

Launch Load Resistant Spacecraft Mechanism Bearings Made From Ni-Ti Superelastic Intermetallic Materials

Christopher DellaCorte NASA, Glenn Research Center And Lewis (Chip) E. Moore III NASA Marshall Space Flight Center

42nd Aerospace Mechanisms Symposium May 14th, 2014 Baltimore, Maryland

Motivation: the ride into space can be rough (Vibration/loads impact bearings and components)

- Bearing and component materials must be:
 - Hard (Rockwell C58 or better)
 - Wear-resistant and compatible with existing lubricants
 - Resistant to rolling contact fatigue (RCF)
 - Fracture resistant
 - Corrosion resistant (preferably immune)
 - Low density (to reduce centripetal loads at high rpm)
 - Capable of producing ultra-smooth surface finishes
 - Dimensionally stable and easy to manufacture

Contact Engineering: Ball-Race

- When hard surfaces contact
 - Forces are transmitted at small, concentrated contact points (Hertz).
 - Resulting stresses cause deformations that help "spread the load".
 - Contact area is a function of the geometry, material stiffness and load.
 - High stiffness (modulus) inhibits deformations leading to small contact area and high stresses (contrast with a tire contacting the ground).

- Hard surfaces can dent
 - Even modest loads can exceed stress capability limits.
 - Bearing raceways are particularly prone to Brinell dent damage.

Ball-Race Static Load Capacity: Leveille & Murphy (Dent depth vs. running torque noise)

- Classic 1973 paper on dent depth/ball diameter (dp/D) effects
 - Showed that dp/D~0.0001 criterion too aggressive for precision bearings with respect to torque ripple. Proposed dp/D~0.00003 to 0.00005

Contact Engineering: Geometry, Loads and Materials

- Engineering Mitigations
 - Reduce loads through vibration isolation.
 - Reduce the stresses through margin additions such as increased bearing size and increased ball-race conformity.
 - Use harder materials less prone to denting.

- Implications
 - Load reduction and vibration isolation can add mass.
 - Bearing design and material changes introduce other complications.

- Four general types of bearing materials:
 - Steels (Corrosion resistant steels, martensitic, austenitic)
 - Ceramics (Si₃N₄ balls + steel races, a.k.a., hybrid bearings)
 - Superalloys (e.g., jet turbine blade alloys)
 - Non-ferrous alloys (bronze, nylon etc.)
- Each of these has inherent shortcomings:
 - Hard steels are prone to rusting (even "stainless steels" like 440C)
 - Superalloys and austenitic stainless steels (304ss) are soft.
 - Ceramics have thermal expansion mismatch and dent steel races
 - Non-Ferrous materials are weak and lack temperature capabilities
- No known bearing material blends all the desired attributes:
 - High hardness, corrosion immunity, toughness, surface finish, electrical conductivity, non-magnetic, manufacturability, etc.

Technical Opportunity: 60NiTi (a.k.a. NiTiNOL 60)

- 60NiTi Basics:
 - Invented by W.J. Buehler (late 1950's) at the Naval Ordinance Laboratory (NiTiNOL stands for Nickel-Titanium Naval Ordinance Lab).
 - Contains 60 wt% Nickel and 40 wt% Titanium
 - 60NiTi is not a metal or a ceramic: a weakly ordered inter-metallic compound.
 - A member of the super-elastic family. It is dimensionally stable.
 - 60NiTi can be hardened to Rc 60+.
 - Its cousin (55NiTi), the widely used shape memory alloy, is soft and dimensionally unstable.
 - 60NiTi recognized by Buehler for bearings but too difficult to manufacture.
 - Modern (ceramic) processing methods now enable 60NiTi bearings with remarkable properties.

Technical Properties Comparison:

Property	60NiTi	440C	Si ₃ N ₄	M-50
Density	6.7 g/cc	7.7 g/cc	3.2 g/cc	8.0 g/cc
Hardness	56 to 62 HRC	58 to 62 HRC	1300 to 1500 Hv	60 to 65 HRC
Thermal conductivity W/m-°K	~9 to 14	24	33	~36
Thermal expansion	~11.2×10 ⁻⁶ /°C	10×10 ⁻⁶ /°C	2.6×10 ⁻⁶ /°C	~11×10 ⁻⁶ /°C
Magnetic	Non	Magnetic	Non	Magnetic
Corrosion resistance	Excellent (Aqueous and acidic)	Marginal	Excellent	Poor
Tensile/(Flexural strength)	~1000(1500) MPa	1900 MPa	(600 to 1200) MPa	2500 MPa
Young's Modulus	~95 GPa	200 GPa	310 GPa	210 GPa
Poisson's ratio	~0.34	0.3	0.27	0.30
Fracture toughness	~20 MPa/√m	22 MPa/√m	5 to 7 MPa/√m	20 to 23 MPa/√m
Maximum use temp	~400 °C	~400 °C	~1100 °C	~400 °C
Electrical resistivity	~1.04×10 ⁻⁶ Ω-m	~0.60×10 ⁻⁶ Ω-m	Insulator	~0.18×10 ⁻⁶ Ω-m

Primary Points

- Modulus is 1/2 that of steel, yet hardness is comparable.
- Tensile strength akin to ceramics.

60NiTi: Stress-Strain Behavior

ε, strain, %

Brinell Test: Elucidates static load capacity

- How well does 60NiTi resist dents?
 - Brinell number
 - dp/D vs. stress (Leveille)

Deep Brinell dent.

Threshold load visible dent.

Dent Depth vs. Hertz Contact Stress (12.7 mm diameter Si₃N₄ ball against 60NiTi plate)

 σ_{avg} , contact stress, GPa

Dent Depth vs. Load (12.7 mm diameter Si₃N₄ ball against 60NiTi plate)

W, indentation load, Kgf

Effects of Indenter Diameter

- Implications
 - Hertz stress relations work well for hard balls against flat plates.

Dent Depth vs. Stress: On bearing races?

50mm bore 60NiTi-Hybrid Bearing specimens

Full scale (50mm bore) bearing inner race. Dented with 8.74mm Si₃N₄ ball.

Normalized Dent Depth Versus Mean Hertz Contact Stress

Exemplary dent resistance applies to real bearing races as well as flat plates.

Notional Bearing Application

Typical Reaction Wheel Assembly

-Based on Honeywell Corporation Model HR 0610 design. -5 kg wheel supported on four R4 ball bearings.

How might NiTi bearings compare to steel w.r.t. static load capacity?

Single Ball on Race Calculations

Reaction Wheel Assembly Bearing Configurations Assessed

[Ball: 8.74 mm dia., Inner Race Curvature Radii: ball-path, 4.25 mm; cross-race, 1.27 mm.]

Configuration	Ball material	Race material	Limiting contact	Single ball-race load
no.			Stress, ^a GPa (ksi)	limit, N (lb)
I	440C	440C	2.5 (350)	196 (44)
II	Si ₃ N ₄	440C	2.5 (350)	138 (31)
III	60NiTi	440C	2.5 (350)	463 (104)
IV	60NiTi	60NiTi	2.5 (350)	846 (190)
V	Si ₃ N ₄	60NiTi	2.5 (350)	374 (84)
VI	60NiTi	60NiTi	3.1 (450)	1780 (400) ^c
VII	Si ₃ N ₄	60NiTi	3.1 (450)	801 (180)
VIII	^b REX20	REX20	3.8 (550)	587 (132)
IX	Si₃N₄	REX20	3.8 (550)	467 (105)

^aMean Hertz contact stress.

^bREX20 properties: Young's Modulus (E): 234 GPa; Poisson's Ratio (v): 0.30.

^cHertz calculations may be invalid due to excessively deformed geometry.

Reaction Wheel Assembly Bearing Configurations Assessed [Ball: 8.74 mm dia., Inner Race Curvature Radii: ball-path, 4.25 mm; cross-race, 1.27 mm.]

Ball material RWA load Configuration Race Shaft load capacity, Case material kN (lb) capacity, g 440C 28.6 440C 1.4(316)Π 440C 1.0(223)20.2 Si₃N₄ Ш 60NiTi 440C 67.9 3.3 (748) VI 60NiTi 60NiTi a12.8 (2880) ^a261.2 VII Si₃N₄ 60NiTi 5.8 (1296) 118 VIII REX20 REX20 4.2 (950) 86.2 IX 3.4 (756) 68.5 Si₃N₄ REX20

^a*Hertz calculations may be invalid due to excessively deformed geometry* ^b*Shaft supported by four R4 bearings. Bearing radial load capacity estimated using Derner & Pfaffenburger (9/5) load sharing distribution model.*

-Si₃N₄ ball-60NiTi race offers 2x (vs. Rex20) to 5x (440C) improvement.

-60NiTi ball-60NiTi race amplifies load capacity effect.

-Additional load capacity may other designs such as smaller or fewer bearings.

Status and Summary Remarks

•60NiTi has been successfully fabricated into precision bearing balls and races.

- •60NiTi is hard yet has a low elastic modulus and large elastic deformation range enabling high static load capacity.
- •Combination of aqueous corrosion immunity, non-magnetic and electrical conductivity not found in any other hard bearing material.
- •Low modulus and high elasticity of superelastic gives it more load capacity than that inferred from hardness alone.
- •Under load, the reduced modulus may allow better load sharing amongst rolling elements, further reducing local stresses thereby increasing bearing load capacity.
- •As the technology matures, more improvements and applications will emerge.

Closing Thoughts: Materials Design Space

Fe-C system has yielded literally thousands of alloys and variants following centuries of development.

NiTi explorations to date have been limited to very narrow region.

Though much more R&D remains to commercialize 60NiTi and other superelastic intermetallic materials for use in bearings, gears and other mechanical systems, early indications are very promising.

Thank You!