GS/ 
Non-GDP 

Percentage 35% 21% 19% 25% 
The EWR daily GS count percentages on those 

days with GDP (35% in Table 6) and without GDP 
(21% in Table 6) over 2007-2009 are listed in 
Table 7.  It displays that on GS/GDP and GS/Non-
GDP days, the percentages that multiple GS 
incidents occurred are 42% and 48% times, 
respectively. Meanwhile more than three GS 
activities were operated at 3% times regardless 
whether GDP happened or not. Counting all 
multiple GS cases together, they were carried out 
a 25% of days (35%*42%+21%*48%).   

Table 7. EWR GS Counts/Day Percentages 

GS Counts/Day 1 2 3 >3 
GDP Day (35%) 58% 29% 10% 3% 
Non-GDP (21%) 52% 31% 14% 3% 
Four typical GS implemented days during the 

summer of 2008 are shown in Fig. 11. The time 
along the x axis shown in the figure ranges from 2 
AM to next 2 AM EDT. The red lines in the figure 
represent the GS events and the blue lines indicate 
the GDP events. The top two plots in Fig. 11 depict 
multiple GS activities on 8/18/2008 and 
8/19/2008 when no GDP occurred. On 
8/18/2008, the first GS started (red line jumped 
from 0 to 1) at 13:34 local time (EDT) and ended 
at 14:54 (dropped from1 to 0); the second one 
started at 16:05 and ended at 17:09 (see the top 

image in Fig. 11). On 8/19/2008, three GSs 
(13:55-14:39, 15:20-16:55, and 17:50-19:10) 
were implemented on the day (see second 
histogram from the top in Fig. 11).  

The bottom two diagrams show the events 
happened on the two ordinary GS/GDP days one 
on 6/18/2008 and the other on 7/17/2008. There 
were two GSs implemented on 6/18/2008 and 
three GSs on 7/17/2008. From the plot for the 
incidence on 6/18/08, the GDP started from 12:33 
ended at 00:38 on the next day. The two GSs 
(15:48-19:30 and 21:01-22:30) were enforced 
during GDP hours. From the 7/17/2008 image, 
the GDP was started at 19:30 and continued until 
00:59 the next day. The three GSs (12:09-12:54, 
15:09-16:19, and 17:30-19:45) were implemented 
before the GDP. 

 

Figure 11. Four Examples of the Multiple GS 
Implemented Days during the summer of the Year 

2008 

If multiple GSs arise together very closely, it 
can induce the degree of uncertainty on the 
operations of the affected aircraft. To study the 
impact of the multiple GSs, two variables are 
introduced in order to characterize the closeness 
of the GSs.  The first one is the sum duration for 
multiple GSs defined as the sum of GS durations. 
The second is the distributed duration denoted as 
the difference between the end time of the latest 
GS and the start time for the earliest GS. If the sum 
duration value is closed to distributed duration, 
the multiple GSs are not far apart. The multiple 
GSs distributed duration vs. the sum duration for 
GDP and Non-GDP days are shown in Fig. 12 (a) 



and (b).  The distributed durations are clustered 
closely on GS/non-GDP days, whereas the plot is 
more dispersed on GS and GDP days. 

 

Figure 12. EWR GS Distributed Duration vs. Sum 
Duration for GS/Non-GDP Days (a) and GS/GDP 

Days (b) 

The enacted GSs before or during GDP events 
can have some influence on the GDP planned 
variables, such as the GDP issue time, start time 
and the GDP planned durations. Figure 13 shows 
the EWR GDP planned duration vs. GDP start time 
for GS days (a) and non-GS days (b) for the years 
2007-2009. The figure reveals that the GDP can 
start anytime during the GS/GDP days, however 
the GDP were only enacted no later than 2:30 pm 
local time during the GDP/Non-GS days. On those 
GS/GDP days, the GDPs starting after 2:30 pm 
accounted for 17% of time. 

 

Figure 13. EWR GDP Planned Duration vs. GDP 
Start Time for the GS/GDP Days (a) and for the 

GDP/Non-GS Days (b) 

Figure 14 displays the time difference 
between the GS start time and GDP start time for 
GDP started after 2:30 pm local time (a) and 
before 2:30 pm (b) on the GDP/GS days at EWR 
during the years 2007-2009. Fig. 14 (a) shows that 
the all GSs were started early and then 
transformed into a GDP on the GS/GDP days when 
GDP started after 2:30pm (for example, see 

7/17/2008 in Fig. 11). This happened on 6% of 
the days investigated (35%*17%). In cases where 
GDP events started before 2:30 pm (see Fig. 14 b), 
there was a roughly 25% of time in which the GSs 
took place at least half an hour earlier than the 
GDP. This appeared on about 7% of the days 
studied (35%*83%*25%). 

 

Figure 14. The Difference of GS Start and GDP 
Start Time for EWR GS/GDP Days with GDP 
Start Time after 2:30pm (a) and at or before 

2:30pm (b) 

Figure 15 shows the time differences 
between the GDP start and issue times on the 
GDP/GS days with the GDP starting (a) after 2:30 
pm local time and (b) at or before 2:30 pm at EWR 
during the years 2007-2009. The time difference 
of two hours on average between the GDP issued 
and the GDP implemented time on GDP/Non-GS 
days (see Fig. 6 b) indicates that the GDP events 
were well planned without the GS appearance. In 
contrast to GDP/Non-GS days, on GS/GDP days, 
the GDP issue time were not much earlier than the 
GDP start time, especially for the case shown in 
Fig. 15 (a). The noticeable zero peaks in Fig. 15 (a) 
and (b) suggest that the GDPs were implemented 
at the same time as the GDP issue time when TFM 
made the transition from a GS into a GDP. 



 

Figure 15. The Time Difference between GDP 
Start Time and Issue Time for GDP/GS Days with 

GDP Start Time>2:30pm (a) <=2:30pm (b) 

As a summary, the following observations of the 
EWR GSs over the years 2007-2009 were made from 
the statistical analysis presented in this section: 

(a) GSs were enacted reactively to an 
unexpected imbalance of airport demand and 
capacity and used to preclude extended 
airborne holdings. 

(b) 12% of the actual GS durations were 
longer than 2 hours and 4% of them were 
between 3 and 6 hours.  

(c) The multiple GSs were enacted in 25% of the 
days.  

(d) 35% of the days in the three years had GSs 
and a GDP implemented on same days. About 
13% of them, TFM made a TMI transition from 
a GS into a GDP event.  

These observations demonstrate that the GS 
is an important TFM action for reducing the 
imbalance of airport demand and capacity. 
However the findings that the actual GS durations 
frequently extended from the planned ones, along 
with the facts that multiple GSs often necessary, 
and some transformed into GDPs occasionally, 
made the predictability of GS operations difficult 
at EWR airport. In order to better estimate and 
manage the requirement for the GS handling, the 
BDT model trainings and validations are 
presented in the remainder of this study in an 
attempt to forecast the GS operations based on the 
past experience. The methods may have potential 

in helping the TFM specialists to identify the 
better operations to control the air traffic destined 
to the constrained EWR airport.  

5. CLASSIFICATION RESULTS 
This section contains the classification results 

obtained using the Ensemble Bagging Decision Tree 
models to (1) predict the usage of GS operations on 
the Non-GDP days, to (2) forecast the GDP usage on 
the Non-GS days, to (3) distinguish the same day 
usage of both GS and GDP operations from the 
normal days (Non-GS/Non-GDP), and to (4) assess 
the usage of GS operations on the GDP days. In all 
four cases, supervised machine learning was used to 
train the BDT binary classification models, and the 
model validation was accomplished with ten-fold 
cross validation. 

In this analysis, the “prediction start time” is 
taken as the hour one hour earlier than the start time 
of GS or GDP whichever came first. For example, 
12:00 pm was used as the prediction start hour on 
8/18/2008 (see in Fig. 11, the earliest GS began at 
13:34). On the normal days (Non-GS/Non-GDP), 
11:00 am EDT, just before the start of heavy air 
traffic at EWR, was used as the prediction start hour. 
The BDT models were trained and tested by using the 
ASPM EWR airport conditions, ASPM EWR 
terminal METAR weather data, 6-hour look-ahead 
EWR schedule arrival, as well as EWR 6-hour RUC 
forecast data at the prediction start hour as inputs. 
Note in contrast to that GS issue time was the same 
as the GS start time on average; the prediction start 
time is always selected at the hour earlier than the GS 
start by at least an hour. 

5.1 Prediction of GS days 
The ability to predict the GS requirement 

days may have potential to aid TFM in preparing 
for the situations. In order to estimate if GSs were 
required or not on a given non-GDP day, the non-
GDP days were grouped into two classes labeled 
as “Yes” and “No” respectively. The “Yes” class 
includes those when at least one GS was required, 
while the class “No” is for the days without any GS 
or GDP events.   Using the binary indicator 
responses of the GS usage as targets, the BDT 
classification models were first developed and 



trained, and subsequently applied to the test data 
for prediction purposes.    

The prediction result at the prediction start hour 
for EWR airport is shown in Table 8. Out of the 387 
non-GDP days, 167 days had at least one GS enacted. 
The prediction accuracy of the BDT binary classifier, 
which is given by OAR, is the proportion of correct 
results, (123+206)/(387) = 0.85.  Out of a total of 167 
observed GS days, the number of correctly predicted 
days was 123.  The precision is then given by 
123/167= 0.74 (see POD in Table 8). Out of a total of 
137 predicted GS days, the number of false predicted 
day was 14. The false alarm ratio is then given by 
14/137=0.10 (see PFA in Table 8). Out of a total of 
181 (123+14+44) observed and predicted GS days 
the correctly predicted days were 123. The Critical 
Success Index (CSI) is then given by 123/181=0.68. 
Overall, by comparing and verifying with the 
observation data, the BDT model seems to perform 
well on predicting the required GS operations.  A 
review of the GS implemented at these conditions 
may help to improve the predictability of the GS 
operations. 

Table 8. Prediction of the EWR GS Days 

EWR GS Day 
Predictions 

Actual Observation 
Yes No Sum 

BDT 
Prediction 

Yes 123 14 137 
No 44 206 250 

Sum 167 220 387 
OAR:85%, POD:74%, PFA:10%,CSI:0.68 

5.2 Prediction of GDP Days 
In parallel with the prediction of the GS days, 

the prediction of GDP operations during non-GS 
days was also performed using BDT models. To 
determine if a GDP was required or not on a given 
non-GS day, the non-GS days were grouped into 
two classes labeled as “Yes” and “No” respectively. 
The “Yes” class was used to indicate that a GDP 
was required on a particular day, while the class 
“No” to indicate none of GDP was required on a 
given day.  

The prediction on if a GDP is required or not at 
the prediction start hour for the EWR airport is 
shown in Table 9. Out of the 367 non-GS days, 147 

days had GDP implemented. The accuracy of the 
BDT model prediction, OAR, is 0.86. The precision 
(POD) is 0.80. The false alarm ratio (PFA) is 0.15. 
And the CSI is 0.70. The BDT model performance at 
identifying GDP implemented days is at least as good 
as the BDT model for prediction of GS days. 

Table 9. Prediction of the EWR GDP Days 

EWR GDP Day 
Predictions 

Actual Observation 
Yes No Sum 

BDT 
Prediction 

Yes 117 21 138 
No 30 199 229 

Sum 147 220 367 
OAR:86%, POD:80%, PFA:15%,CSI:0.70 

5.3 Prediction of GS and GDP days 
For distinguishing the GS and GDP days from 

the normal (Non-GDP/Non-GS) days, the data 
were grouped into the two the same way as 
before, i.e., the “Yes” class was to indicate that 
both GS and GDP were required on a particular 
day, while the class “No” to indicate none of GDP 
or GS were required on a given day. The results are 
shown in Table 10. The accuracy of the BDT 
classifier, OAR, is 0.85.  The precision (POD) and 
false alarm (PFA) is 0.88 and 0.15, respectively. The 
Critical Success Index (CSI) is 0.76. 

Table 10. Prediction of EWR GS and GDP Days 

EWR GS/GDP Day 
Predictions 

Actual Observation 
Yes No Sum 

BDT 
Prediction 

Yes 246 43 289 
No 33 177 210 

Sum 279 220 387 
OAR:85%, POD:88%, PFA:15%,CSI:0.76 

5.4 Prediction of GSs on GDP days 
The ability to predict the days requiring GS 

operations on the GDP days may help TFM 
specialist to adjust the GDP parameters (such as 
the start time, affected flights, etc.) to increase the 
predictability of TFM actions. This is a difficult 
problem because the weather situations for using 
GDP or both GDP and GS were similar. As usual, 
the GDP days were labeled as either a “Yes”, for 



those having at least one GS operation on a GDP 
day, or a “No” otherwise. The classification results 
are shown in Table 11 with OAR=71%, POD=86%, 
PFA=0.26, and CSI=0.66.  

Table 11. Prediction of GS implemented in GDP 
Days 

EWR GS  
Predictions for the 

GDP days 

Actual 
Observation 

Yes No Sum 
BDT 

Prediction 
Yes 239 82 321 
No 40 65 105 

Sum 279 147 426 
OAR:71%, POD:86%, PFA:26%,CSI:0.66 

 

The BDT AAR model predictions using 6-hour 
look-ahead RUC forecast performed reasonably well 
in this GS and/or GDP day prediction study. The 
overall prediction accuracies are about 85% with the 
precisions ranged from 74% to 88% and the false 
alarm ratio from 10% to 15% to distinguish GS, GDP 
or GS and GDP days from normal days. To 
discriminate GS and GDP days from the GDP days, 
the overall prediction accuracy, the precision, and the 
false alarm ratio are 71%, 86%, and 26%, 
respectively. 

6. CONCLUDING REMARKS 
This paper begins with providing an 

extensive analysis of the GSs implemented at EWR 
airport from 2007 through 2009 first.  The key 
findings relevant to the GS operations for the 
constrained EWR airport are as follows. The GSs 
were enacted reactively to a sudden imbalance of 
airport demand and capacity and used to preclude 
extended airborne holdings.  Sometimes, the 
actual GS durations were extended from the 
planned ones up to 3 hours or even longer. The 
GSs were enacted in 56% of the days investigated 
and multiple GSs were enacted in 25% of days. On 
35% of days, GSs and a GDP were implemented on 
a same day. The GS was transformed into a GDP 
on 13% of the days in the three years. 

The paper subsequently presents machine-
learning methods for predicting the GS and/or 
GDP implemented days. These predictions are 
accomplished by using an Ensemble Bagging 
Decision Tree (BDT) and supervised machine 

learning is employed to train the BDT binary 
classification models.  The models are validated 
using data cross validation methods.  When 
predicting the occurrence of GS, GDP, and GS/GDP 
from the normal days, the model was able to achieve 
an overall accuracy rate about 85%.  In the study to 
distinguish the GS/GDP days from GDP/Non-GS 
days an overall accuracy rate of 71% was achieved. 

In summary, the predictions proposed here by 
the BDT model provide an approach to understanding 
and accounting for the uncertainty in demand and 
weather impacted capacity and how to learn from the 
past experience. The study provides information that 
may be useful in improving FAA TFM daily 
operations. 
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