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Exoplanets are often associated with disks of dust and debris, analogs of the Kuiper

Belt in our solar system. These “debris disks” show a variety of non-trivial structures

attributed to planetary perturbations and utilized to constrain the properties of the

planets1–3. However, analyses of these systems have largely ignored the fact that, in-

creasingly, debris disks are found to contain small quantities of gas4–9, a component

all debris disks should contain at some level10, 11. Several debris disks have been mea-

sured with a dust-to-gas ratio around unity4–9 where the effect of hydrodynamics on

the structure of the disk cannot be ignored12, 13. Here we report that dust-gas interac-
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tions can produce some of the key patterns seen in debris disks that were previously

attributed to planets. Through linear and nonlinear modeling of the hydrodynamical

problem, we find that a robust clumping instability exists in this configuration, orga-

nizing the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk14. The

hypothesis that these disks might contain planets, though thrilling, is not necessarily

required to explain these systems.

Disks around young stars appear to pass through an evolutionary phase when the

disk is optically-thin and the dust-to-gas ratio ε ranges from 0.1 to 10. The nearby stars

β Pictoris5, 6, 15–17, HD322977, 49 Ceti4, and HD 219979, all host dust disks resembling or-

dinary debris disks and also have stable circumstellar gas detected in molecular CO, Na

I or other metal lines; the inferred mass of gas ranges from Lunar masses to a few Earth

masses (see Supplementary Information, Sect 1). The gas in these disks is thought to be

produced by planetesimals or dust grains themselves, via sublimation, photodesorption10

or collisions11, processes that should occur in every debris disk at some level.

Structures may form in these disk via a recently proposed instability12, 13. Gas drag

causes dust in a disk to concentrate at pressure maxima18; but when the disk is optically-

thin to starlight, the gas is most likely primarily heated by the dust, via photoelectric

heating. In this circumstance, a concentration of dust that heats the gas creates a local

pressure maximum that in turn can cause the dust to concentrate more. The result of

this photoelectric instability could be that the dust clumps into rings or spiral patterns or
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other structures, that could be detected via coronographic imaging or other methods.

Indeed, images of debris disks and transitional disks show a range of asymmetries

and other structures that beg for explanation. Traditionally, explanations for these struc-

tures rely on planetary perturbers – a tantalizing possibility. But so far, it has been difficult

to prove that these patterns are clearly associated with exoplanets19, 20.

Previous investigations of hydrodynamical instabilities in debris disks neglected a

crucial aspect of the dynamics: the momentum equations for the dust and gas. Equilib-

rium terminal velocities are assumed between time-steps in the numerical solution, and

the dust distribution is updated accordingly. The continuity equation for the gas is not

solved, i.e., the gas distribution is assumed to be time-independent, despite heating, cool-

ing, and drag forces. Moreover, prior investigations only considered one-dimensional

models, which can only investigate azimuthally-symmetric, ring-like patterns. This limi-

tation also left open the possibility that in higher dimensions, the power in the instability

might collect in higher azimuthal wavenumbers, generating only unobservable clumps.

We present simulations of the fully compressible problem, solving for the continu-

ity, Navier-Stokes, and energy equations for the gas, and the momentum equation for the

dust. Gas and dust interact dynamically via a drag force, and thermally via photoelectric

heating. These are parametrized via a dynamical coupling time τf , and a thermal cou-

pling time τT (see Supplementary Information, Sect 2). The simulations are performed

with the Pencil Code21–24, which solves the hydrodynamics on a grid. Two numerical

3



models are presented: (1) a threedimensional box embedded in the disk that co-rotates

with the flow at a fixed distance from the star; and (2) a twodimensional global model

of the disk in the inertial frame. In the former the dust is treated as a fluid, with a sep-

arate continuity equation. In the latter the dust is represented by discrete particles with

position and velocities that are independent of the grid.

We perform a stability analysis of the linearized system of equations, that should

help interpret the results of the simulations (see Supplementary Information, Sect 3). We

plot in Fig. 1a-c the three solutions that show linear growth, as functions of ε and n = kH,

where k is the radial wavenumber and H is the gas scale height (H=cs/
√

γΩk, where cs

is the sound speed, Ωk the Keplerian rotation frequency and γ the adiabatic index). The

friction time τf is assumed to be equal to 1/Ωk. The left and middle panels show the

growth and damping rates. The right panels show the oscillation frequencies. There is

no linear instability for ε ≥ 1 or n ≤ 1. At low dust load and high wavenumber the

three growing modes appear. The growing modes shown in Fig. 1a have zero oscillation

frequency, characterizing a true instability. The two other growing solutions (Fig. 1b-c) are

overstabilities, given the associated non-zero oscillation frequencies. The pattern of larger

growth rates at large n and low ε invites to take ξ = εn2 as characteristic variable, and

explore the behavior of ξ � 1. The solutions in this approximation are plotted in Fig. 1f-g.

The instability (red) has growth rate ≈ 0.26 ΩK for all ξ. The overstability (yellow) reaches

an asymptotic growth rate of ΩK/2, at ever growing oscillation frequencies. Damped

oscillations (blue) occur at frequency close to the epicyclic frequency.
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Whereas the inviscid solution has growth even for very small wavelengths, viscosity

will cap power at this regime, leading to a finite fastest growing mode (see Supplemen-

tary Information, Sect 4), that we reproduce numerically (Fig. 1h). Though there is no

linear growth for ε ≥ 1, we show that there exists nonlinear growth for ε = 1. As seen

in Fig. 1i, a qualitative change in the behaviour of the system (a bifurcation) occurs when

the noise amplitude of the initial velocity (urms) is raised enough, as expected from non-

linear instabilities25, 26. This is an important result to emphasize because, depending on

the abundance of H2, the range of ε in debris disks spans both the linear and nonlinear

regimes. The parameter space of τT and τf is explored in 1D models in the Supplementary

Information (Sect 5), showing robustness.

In Fig. 2 we show the linear development and saturation of the photoelectric insta-

bility in a vertically stratified local box of size (1 × 1 × 0.6)H and resolution 255 × 256

× 128. The dust and gas are initialized in equilibrium (see Supplementary Information,

sect 6). The dust-to-gas ratio is given by log ε = −0.75, so that there is linear instability,

and viscosity ν = αcsH is applied as α = 10−4 (where α is a dimensionless parameter27).

The initial noise is urms/cs = 10−2. Fig. 2a shows the dust density in the x-z plane, and

Fig. 2b in the x-y plane, both at 100 orbits. Fig. 2c shows the 1D x-dependent vertical and

azimuthal average vs time. Via photoelectric heating, pressure maxima are generated at

the locations where dust concentrates, that in turn attract more dust via the drag force.

There is no hint of unstable short-wavelength (< H) nonaxisymmetric modes: the insta-

bility generates stripes. The simulation also shows that stratification does not quench the

5



instability. Fig. 2d shows the maximum dust density vs time, achieving saturation and

steady state around 70 orbits.

We consider now a 2D global model. The resulting flow, in the r − φ plane (r is ra-

dius and φ is azimuth), is shown in Fig. 3a-c at selected snapshots. The flow develops into

a dynamic system of narrow rings. Whereas some of the rings break into arcs, some main-

tain axisymmetry for the whole timespan of the simulation. It is also observed that some

arcs later reform into rings. We check that in the absense of the drag force backreaction,

the system does not develop rings (see Supplementary Information, Sect 7). We also check

that when the conditions for the streaming instability24 are considered, the photoelectric

instability dominates (see Supplementary Information, Sect 8).

An interesting development of the model is that some of the rings start to oscil-

late, appearing eccentric. These oscillations are epicycles in the orbital plane, with a pe-

riod equaling the Keplerian, corresponding to the free oscillations in the right hand side

of Fig. 1a-c. We check (see Supplementary Information, Sect 9) that they correspond to

eigenvectors for which u = v, that is, gas and dust velocities coinciding. For this mode,

the drag force and backreaction are cancelled. So, for maintaining the eccentricity, this

mode is being selected among the other modes in the spectrum. This is naturally ex-

pected when the dust-to-gas ratio is very high. For ε � 1, the gas is strongly coupled to

the dust, canceling the gas-dust drift velocity in the same way that τf � 1 does in the

opposite way, by strongly coupling the dust to the gas. In this configuration, the freely
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oscillating epicyclic modes can be selected.

We plot in Fig. 3e one of the oscillating rings, showing that its shape is better fit by

an ellipse (red dotted line) than a circle (black dotted line). The eccentricity is 0.03, a value

that is close to the eccentricity found28 for the ring around HD 61005 (e=0.045± 0.015). We

also notice that some of the clumps in Fig 3 should become very bright in reflected light,

as they have dust enhancements of an order of magnitude. In conclusion, the proposed

photoelectric instability provides simple and plausible explanations for rings in debris

disks, their eccentricities, and bright moving sources in reflected light.

Recent work29 suggests that the ring around Fomalhaut is confined by a pair of

shepherding terrestrial mass planets, below the current detection imits. Detection of gas

around the ring would be a way to distinguish that scenario from the one we propose. At

present, only upper limits on the amount of gas in the Fomalhaut system exist30; they are

relatively insensitive, however, because they probed CO emission, and CO could easily

be dissociated around this early A type star.
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Figure 1 Linear analysis of the axisymmetric modes of the photoelectric instability.

Solutions for axisymmetric perturbations ψ′ = ψ̂ exp(st + ikx), where ψ̂ is a small am-

plitude, x is the radial coordinate in the local Cartesian co-rotating frame, k is the radial

wavenumber, t is time and s the complex frequency. Positive real s means that a per-

turbation grows, negative s that a perturbation is damped, and imaginary s represents

oscillations. Solutions are for α = 0, τf = 1/ΩK, and τT=0. a-e, The five solutions as

functions of n = kH and ε. Solutions a-c show linear growth. Growth is restricted to the

low dust-to-gas ratio (ε < 1), high wavenumber (n > 1) region. The growing modes in b-c

have non-zero oscillation frequencies, characterizing an overstability. Conversely, solution

a is a true instability. d-e, Solutions that correspond to damped oscillations through most

of the parameter space. In a small region (high dust-to-gas ratio and high frequency),

modes are exponentially damped without oscillating. f-g, Using ξ = εn2 and taking the

limit ξ � 1 allows for better visualizing the three behaviors: true instability (red), oversta-

bility (yellow), and damped oscillations (blue). The other two solutions are the complex

conjugate of the oscillating solutions, and not shown. h, When viscosity is considered

(α = 10−2 in this example), power is capped at high wavenumber, leading to a finite most

unstable wavelength. The figure shows the analytical prediction of the linear instability

growth in this case (see Supplementary Information, Sect 4) compared to the growth rates

measured numerically. The overall agreement is excellent. The growth rates are only very

slightly underestimated. i, Although there is no linear instability for ε = 1, growth occurs

when the amplitude of the initial perturbation (urms) is increased, a hallmark of nonlinear
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instability.
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Figure 2 Growth and saturation of the photoeletric instability. In this threedimen-

sional stratified local box with linearized Keplerian shear, the main source of heating is

photoelectric. The equilibrium in the radial direction is between stellar gravity, Coriolis,

and centrifugal forces. In the vertical direction the equilibrium for the gas is hydrostatic,

between stellar gravity, pressure, and the drag force backreaction. To provide a stable

stratification, an extra pressure pb = ρc2
b is added, where cb is a sound speed associated

with a background temperature. For the dust, a steady state is established between grav-

ity, diffusion, and drag force. The dust continually falls to the midplane, but is diffused

upwards. The diffusion is applied only in z, mimicking turbulent diffusion, that is in general

anisotropic. a, x − z cut at y = 0 at 100 orbits. The instability concentrates dust in a pre-

ferred wavelength. The resulting structures have stable stratification. b, x − y cut at the

midplane z = 0 at 100 orbits. No non-axisymmetric instability is observed, and the dust

forms stripes. c, Time-evolution of the vertically and azimuthally averaged density, show-

ing the formation of well-defined rings. d, Time evolution of the maximum dust density.

The instability saturates at ≈70 orbits in this case. The slowdown compared to the growth

rate ΩK/2 predicted in Fig. 1 is because of the use of viscosity, and the background pres-

sure needed for the stratification. The dimensionless parameter β = γ(cb/cs)2 measures

the strength of this term. Panel e shows that linear instability exists as long as β < 1. The

maximum growth rates drops smoothly from ΩK/2 for β = 0, to zero for β = 1. f, The

structure formed in the dust density at t = 50 (≈8 orbits) for different values of beta. At

moderate values of beta growth still occurs at a significant fraction of the dynamical time.
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The run shown in panels a-d used β=0.5.

Figure 3 Sharp eccentric rings. a-c, Snapshots of the dust density in a twodimensional

global disk in polar coordinates, at 20, 40, and 60 orbits, respectively. The photoelectric

16



instability initially concentrates the dust axisymmetrically into rings, at a preferred wave-

length. As the simulation proceeds, some rings maintain the axisymmetry, others break

into arcs. Some arcs rearrange into rings at later times, such as the ones at r = 0.6 and

r = 1.0 between snapshots b and c. Though mostly axisymmetric, some rings appear

to oscillate, appearing off-centered or eccentric. d, We measure the azimuthal spectral

power of the density shown in snapshot c, as a function of radius. Modes from m=0 to

m=3 are shown, where m is the azimuthal wavenumber. Though the ring at r = 1.5 has

m = 0 as the more prominent mode, we show in panel e that a circle (black dotted line)

is not a good fit. An ellipse of eccentricity e = 0.03 (red dotted line) is a better fit, though

still falling short of accurately describing its shape. The black and red diamonds are the

center of the circle (the star), and the center of the ellipse (a focal distance away from the

star).
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Supplementary Information

1 Gas in debris disks

Debris disks with gas represent a regime of nebular astrophysics that has only recently been quantified31. The archetype
of the class, the best studied object so far, is the disk around β Pictoris, which we use as a reference point for our study.

1.1 Total gas mass

It is important to note that the total mass of gas that these debris disks have is poorly known, even for the well-studied
disk around β Pictoris. Debris disk gas has mainly been observed in emission lines from metal ions and CO, but the
bulk of the gas is generally assumed to be hydrogen, a component that is difficult to measure32. Estimates of the
hydrogen abundance in the β Pictoris disk relative to the solar value range from 10−3 to 1; this range translates into a
range of total gas mass from about 8 × 10−4M⊕ to 0.8M⊕.

The dust mass is better constrained. Still, care must be taken to specify the particle size range of interest, since in
typical grain size distributions, the larger bodies contain most of the mass, yet the smaller grains are the ones that we
can detect. The disk should have a dust mass of 0.27M⊕ for particles smaller than 1 cm, assuming spherical grains
with a number distribution dn/da• ∝ a−3.5• , where a• is the grain radius31. Given these numbers, ε for β Pictoris would
lie in the range of 0.3 to 300.

These numbers roughly span the range of parameters for other debris disks with gas, with 49 Ceti a notably gas-rich
exception. Estimates for the HD 21997 disk9 quote a dust mass of ∼ 0.1M⊕ and a gas mass of 0.35M⊕, corresponding
to ε ≈ 0.3. An upper limit to the gas mass of HD 3229 is estimated7 at ∼ 0.3M⊕; the dust mass in the same system8 lies
in the range of 0.02–1 M⊕, yielding ε in the range ≈0.05–3. The 49 Ceti debris disk has about the same mass of dust as
HD21997, but substantially more gas4: 13M⊕, corresponding to ε ≈ 0.008.

1.2 Mean free path

To determine if the system may or may not be treated hydrodynamically, we estimate the mean free path

λmfp ≈ 1
σcoll ng

(1)

in actual systems. In Eq. (1) ng is the number density of the constituent gas molecules or atoms, and σcoll ≈ 2 ×
10−15cm−2 the collisional cross section of hydrogen, taken to be representative.

For 49 Ceti, a best fit for the CO column density of NCO = 4 × 1015 cm−2 at r =100 AU is reported33. The number
density can be estimated from the column density, ng = Ng/2H, where H is the gas scale height. For an aspect ratio
h = H/r = 0.02, the midplane number density is nCO = 70 cm−3 at 100 AU . This provides an upper limit to the
mean free path of λmfp < 0.4 AU. The actual mean free path is likely to be much lower, because of the presence of
hydrogen. Assuming a hydrogen abundance up to nH2 /nCO = 104, the mean free path ranges from 4× 10−5 to 0.4 AU.
Considering typical ring structures of 10 AU, the lower limit is well within the hydrodynamical range, and even the
upper limit implies marginal applicability.

For β Pictoris, observations report a column density of atomic C II of 1016 cm−2 at ≈ 100 AU 6. With aspect ratio
h=0.2 34, this translates into a number density of ≈ 20 cm−3 and thus an upper limit on the mean free path of ≈2 AU. As-
suming solar composition (nH ≈ 103cm−3)34, the mean free path should be λmfp = 0.03 AU, well in the hydrodynamic
limit.

For HD 21997, a simultaneous fit of the CO J=3-2 and J=2-1 lines9 yields nCO = 22 ± 5 cm−3 and nH2 /nCO=1000
± 500 at 63 AU (the best fit of nCO = 10 cm−3 for the J=3-2 line assuming the canonical value nH2 /nCO = 104 gives a
poor fit for the J=2-1 line). This inferred number density of nH2 = 1.1 − 2.2 × 104cm−3 for hydrogen places the mean
free path at λmfp = 0.0015 − 0.003 AU, also well within the hydrodynamic limit.
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The situation for HD 32297 is less constrained, but limits can still be derived. The gas mass is estimated from
Na instead of CO, with a column density of NNaI ≈ 1011 cm−2. Assuming that the abundances are similar to those
of β Pictoris6, and using as constrains Na measurements16 and H I upper limits35, the hydrogen density should be
NHI/NNaI ≈ 109. For an aspect ratio h=0.1 at 100 AU 36, this yields a number density of nHI=3 × 105 cm−3, and thus
a mean free path λmfp = 10−4 AU. Given the assumptions made, this is likely an overestimate. Nevertheless, given an
integral scale of 10 AU, a revised value three orders of magnitude upward would still be in the range of applicability
of hydrodynamics.

1.3 Thermal time

Another important quantity for the instability we investigate is the thermal time scale. In the model quoted31, the dust
is concentrated in a ring about 100-140 AU from the star. At the peak in the dust density, the midplane gas density
is about 10 cm−3, the dust temperature is roughly 100 K, the gas temperature is roughly 70 K. The gas is primarily
heated by photoelectric emission from dust grains, and primarily cooled through the C II 157.7 μm line emission and
the total heating/cooling power is roughly 2 × 10−19 erg s−1 cm−3. Since the specific heat of molecular hydrogen at
70 K is roughly 1.3 × 108 erg g−1 K−1, the thermal time scale in this model is about 0.5(nH2 /10cm−3) years. Given the
range of possible hydrogen abundances in the disk, the range of time scales of interest corresponds to about 10−4 to 0.1
orbital periods.

2 The model

We work primarily in the thin disk approximation, using the vertically integrated equations of hydrodynamics

∂Σg

∂t
= − (u ·∇)Σg −Σg∇ · u (2)

∂u
∂t

= − (u ·∇)u − 1
Σg

∇P −∇Φ− Σd
Σg

fd (3)

∂S
∂t

= − (u ·∇)S − cv

T

(
T − Tp

)
τT

. (4)

In these equations, Σg and Σd are the vertically integrated gas and dust densities, respectively; u stands for the velocity
of the gas parcels, P is the vertically-integrated pressure, and Φ is the gravitational potential. S = cv

(
ln P − γ lnΣg

)
is

the gas entropy, where cv is the specific heat at constant volume and γ = cp/cv is the adiabatic index, with cp the heat
capacity at constant pressure. T stands for the gas temperature. A tridimensional model is considered in Sect. 6.

The dust evolves Lagrangianly according to

dx
dt

= v (5)

dv
dt

= −∇Φ+ fd (6)

where x is the position of a dust particle and v its velocity. The gravitational potential is given by Φ = −GM�/r,
where G is the gravitational constant, M� the stellar mass, and r the stellocentric distance. The pressure is given by
P = Σgc2

s /γ, where cs is the sound speed.
The model is closed by specifying the drag force fd by which gas and dust interact; and Tp, a simple prescription

for the gas temperature set by photoelectric heating. These are given by

fd = − (v − u)
τf

(7)

Tp = T0
Σd
Σ0

. (8)

The quantities τf and τT are the dynamical and thermal coupling times between gas and dust, respectively. They
have a radial variance to match the Keplerian rate

2



Table 1: Symbols used in this work

Symbol Definition Description
t time
u, v gas and dust velocity
p, P gas pressure (3D and vertically integrated)
ρg, Σp volume and surface gas density
ρd, Σd volume and surface dust density
S entropy
cv, cp heat capacity at constant volume and at constant pressure
T, Tp gas and dust temperature
τT , τf thermal relaxation and friction time
γ adiabatic index
r, φ radial polar coordinate, azimuth
cs sound speed
Ω angular frequency
s, σ σ = s/Ω complex eigenfrequency
k, n n = kH radial wavenumber, normalized radial wavenumber
m azimuthal wavenumber
ν, α ν = αcsH viscosity and Shakura-Sunyaev parameter
υ υ=αγn2 normalized viscosity
H H = cs/

√
γΩ gas scale height

h h = H/r aspect ratio
Hd Hd =

√
D/ζ dust scale height

ε dust-to-gas ratio
cb pb = ρgc2

b sound speed associated with background temperature
β β = γ (cb/cs)

2 dimensionless background pressure parameter
D dust diffusion coefficient
ζ vz = −ζz proportionality factor in dust vertical velocity

τf = τf 0 Ω0/Ω (9)
τT = τT0 Ω0/Ω (10)

where Ω =
√

GM�/r3 is the Keplerian angular frequency. The subscript “0” refers to the values of the quantities at an
arbitrary reference radius r0. The quantities τf 0 and τT0 are free parameters of the model.

Given that the thermal time is sometimes expected to be very low (10−4 orbital periods, as estimated in Sect. 1.3)
we also run models with instantaneous thermal coupling. For these models, we skip solving the energy equation,
and equate T = Tp according to Eq. (8). The sound speed is updated accordingly. This change effectively amounts to
choosing a new equation of state that depends on the dust density

lim
τT→0

P = cv (γ − 1)T0ΣgΣd/Σ0. (11)

A list of the mathematical symbols used in this work, together with their definitions, is provided in Table 1. We solve
the equations with the PENCIL CODE 1, which integrates the evolution equations with sixth order spatial derivatives,
and a third order Runge-Kutta time integrator. Sixth-order hyperdissipation terms are added to Eq. (2)-Eq. (4), to
provide extra dissipation near the grid scale22−23. They are needed because the high order scheme of the Pencil Code
has little overall numerical dissipation37.

3 Linear stability analysis

We perform a linear stability analysis, that should assist on interpreting the results of the numerical simulations. To
derive the perturbation equations, we make use of the shearing sheet and fluid approximations. The first treats the

1The code, including improvements done for the present work, is publicly available under a GNU open source license and can be downloaded at
http://www.nordita.org/software/pencil-code
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equations in a local, co-rotating Cartesian frame. The second greatly simplifies the treatment of solid particles by
having a continuity equation. The 2D equations are

Dv Σd = −Σd∇ · v (12)

Dv vx = 2Ωvy − 1
τf

(vx − ux) (13)

Dv vy = −1
2
Ωvx − 1

τf
(vy − uy) (14)

Du Σg = −Σg∇ · u (15)

Du ux = 2Ωuy − 1
Σg

∂P
∂x

− ε

τf
(ux − vx) (16)

Du uy = −1
2
Ωux − 1

Σg

∂P
∂y

− ε

τf
(uy − vy) (17)

where ε = Σd/Σg is the dust-to-gas ratio and

Dw = ∂t + w ·∇− qΩx∂y (18)

is the shear-modified advective derivative38,39, with q = 3/2 the Keplerian shear rate. Upon linear decomposition
ψ = ψ0 + ψ′ and considering axis-symmetric planar wave perturbations ψ′ = ψ̂exp(st + ikx), these equations become

sΣ̂d = −Σd0ikv̂x (19)

sv̂x = 2Ωv̂y − 1
τf

(v̂x − ûx) (20)

sv̂y = −1
2
Ωv̂x − 1

τf
(v̂y − ûy) (21)

sΣ̂g = −Σg0ikûx (22)

sûx = 2Ωûy − Cik(Σ̂d + εΣ̂g)− ε

τf
(ûx − v̂x) (23)

sûy = −1
2
Ωûx − ε

τf
(ûy − v̂y) (24)

where we used the instantaneous thermal coupling approximation (Eq. 11) to substitute

∇P =
c2

s0
γ Σ0

(Σg∇Σd +Σd∇Σg). (25)

Equations (19) and (22) readily allow for reducing the system to only four equations. We substitute these in the radial
equation for gas velocity to obtain

σv̂x = 2v̂y − 1
Ωτf

(v̂x − ûx) (26)

σv̂y = −1
2

v̂x − 1
Ωτf

(v̂y − ûy) (27)

σûx = 2ûy − ε

(
1

Ωτf
+

n2

σ

)
ûx + ε

(
1

Ωτf
− n2

σ

)
v̂x (28)

σûy = −1
2

ûx − ε

Ωτf
(ûy − v̂y) (29)

where we also substituted the normalizations

σ = s/Ω (30)
n = kcs0/

√
γΩ = kH (31)
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We now substitute τf = 1/Ω so that the dispersion relation becomes simpler yet still captures the physically interesting
case of the most mobile dust. We solve the eigenvalue problem

(M − Iσ) · Λ = 0 (32)

where Λ = (v̂x, v̂y, ûx, ûy)T , I is the unit matrix, and

M =

⎡
⎢⎢⎣

−1 2 1 0
−1/2 −1 0 1

ε(1 − n2/σ) 0 −ε(1 + n2/σ) 2
0 ε −1/2 −ε

⎤
⎥⎥⎦ . (33)

The dispersion relation for this linear system is a quintic polynomial

Aσ5 + Bσ4 + Cσ3 + Dσ2 + Eσ + F = 0 (34)

with coefficients

A = 1, (35)
B = 2ε + 2, (36)
C = ε2 + ε(n2 + 2) + 3, (37)
D = ε2n2 + ε(3n2 + 2) + 2, (38)
E = ε2(2n2 + 1) + ε(3n2 + 2) + 2, (39)
F = ε2n2 − εn2. (40)

Eq. (34) has five solutions. Since quintics do not have a complete analytical solution, we solve it numerically at first,
to explore the behavior of the solutions. The result is detailed in the main article, and plotted in Fig 1a-e. In the main
article we also explore the limit of large n and low ε. Substituting ξ = εn2 as characteristic variable, and taking the limit
ξ � 1, the coefficients are

A = 1; B = 2; C = ξ;

D = 3ξ; E = 3ξ; F = −ξ. (41)

The solutions are plotted in Fig 1f-g of the main article.

4 Comparing linear theory and simulations

From the solutions (Fig 1a-c of main article), we see that there is significant growth even for very small wavelengths.
The simulations, however, will cap power at and near the grid scale. To make for a meaningful comparison, we add
artificial Laplacian viscosity ν to the gas and dust momentum equations. The extra term in Fourier space is proportional
to νk2, which, using the alpha-viscosity recipe27 ν = αcs H, normalizing by Ω, and substituting Eq. (31), reduces to
υ = αγn2. This enters in the coefficient matrix as diagonal terms. The new, viscous, system is therefore

[M − I(σ + υ)] · Λ = 0 (42)

We set α = 10−2 and solve the system numerically. Fig 1h of the main article shows a comparison between the linear
growth rates predicted by Eq. (42), and the ones we measure by solving the system in the shearing sheet with fluid
approximation (Eqs. (12) and (17)) with the Pencil Code, applying a small amplitude perturbation (urms = 10−3cs).
The agreement is excellent, with the measured growth rates only very slightly systematically offset from the analytical
prediction.

5 Nonlinear numerical simulations

5.1 Numerical results and Robustness

5.1.1 The instability in one dimension

To understand the nature of the instability, it is instructive to consider it first in one-dimensional models, since it
allows a more thorough exploration of the parameter space. We also shut down the drag force backreaction, in order
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Supplementary Figure 1: Parameter space exploration for the thermal coupling time τT0 in models with τf 0=1 and
without backreaction. a, The pressure build-up associated with too short thermal coupling time leads to modification
of the centrifugal balance experienced by a gas parcel. b, In the case of τT =10 the pressure buildup leads to supersonic
motion and consequent disruption of the dust fingers into a turbulent pattern. c-d, The models with larger τT0 are
better behaved as the buildup is slow. After long enough times (not shown) they too develop shock waves that disturb
the dust streams. The dynamics is considerably different in models including back-reaction (Suppl. Fig. 3).

Supplementary Figure 2: Parameter space exploration for the friction time τf 0 in models with τT0=10 and without
backreaction. There is an apparent symmetry with respect to τf = 1. a-b, As the dust couples more strongly (lower τf ),
a grain takes longer to move away from the density maxima (pressure minima) into the pressure maxima. c-d, As the
dust decouples (larger τf ) the particles take longer times to move to the local pressure maxima. The velocities never
get too close to sonic so turbulent disruption as in the case of short thermal coupling time does not occur.
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Supplementary Figure 3: The effect of the backreaction of the drag force is illustrated above. a-b, Space-time variation
of the dust density in models of constant friction time and varying thermal time. c-d, Models of varying friction time
and constant thermal time. Compared to the same models without backreaction (Suppl. Fig. 1 and Suppl. Fig. 2),
we see that the dust streams are better shepherded. This is because when radial velocities are excited, the drag force
backreaction damps them back to zero at an e-folding time τf Σg/Σd. The shepherding of the dust stream should occur
as long as this quantity is smaller or similar to τT .

to better isolate the effect of heating (but as we show later, this term will become of paramount importance in the
phenomenology of debris disks in the presence of gas). It is illustrated in the Fig. 1 of the main article how the initial
random overdensities quickly grow into massive accumulations of dust. We explore here the parameter space of the
thermal coupling time τT and the dynamical coupling time τf . The dust-to-gas ratio is set to ε=1, so the regime is
marginally nonlinear. We use Lagrangian particles for the dust.

Models exploring the parameter space of τTΩ are shown in Suppl. Fig. 1. The panels from left to right correspond
to τTΩ=1, 10, 1000, and 1000. The friction time was kept constant at τfΩ=1 so that the dust is mobile. In all cases the
dust concentrates.

The models shown in Suppl. Fig. 1 contain some interesting features worth highlighting. As seen in the model
of τTΩ=1.0, there are instances in time, around 30 orbits, that the dust distribution rapidly migrates inwards, setting
in another equilibrium location. In the model with τTΩ=10 the dust at later times, around 50 orbits, passes from a
thin stream to a shower, resembling the transition to turbulence seeing in, e.g., cigarette smoke. Both effects seem
to be related to the pressure buildup. As the dust concentrates, the local temperature rises, leading to further dust
buildup. The runaway process has to saturate at some point, and these effects seem to be manifestations of saturation.
The pressure buildup leads to a gradual change in the centrifugal equilibrium rφ̇2 = rΩ2

K +Σ−1
g ∂rP. At some point the

buildup of pressure significantly changes that relation, and the disk readjusts. In the other case, the buildup of pressure
leads to supersonic speeds. Shock waves develop, leading to the disruption of the dust stream. These effects will be
significantly mitigated by the inclusion of the drag force backreaction, in Sect. 5.1.3.

5.1.2 Effect of gas drag

The models shown in the previous section were run with a fixed friction time of τfΩ=1, representing the most mobile
particles. We consider now models with varying τf , keeping τTΩ=10. A suite of such models is shown in Suppl. Fig. 2.
As the dust decouples (larger τf ), it takes longer for the pressure gradient to move the particles to the pressure maxima.
As the dust couples more strongly (lower τf ), it takes longer for the dust to decouple itself from the density maxima
(pressure minima) and into the pressure maxima. The symmetry with respect to τfΩ = 1 is striking.

In the extreme of particle tracers (τf = 0) there is no instability as the gas and dust cannot get separated. The heating
leads to expansion, that carries away the dust, leading to cooling. The process is self-regulated. In the opposite extreme
of decoupled dust τf → ∞ there is no instability either as the dust does not get pushed toward pressure maxima.
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5.1.3 Effect of gas drag back-reaction

We now turn to the effect of the last term in the right hand side of the momentum equation, the drag force backreaction
from the particles onto the gas. We re-run models of τTΩ=1 and 10, with τf 0=1 (the leftmost ones in Suppl. Fig. 1),
but now including this term. The results are shown in the upper panels of Suppl. Fig. 3, for the dust density only.
Comparing these models with the ones without back-reaction shown in Suppl. Fig. 1, we see that the jerks in position
are absent, as well as the dispersion of the particles into turbulent streams as seen in the models without backreaction.
In other words, the backreaction of the drag force has the effect of shepherding the dust streams.

The reason is because in the other models, although the dust is forced to follow the gas, the gas is unconstrained
by the dust. When backreaction is included, the gas follows the dust whenever the dust-to-gas ratio ε is high. When
ε >∼ 1 the backreaction partially dominating the gas motion effectively herds the dust; a linear perturbation to the
system executes exponentially damped oscillations, as shown in Fig. 1 of the main article. This effect will become
important, in higher dimensions, on damping non-axisymmetric modes and confining the dust concentration into
rings instead of clumps.

Interestingly, this effect, being proportional to τf , should break the symmetry with respect to τf = 1 seen in the
models without backreaction (Suppl. Fig. 2). Indeed, this is what is seen in the lower panels of Suppl. Fig. 3, where we
show the result of two simulations with τT =10 and backreaction included, varying τf . The left panel has τf = 0.1 and
the right panel has τf = 10. The simulation with shorter friction time experiences less clumping for the same thermal
coupling time.

The herding provided by the drag force also introduces a dependency on τT /τf , because if τT � τf , the pressure
builds much faster than the dust can respond.

6 Three dimensions and stratification

We assess now the impact of three-dimensionality and stratification in the instability. We need first to establish the con-
dition of vertical hydrostatic equilibrium. We treated so far the gas-dust debris disks as a system where the only source
of heating was photoelectric, which leads to the equation of state Eq. (11) under instantaneous thermal coupling. This
is a suitable approximation for one-dimensional models as in the radial direction it is the centrifugal force that balances
gravity. However, in the vertical direction, as pressure plays the central role of establishing hydrostatic equilibrium
against stellar gravity, photoelectric heating alone cannot sustain the gas column. Extra sources of pressure must be
considered.

6.1 Extra pressure

We add to the equation of state a term that embodies a background temperature Tb, not associated with the dust, from,
e.g., H2 photodissociation, H2 formation, and H2 collisional de-excitation. For simplicity, we consider this background
temperature constant. This temperature will enter the equation of state as an extra isothermal term. For reasons of
symmetry, we can define a “background sound speed” cb associated with this temperature, and thus write pb = ρgc2

b.
The full pressure is thus

p = ρgc2
b + p(ρd). (43)

The term p(ρd) ∝ ρgρd is the 3D equivalent to Eq. (11). We assess the effect of the extra background pressure in the
photoelectric instability. For the axisymmetric modes, this term contributes an extra pressure force to be added to the
ux perturbation equation. The linear system then becomes

M =

⎡
⎢⎢⎣

−1 2 1 0
−1/2 −1 0 1

ε(1 − n2/σ) 0 −(ε + β)(n2/σ)− ε 2
0 ε −1/2 −ε

⎤
⎥⎥⎦ . (44)

where

β = γ

(
cb
cs

)2
(45)

is a dimensionless normalization. The dispersion relation is not much different. It is also a quintic polynomium, with
coefficients
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A = 1 (46)
B = 2ε + 2 (47)
C = n2β + ε(n2 + 2) + ε2 + 3 (48)

D = ε(n2(β + 3) + 2) + 2n2β + ε2n2 + 2 (49)

E = ε(n2(β + 3) + 2) + 2n2β + ε2(2n2 + 1) + 2 (50)

F = εn2(β − 1) + ε2n2. (51)

These coefficients resume to Eqs. (34)–(40) for β = 0. We show in Fig 2e of the main article the maximum growth rate
as a function of β. The linear instability weakens as β increases, eventually disappearing when β = 1. For β = 0.1 the
maximum growth rate is approximately half as that for β = 0, so the instability still occurs at timescales comparable to
the dynamical time. We show the growth for different modes in Fig 2f of the main article. There are no major differences
qualitatively. The modes for higher β develop similar structures at a slower pace. We conclude that linear instability
exists as long as photoelectric heating dominates over other heating processes.

6.2 Stratification

We assess now the impact of stratification in the instability. We start by finding the equilibrium structure of the dust
sub-disk in the z-direction40,41.

6.3 Dust steady state

Like in gas-rich protoplanetary disks, the dust, once decoupled, will starting settling toward the midplane of the disk,
obeying the z-momentum equation

Dv vz = −Ω2z − 1
τf

(vz − uz). (52)

Since the dust is pressureless, when vz = 0 and uz = 0 equilibrium is only possible if z = 0, i.e., the dust concentrates
in an infinitely thin midplane layer. Support against gravity comes from vz �= 0, so the dust is not in equilibrium, but
in a steady state, defined by setting ∂t = 0 in the above equation. We also assume ∂y = uz = 0, leading to

vz∂zvz = −Ω2z − τ−1
f vz (53)

The ansatz vz = −ζz yields the quadratic equation ζ2 − ζ/τf +Ω2 = 0, so

ζ =
(

τ−1
f ±

√
τ−2

f − 4Ω2
)

/2. (54)

Real solutions exist for τf ≤ 1/2Ω. The ansatz vz =−ζz means that matter is constantly falling toward the midplane.
The non-zero divergence would unboundedly increase the density, if not counterbalanced by some mechanism. That
mechanism is diffusion. The continuity equation for the dust is rewritten

Dv ρd = −ρd∇ · v + D∇2ρd (55)

so that a steady state is possible, in which the infall of dust towards the midplane is balanced by diffusion away from
it, leading to the differential equation

D∂2
z ρd + ζz∂zρd + ζρd = 0. (56)

This equation has a general solution

f (z) = C1 exp
(
− ζz2

2D

)[
1 + C2

√
πD
2ζ

erfi

(
z

√
ζ

2D

)]
, (57)

where erfi is the imaginary error function. Because this function diverges at infinity where the density should tend to
zero, the solution requires C2=0. We are thus left only with a Gaussian

ρd = Re [ f (z)] = ρd0 exp

(
− z2

2H2
d

)
. (58)

with Hd =
√

D/ζ the dust scale height.
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6.4 Gas hydrostatic equilibrium

We now derive the equilibrium condition of the pressure-supported gas column, which follows from the gas z-momentum
equation

Du uz = −Ω2z − 1
ρ

∂p
∂z

− ε

τf
(uz − vz). (59)

Setting uz = 0 and substituting vz = −ζz, we are left with the following condition of hydrostatic equilibrium

1
ρ

∂p
∂z

= −
(
Ω2 − εζ

τf

)
z (60)

Given vz = −ζz, lnρd = −z2/2H2
d , and uz = 0, we calculate ρg that satisfies the equilibrium condition. Substituting

the equation of state and ε = ρd/ρ (now a function of z), we arrive at the following equation

1
ρ

[
∂ρ

∂z
(c2

b + Cρd) +
ρdζz

τf

]
= −

(
Ω2 − Cρd

H2
d

)
z, (61)

where C = c2
s0/(γρ0). The equation above can be cast in the form

1
y

[
y′(a + b e−z2/2c) + dz e−z2/2c

]
= −z

(
f − b

c
e−z2/2c

)
, (62)

where y = ρ, a = c2
b, b = Cε0 c = H2

d , d = ρd0ζ/τf and f = Ω2. The various parameters are associated with different
physical mechanisms involved in the equilibrium: a is associated with support from the background pressure, b from
photoelectric heating, and c from diffusion; d is related to the drag force backreaction, and f to gravity. The general
solution for Eq. (62) is

y(z) = F(d) + K1ez2/2c
(

aez2/2c + b
)−(1+c f /a)

. (63)

For no dust backreaction (d=0) and no photoelectric heating (b = 0) it resumes to the usual isothermal stratification

y(z) = K2 e− f z2/2a = ρ0e−z2/2H2
g (64)

with Hg = cb/Ω. The term containing d is

F(d) =
dc

b(1 − χ)
ψ(1 + ψ)−(1+χ) .2F1 (−χ, 1 − χ; 2 − χ;−ψ) (65)

where ψ = b/a e−z2/2c, χ = f c/a = Ω2H2
d/c2

b and .2F1 is the hyper-geometric function.
We show in Suppl. Fig. 4 the resulting stratification given the same dust distribution (Hd=0.5, ζ=1, τf =0.5). The

dark yellow line shows the usual isothermal stratification. The blue line shows the effect of adding the photoelectric
heating. The reduction in gas mass is because, with the extra pressure, less mass is needed to balance the stellar gravity.
The reduction in mass in the center stems from the higher temperature at the dust peak. The red line adds the effect
of the drag force backreaction. It raises the gas mass profile because it behaves as extra gravity, as dust falls onto the
midplane dragging the gas with it. We test numerically that this equilibrium is stable.

The model shown in Fig 2a-d of the main article had box length (1 × 1 × 0.6)H, resolution 255 × 256 × 128, ζ = 1
(that is, vz = −z, which sets τf = 0.5, according to Eq. (54)). The background temperature was set as β = 0.5 for the
background pressure, with cs0 = 1 for the photoelectric pressure, and dust-to-gas ratio log ε = −0.75, so that there is
linear instability. The box is started with linear noise at the percent level. The dust diffusion coefficient was D =

5 × 10−3, setting the dust scale height at Hd =
√

D/ζ ≈ 0.07. This diffusion is applied only in the z direction. This
anisotropic diffusion is chosen to provide support against gravity in the vertical direction, while not quenching the
radial instability. It is also physically motivated. Because the processes that generate and/or shape turbulence are in
general anisotropic (stratification, rotation, magnetic fields), turbulent diffusion is in general anisotropic as well42,43. In
practice, the continuity equation has a diffusion term in the right hand side, ∇ · J, where we substitute J = D∇ρ (that
yields the usual isotropic diffusion) by J = (D ·∇)ρg, with D = (0,0, D).

To assess the evolution of the non-axisymmetric modes, we measured the power spectrum through the 3D sim-
ulation, which we show in Suppl. Fig. 5. Power in x, y, and z are shown in the upper, middle, and lower panel,
respectively. Snapshots are shown at 5 (blue), 50 (red), and 100 orbits (black). The power in x shows the development
of the instability, at kx ≈ 60, in agreement with the spacing between the stripes seen in Fig. 2 of the main article. The
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Supplementary Figure 4: Vertical stratification of gas, in the presence of different processes, for a column of dust of
scale height Hd=0.5 (in the same units) maintained by diffusion. The parameters b and d represent the magnitudes of
photoelectric heating and drag force backreaction, respectively. The dark yellow line is the usual isothermal Gaussian
stratification. When photoelectric heating from the dust column is included, the center heats up and expands, leading
to the double-peaked profiled shown as the blue line. With the extra heating, less mass is needed to balance the stellar
gravity. The red line shows the equilibrium profile when drag backreaction is included. The dip in the center is filled
because the backreaction causes gas to be dragged along with the settling dust, effectively behaving as extra gravity.

Supplementary Figure 5: Spectral power measured in the simulation shown in Fig. 2 of the main article. The power is
shown in three snapshots, at 5, 50, and 100 orbits. a, The instability in x appears as the conspicuous spike at kx ≈ 60.
Resonant instabilities at doubled wavenumbers are also apparent. b, The power in y behaves non-monotonically in
time. It first drops from 5 to 50, then rises again from 50 to 100 back to levels close to the initial one. There is no
evidence for nonaxisymmetric instability, as power remains concentrated in low ky throughout the simulation. c, The
power in z remains statistically constant in shape and magnitude, which reflects the stability of the stratification.
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Supplementary Figure 6: Fifteen orbits into a version of the fiducial model shown in Fig. 3 of the main paper, but
without the backreaction of the dragforce. Whereas the fiducial model develops into rings, this model breaks into
several clumps. The backreaction is necessary to maintain the axisymmetry of the system, by resisting the tendency of
the gas to counter-rotate in and around the regions of high pressure created by the dust.

difference in power at this wavenumber between 50 and 100 orbits is also in agreement with the time development of
the instability as seen in Fig. 2c-d of the main article.

The power in z has remained roughly constant through the simulation. The power in y (middle panel), on the
other hand, shows a decline from the initial noise, easily seen as the power drops five orders of magnitude from 5 to
50 orbits. After that, between 50 and 100 orbits, which coincides with the development of the instability (as seen in
the x-power and Fig 2 of the main article), the azimuthal power is restored to the initial levels. We conclude that no
short-wavelength non-axisymmetric instability is associated with photoelectric heating.

7 Excluding the drag force backreaction

We observe that the well-ordered scenario of the photoelectric instability gives way to turbulence when the drag force
backreaction is excluded from the calculation. We show this case in Suppl. Fig. 6. This global simulation is similar to
the fiducial case shown in the main paper in all aspects, except that the backreaction is switched off. As seen in the
figure, axisymmetry is heavily broken, and the disk is teared apart into clumps. The drag force backreaction clearly
has a pivotal role in maintaining axisymmetry. We encountered this before, when we noticed in Sect. 5.1.3 that the
1D particle streams were sharper and better confined when this term was included, though the effect is by far better
appreciated in 2D.

This behavior stems from a disruption of geostrophy when the backreaction is introduced. When a dust overdensity
generates a localized high pressure region, the motion initiated by the high pressure will be made to rotate by the
influence of the Coriolis force. If backreaction is not present, the gas is free to execute this rotation, aware of the
presence of dust only insofar as the latter influences the pressure. Nothing precludes the existence of several such
clumps in the same orbit, and therefore azimuthal symmetry is not preferred.

When, however, the backreaction is included, the gas cannot revolve around freely anymore. If the gas crosses the
dust overdensity from the inside outward, it is slowed down (if the dust concentration is low) or outright barred (if the
dust density is high). Pressed from both sides, the dust will expand sideways, i.e., in azimuth. The overall tendency is
therefore to smear the dust azimuthally (eventually towards a predominant m = 0 mode), and in the process keeping
the gas and dust radially segregated.
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Supplementary Figure 7: Comparison between the streaming and photoelectric instabilities. a, The maximum dust
density attained in the simulations. b-d, Snapshots of dust density in r-z of the models by the the end of the simulations
at 50 orbits. e-g, The time-evolution of the 1D vertically averaged dust density. We reproduce both the streaming and
photoelectric instabilities in isolation. When both are modeled together, the photoelectric instability dominates the
dynamics.

13



8 Comparison with streaming instability

We have so far considered only disks for which the initial condition consist of gas in constant pressure. This choice
was made in order to isolate the effect of photoelectric heating by shutting down the streaming instability24,44−46, a
traffic-jam clumping instability that is triggered when particles migrate (or “stream”) through pressure-supported sub-
Keplerian gas. The possibility exists then, that the proposed instability is overwhelmed by the streaming instability
when realistic density and temperature gradients are used. We now examine this case, and show that in actuality the
opposite is true.

We simulate the flow in the presence of a radial pressure gradient, that will trigger the streaming instability. The
wavelength of interest is λη = ηr, where η parametrizes the strength of the pressure gradient, according to24

η ≡ − 1
2ρgΩ2r

∂p
∂r

= − c2
s

2v2
K

∂ln p
∂lnr

≈
(

cs

vk

)2
. (66)

Given the definition of the aspect ratio and scale height, this can be written ηr ≈ h2r = hH. We set a global disk
in r and z, with radii ranging from 0.4 to 2.5. Gas and dust surface densities are initialized as power laws of index
−1.5, which provides the streaming. The initial dust-to-gas ratio is ε = 1. We choose h2 = 0.1 and use 768 points
in r. The characteristic wavelength is therefore excellently resolved with 32 points. We use 32 points in z, with the
same resolution as in radius to allow for growth of the streaming instability. Viscosity is added as α = 10−3. Four
simulations are performed, switching on and off the pressure gradient and photoelectric heating. The result is shown
in Suppl. Fig. 7.

The upper panel shows the time-series of the maximum dust density achieved in the simulation. The middle panels
show the state of the r − z flow at 50 orbits. The lower panels show the evolution of the vertically averaged dust density
as a function of radius and time. The control model without pressure gradient or photoelectric heating is essentially
constant in time and not shown.

In the simulation without heating but with the pressure gradient (lower left panels and blue line in upper panel),
we recover the streaming instability, with clumps forming all over the grid and achieving high densities as they trap
particles in their streaming course. When photoelectric heating is considered but not the pressure gradient (lower right
panels and black line in upper panel), we recover the photoelectric instability, forming structures of longer wavelength
in radius (about λ = H/2 in size), and symmetric in z. When both the pressure gradient and photoelectric heating are
included, (lower middle panels and black line in upper panel), the maximum dust density achieved is bigger (≈ ×2)
than in the purely photoelectric case, but yet three to four times lower than in simulation with the streaming instability
alone. The structures formed (middle lower panels) are of similar size as those generated in the case without the
pressure gradient (right lower panels), and also symmetric in z. Overall, the result is intuitive. When the photoelectric
effect is at play, gas is forced to rarefy in regions of high dust concentration, disrupting the pressure gradient responsible
for the streaming. We conclude that it is the photoelectric mechanism, not the streaming instability, that dominates the
dynamics.

9 Free oscillations

9.1 Long wavelength limit

We find in the simulations that the rings execute oscillations. The modes in question are the free, non-damped, os-
cillations that occur through most of the parameter space of Fig. 1a-c of the main article. We can find these modes
analytically by taking the long wavelength limit (n → 0). Ignoring the n terms, the system becomes a quartic equation,

A = 1; B = 2ε + 2; C = ε2 + 2ε + 3;

D = 2ε + 2; E = ε2 + 2ε + 2; F = 0;

which can be solved exactly. The roots are

lim
n→0

σ = ±i; lim
n→0

σ = −(ε + 1)± i (67)

i.e., two solutions are free oscillations at wave frequency Ω, thus constituting epicyclic oscillations. The other two
solutions are damped oscillations at the same frequency Ω, and damping time (ε + 1)−1Ω−1. The eigenvector corre-
sponding to the σ = ±i solution represent the particular mode for which v̂x = ûx and v̂y = ûy, therefore canceling the
drag force. This epicyclic mode is low-k and non-damped, and should show up in the simulations as free oscillations.

We model a 1D system in the instantaneous thermal coupling approximation, as used in the linear analysis, where
the equation of state is given by Eq. (11). The time evolution of the dust and gas densities is shown in Suppl. Fig. 8.
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Supplementary Figure 8: Model with instantaneous thermal coupling between gas and dust. The gas (a) attains much
denser concentrations, and the dust (b) executes high frequency oscillations. At later times the dust streams in the
outer disk break into a roughly uniform sheet of dust extending from r=1.4 to r=2.0

The evolution looks a hybrid between the models considered in Sect. 5. On the one hand the dust streams are very
thin, because of the shepherding provided by the drag force backreaction. On the other hand, the infinitesimally small
thermal time leads to rapid wave excitation, seen in the high frequency oscillation of the dust.

We take a close look at this behavior, zooming into the dynamics of the stream. We show in Suppl. Fig. 9 the initial
development of the instability (≈ 8 orbits) in a local box ranging x = [−2.5,2.5]H with 256 grid points, using both
the Eulerian fluid and Lagrangian particle approaches. Viscosity is applied to the fluid and gas at α = 10−2. Fluid
and particle approaches therefore sample different Reynolds numbers (Lagrangian particles are inviscid). The upper
panels show the linear case, that the fluid approach (upper left) can capture. The particle simulation (upper right) will
trigger the nonlinear regime, which is seen by the high amplitude in that case. Yet a similar wavelength was excited,
which suggests linearity. The lower panels show the marginally nonlinear regime, at ε = 1. The fluid simulation (lower
left) was quiescent in this case for linear noise, and had to be started at a noise level of 10% of the sound speed. The
linear mode is also present, as seen in the underdense region developing in the middle of the figure, corresponding to
the same density dip in the upper panel. This is because the dust was depleted in that region, falling below ε = 1. The
particle simulation at the nonlinear regime (lower right) has the same overall wavelength as the fluid one, which is seen
as the streams develop in the same location. However, the Reynolds number is different (essentially inviscid), which
as a result leads to clearer oscillatory dynamics in the particle case. These are present in the fluid case as well, albeit
less prominently. These oscillations are responsible for the non-zero eccentricity seen in two-dimensional models.

These modes are u = v modes, that naturally occur at high dust-to-gas ratio, as dust drags the gas along. The ques-
tion is therefore how to excite these modes. Excitation of the high-epsilon epicyclic mode is possible in the following
way. If the orbits of the dust in the ring should happen to become slightly eccentric, ordinarily, gas drag would damp
the eccentricity, by slowing the grains near pericenter and pushing the grains near apocenter forward. However, when
gas is heated by the dust, the side of an eccentric ring that is closer to the star heats the gas more, increasing the gas
pressure on that side. The resulting gradient in the gas pressure slows the gas orbital motion on one side of the ring,
causing the gas streamlines to become eccentric as well, and therefore canceling the drag force, sustaining the mode.
The azimuthal pressure gradient in turn attracts more dust, creating a tendency for apsidal alignment. Notice that this
mechanism works best when τT � τf , i.e., when the thermal time is short in comparison to the friction time. This way,
the gas in eccentricity excursion has time to heat up at the periapse and establish the pressure gradient. Otherwise, the
gas drag has enough time to damp the dust attempt at eccentricity excursion back to the circular ring. This is precisely
what we see in Suppl. Fig. 1 and Suppl. Fig. 8, as the oscillations only appear for short thermal time.
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Supplementary Figure 9: Time series of the 1D dust density, showing the linear and marginally nonlinear development
of the photoelectric instability in the initial t = 50 (≈ 8 orbits) of the simulations. a-b, In the ε = 0.2 case there is linear
instability, which is retrieved in both cases. c-d, In the ε = 1 case there is only nonlinear instability. The fluid simulation
shown in the lower left panel had to be started with noise at urms = 0.1 cs, since for linear noise it is quiescent. The
particle simulation at ε = 1 develops epicylic oscillations (period = 1/Ω = 2π), also visible in the fluid approach but
less clear due to the higher Reynolds number.
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