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Polychlorotrif luoroethylene (CTFE)

Atomic Oxygen in Low Earth Orbit

O2 Diatomic Molecule

Atomic Oxygen

UV Radiation

E= h >5.12 eV (<243 nm)

Photodissociation of O2
• AO is the predominant species 

from 180-650 km

• Average ram energy 4.5 eV

LDEF Spacecraft CTFE after

8.99 x 1021 atoms/cm2
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O2 

UV Radiation 

O O 
CO or CO2 

OH 

Basic Atomic Oxygen Interaction   
with Organic Surfaces 
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Material Testing in an Atomic Oxygen Environment Using 
Ground-Based Systems 
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Materials International Space Station Experiment (MISSE) 

Long Duration Exposure Facility (LDEF) 

Material Tests in Low Earth Orbit (LEO)  
for Environment Interactions 
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Material Abbrev.
Ey 

(cm3/atom)

Ey 
Uncertainty 

(%)
Material Abbrev.

Ey  
(cm3/atom)

Ey 
Uncertainty 

(%)
Acrylonitrile butadiene styrene ABS 1.09E-24 2.7 Polyamide 6 or nylon 6 PA 6 3.51E-24 2.7

Cellulose acetate CA 5.05E-24 2.7 Polyamide 66 or nylon 66 PA 66 1.80E-24 12.6
Poly-(p-phenylene 
terephthalamide) PPD-T (Kevlar) 6.28E-25 2.6 Polyimide PI (CP1) 1.91E-24 2.8

Polyethylene PE 3.74E-24 2.6 Polyimide (PMDA) PI (Kapton H) 3.00E-24 2.7

Polyvinyl fluoride PVF (Tedlar) 3.19E-24 2.6 Polyimide (PMDA) PI  (Kapton HN) 2.81E-24 2.6

Crystalline polyvinylfluoride 
w/white pigment

PVF (White 
Tedlar)

1.01E-25 4.1 Polyimide (BPDA) PI (Upilex-S) 9.22E-25 3.0

Polyoxymethylene; acetal; 
polyformaldehyde POM (Delrin) 9.14E-24 3.1 Polyimide (PMDA) PI (Kapton H) 3.00E-24 2.6

Polyacrylonitrile PAN 1.41E-24 3.3
High temperature polyimide 

resin PI (PMR-15) 3.02E-24 2.6

Allyl diglycol carbonate ADC (CR-39) 6.80E-24 2.6 Polybenzimidazole PBI 2.21E-24 2.6
Polystyrene PS 3.74E-24 2.7 Polycarbonate PC 4.29E-24 2.7

Polymethyl methacrylate PMMA 5.60E-24 2.6 Polyetheretherkeytone PEEK 2.99E-24 4.5
Polyethylene oxide PEO 1.93E-24 2.6 Polyethylene terephthalate PET (Mylar) 3.01E-24 2.6

Poly(p-phenylene-2 6-
benzobisoxazole)

PBO (Zylon) 1.36E-24 6.0 Chlorotrifluoroethylene CTFE (Kel-f) 8.31E-25 2.6

Epoxide or epoxy EP 4.21E-24 2.7
Halar ethylene-

chlorotrifluoroethylene ECTFE (Halar) 1.79E-24 2.6

Polypropylene PP 2.68E-24 2.6
Tetrafluorethylene-ethylene 

copolymer ETFE (Tefzel) 9.61E-25 2.6

Polybutylene terephthalate PBT 9.11E-25 2.6 Fluorinated ethylene 
propylene

FEP 2.00E-25 2.7

Polysulphone PSU 2.94E-24 3.2 Polytetrafluoroethylene PTFE 1.42E-25 2.6

Polyeurethane PU 1.56E-24 2.9 Perfluoroalkoxy copolymer 
resin PFA 1.73E-25 2.7

Polyphenylene isophthalate PPPA (Nomex) 1.41E-24 2.9 Amorphous Fluoropolymer AF 1.98E-25 2.6
Graphite PG 4.15E-25 10.7 Polyvinylidene fluoride PVDF (Kynar) 1.29E-24 2.7

Polyetherimide PEI 3.31E-24 2.6 *Ey > this value because sample stack was partially or fully eroded through

Atomic Oxygen Erosion Yields of Polymers  
Flown on MISSE-2 (PEACE) 
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Polymer 

Dust Particle Scratch or 
Rill 

Protective Coating 

Imperfections in Thin Film Coatings Aluminized Kapton Flown on LDEF 

Issues With Protective Coatings 
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Blanket Box Cover Failure of Aluminized Kapton 
Observed on ISS 

Coating 

Coating 
Polymer 
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Monte Carlo Computational Model Predictions 
• 2-D Computational modeling of atomic oxygen 

erosion of polymers based on observed in-space 
results 

• Takes into account: 
• Energy dependence of reaction probability 
• Angle of impact dependence on reaction 

probability 
• Thermalization of scattered oxygen atoms 
• Partial recombination at surfaces 
• Atomic oxygen scattering distribution 

functions 
• Modeling parameters tuned to replicate in-space 

erosion 
 

Aluminized on both sides 

Aluminized on exposed side only 

O 

O 
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X 

L 

L/X    165 

Thermal Energy Plasma 

Metal screen 
Glass 

Polycarbonate 

12 inch diameter 
polycarbonate window 

Atomic Oxygen Scattering 
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 Experienced a  far UV sensitivity decline ranging from 3-15%/year 
    (based on data from June 2009 through mid-February 2010) 

Change in Sensitivity of Cosmic Origins 
Spectrograph on Hubble Space Telescope 
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Scattering and Thermal Accommodation of  
 Low Earth Orbital Atomic Oxygen 

Possible Events Upon Impact: 
 

•  Reaction 
•  Recombination 
•  Scattering 
•  Partial thermal accommodation 
•  Ejection out the entrance 
 
 

LEO  
~ 4.5eV 

~ 0.04 eV 

o 
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Test of Mock Aperture 
with Various Types of Liners 
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After Exposure to an AO Effective 
Fluence of 2x1021 atoms/cm2 As Received 

Mirrored Silver Back of Solar Cell  
Prior to and After Exposure to Atomic Oxygen 
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DC 93-500 Silicone 

Exposed to LEO Atomic Oxygen on STS-46 
Fluence = 2.3 x 1020 atoms/cm2 

 

   Pre-flight  Post-flight 

Oxidative Cracking of Silicone 
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Stress level: Force/Area = ~4000psi (2.76e7 
N/m2) 

Strain = Stress/Modulus = 4000 psi/480000 
psi  (3.3e9 N/m2) = ~0.008 

For Kapton XC this represents ~3 % of the 
maximum strain and ~24% of the tensile 
strength 

Stressed UV-S-2 Unstressed UV-U-2 

Under Mount 

Exposed 

Kapton XC 
experienced a 
factor of 4 higher 
erosion rate under 
tension  

Polymers Exposed Under Stress on MISSE 6   
Stressed (left) and Unstressed (right) 

Black Kapton XC 

Stress Dependent Atomic Oxygen Erosion  
of Black Kapton XC 
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• Atomic oxygen is the most predominant specie in LEO  

• Atomic oxygen is reactive and energetic enough to break chemical bonds in 
materials 

• Reaction products with polymers and carbon containing materials are volatile 
(typically CO and CO2) 

• Metals and inorganics experience surface oxidation in some cases leading to 
shrinkage and cracking or spalling 

• Atomic oxygen can thermalize on contact and scatter from surfaces leading to 
further reaction, which is dependent on the materials it contacts and geometry 

• The effect that atomic oxygen has on a particular material on a spacecraft is 
dependent upon how much atomic oxygen arrives at the surface, atom 
energy, and can be affected by mechanical loading, temperature, and other 
components in the environment (UV radiation, charged particles…) 

• Each situation is unique and for accurate prediction of degradation of a 
material or component, it should be tested or modeled in a configuration 
representative of how it will be used 
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Summary 
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Atomic Oxygen Team at NASA GRC in  
Environmental Effects and Coatings Branch, 
Materials and Structures Division: 
Sharon Miller, NASA 
Kim de Groh, NASA 
Deborah Waters, NASA 
Bruce Banks, SAIC at NASA 
 

Publications:  
http:/ntrs.nasa.gov 
 

Website: 
http://www.grc.nasa.gov/www/epbranch/ephome.htm 
 

For Further Information Contact: 
Sharon Miller 
NASA Glenn Research Center 
21000 Brookpark Road 
Cleveland, Ohio, 44135 
(216) 433-2219 
sharon.k.miller@nasa.gov 
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