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Silicon nitride thin films play an important role in the realization of sensors, filters, and high-performance circuits.
Estimates of the dielectric function in the far- and mid-IR regime are derived from the observed transmittance spec-
tra for a commonly employed low-stress silicon nitride formulation. The experimental, modeling, and numerical
methods used to extract the dielectric parameters with an accuracy of approximately 4% are presented. © 2012
Optical Society of America
OCIS codes: 310.3840, 310.6188, 310.6860.

The physical properties of silicon nitride thin films,
namely low tensile stress, low thermal/electrical conduc-
tance, and its overall compatibility with other common
materials, have facilitated its use in the microfabrication
of structures requiring mechanical support, thermal iso-
lation, and low-loss microwave signal propagation (e.g.,
[1–4]). Silicon nitride films are amorphous, highly absorb-
ing in the mid-IR [5], and their general properties are
functions of composition [6,7]. Here the optical proper-
ties are studied in detail for a membrane with parameters
commonly employed in microfabrication.
The silicon nitride optical test films were prepared by a

low-pressure chemical-vapor-deposition (LP-CVD) pro-
cess optimized for low tensile stress and refractive index
[8]. The 5∶1 SiH2Cl2∕NH3 gas ratio employed results in a
tensile stress <100 MPa and optical index greater than
∼2 [9]. The test structure is shown schematically in Fig. 1
(inset). Double-side-polished silicon (75 mm diameter,
500 μm thick) wafers [10] were used as a mechanically
robust handling structure for the SiNx membranes. A
150 nm thermal oxide was grown on the silicon wafers
by wet oxidation at 950°C for 31 min. This layer was sub-
sequently used as an etch stop to protect the nitride dur-
ing definition of the silicon handling wafer geometry. A
low-stress SiNx layer was then deposited by LP-CVD [e.g.,
deposition parameters for 2 μm film are 835°C for 9.7 h
with pressure 33 Pa and 12 sccm NH3, 59 sccm SiH2Cl2
(SCCM denotes cubic centimeters per minute at standard
temperature and pressure)]. The wafers were then pat-
terned with a resist mask and SiNx∕SiO2 windows
formed by deep reactive ion etching, which removed
all the silicon under the window area. The residual
thermal oxide was removed with hydrogen fluoride va-
por etch, leaving a set of uniform SiNx membranes each
with a 10 mm diameter aperture individually suspended
from the silicon handling frame.
The optical tests were performed on SiNx samples hav-

ing membrane thicknesses of 0.5 and 2.3 μm with a un-
certainty of 3%. Fabry–Perot resonators were made by
stacking multiple samples with silicon standoff frames
between adjacent samples to explore the long-
wavelength response of the material in greater detail.
The silicon standoffs allowed a vent path for evacuation
of air between the nitride membranes. All optical

measurements were performed in vacuum with a resi-
dual pressure less than 100 Pa.

The sampleswere characterizedwith aBruker 125high-
resolution Fourier transform spectrometer (FTS) and
were measured in transmission at the focal plane of an
f ∕6 beam. A number of different sources, beam splitters,
and detector configurations were used in combination to
provide measurements over the reported spectral range.
The single-layer SiNx sample transmission was measured
over an extended range from 15 to 10;000 cm−1. The mer-
cury lamp and a multilayer Mylar beam splitter were used
to access frequencies below 600 cm−1. Additional mid-IR
spectral data up to 2400 cm−1 were acquired using a cera-
mic glow bar source, Ge-coated KBr beam splitter, and
room-temperature deuterated tri-glycine sulfate detector.
The remaining near-IR data up to 10; 000 cm−1 were taken
with aW filament source, Si on CaF2 beam splitter, and a
liquid-nitrogen-cooled InSb detector (Fig. 1). Far-IR data
between 15 and 95 cm−1 were taken using a mercury arc

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Frequency [THz]

T
ra

ns
m

is
si

on
 [ 

– 
]

Measured
Model
Residual

10mm

25mm SiNx membrane
(500nm)

SiO2 etch stop
(150nm)

Silicon frame
(500μm)

Fig. 1. (Color online) Room-temperature transmission of a si-
licon nitride sample 0.5 μm thick: measured (grey), model
(black dotted), and residual (red). The shaded band’s width de-
limits the estimated 3σ measurement uncertainty. A 30 GHz
(1 cm−1) resolution is employed for the measurement. The in-
sert depicts the geometry of the SiNx membrane and microma-
chined silicon frame.
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lamp source and a liquid-helium-cooled 4.2 K bolometer.
Mylar beam splitters of 50, 75, and 125 μm thicknesses
and a multilayer Mylar beam splitter were used during se-
parate scans (Fig. 2). The resultant transmissiondatawere
merged into a single spectrausinga signal-to-noiseweight-
ing for subsequent parameter extraction.
The dielectric response is represented as a function of

frequency, ω, by the classical Maxwell–Helmholtz–Drude
dispersion model [11],

ε̂r�ω� � ε̂∞ �
XM
j�1

Δε̂j · ω2
Tj

ω2
Tj
− ω2

− iωΓ0
j�ω�

; (1)

where M is the number of oscillators and ε̂r � ε0r � iε00r is
a complex function of (5M � 2) degrees of freedom,
which are as follows: the contribution to the relative per-
mittivity ε̂∞ � ε̂M�1 of higher lying transitions, the differ-
ence in relative complex dielectric constant between
adjacent oscillators Δε̂j � ε̂j − ε̂j�1, which serves as a
measure of the oscillator strength, the oscillator reso-
nance frequency ωTj

, and the effective Lorentzian damp-
ing coefficient Γ0

j , for j � 1;…; M . The following
functional form is used to specify the damping:

Γ0
j�ω� � Γj exp

�
−αj

�ω2
Tj
− ω2

ωΓj

�2�
; (2)

where αj allows interpolation between Lorentzian
(αj � 0) and Gaussian wings (αj > 0) similar to the ap-
proach in [12]. The form indicated above enables a more
accurate representation of relatively strong oscillator
features.
The impedance contrast between free space and the

thin-film sample forms a Fabry–Perot resonator. The
observed transmission can be modeled [13] as a function
of the dielectric response [Eq. (1)], thickness, and wave-
number. The dielectric parameters were solved by means
of a nonlinear least-squares fit of the transmission

equation to the laboratory FTS data. Specifically, a se-
quential quadratic programming method with computa-
tion of the Jacobian and Hessian matrices [14,15] was
implemented. The merit function, χ2, was used in a con-
strained minimization over frequency as follows:

min
DOF

χ2 � min
DOF

XN
k�1

�T�ε̂r�ω�; h� − TFTSk �2; (3)

where N is the number of data points, T the modeled
transmittance, TFTS the measured transmittance data,
and h the measured sample thickness. We are guided
by the Kramers–Kronig relations in defining constraints
for a passive material: jε̂jj > jε̂j�1j, ε00j > 0 and ε̂r�0� � ε̂1
[16]. For accurate parameter determination, the sample
should have uniform thickness, be adequately transpar-
ent to achieve high signal to noise, and have diffuse scat-
tering as a subdominate process. The method requires an
a posteriori numerical verification for Kramers–Kronig
consistency. In the example presented here, a numerical
Hilbert transform [17] of εr0 �ω� reproduces εr00 �ω� to with-
in 2% (Fig. 3). An alternative method employing reflectiv-
ity and phase allows a priori Kramers–Kronig consistent
results [18]. However, given the details of the thin-film
samples and available instrumentation, this approach
was not implemented.

Figure 1 illustrates the measured and modeled results
obtained from the analysis of a 0.5 μm thick sample. The
peak residual in the transmittance is less than 3%, and the
3σ � 0.023 uncertainty band indicated corresponds to
the 99.7% confidence level. The standard deviation
adopted for the measured data, σ, was estimated assum-
ing the errors as a function of frequency were uniform
and had a reduced χ2 equal to unity. An additional

Fig. 2. Measured (solid grey) and model (black dotted) trans-
mission for a three-layer stack of silicon nitride samples 2.3 μm
in thickness with 998 μm intermembrane delays that comple-
ments the data shown in Fig. 1. The sample response in the
far-IR was acquired with a resolution of 3 GHz (0.1 cm−1).

Fig. 3. (Color online) Real and imaginary parts (solid red
curves) of the dielectric function as extracted from the data
shown in Fig. 1. The line thickness is indicative of the propa-
gated ∼4% error band. The numerical Hilbert transform of
the modeled εr

00 �ω� is indicated in the upper panel (dashed blue
line) to facilitate comparison with εr

0 �ω�. The filled symbols
indicate the parameters derived from the data presented in
Fig. 2.
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uncertainty in the FTS normalization influences the
dielectric response function at the 1% level. In addition
to the channel spectra, the observed spectrum shows
two predominant features at 12 and 25 THz. Simulations
with M � 2 oscillators lead to a peak residual on trans-
mission of 5% and do not enable recovery of the reso-
nance at 25 THz. Using five oscillators satisfactorily
recovers the observed transmittance and reduces the
peak residual by a factor of 4.4. When the resonator’s
quality factor, Qeff j � ωTj

∕Γ0
j, is greater than 5, the data

were not reproducible by either a pure Lorentzian oscil-
lator or Eq. (4.6) in [12]. In these regions, the peak trans-
mission residuals were decreased by a factor ∼2 through
the use of Eq. (2).
In Fig. 3 the values of the real and imaginary compo-

nents of the dielectric function are illustrated as a func-
tion of frequency. The uncertainty in ε̂r was propagated
and computed as described in [19]. Table 1 contains a
summary of the best fit parameters for five oscillators,
which can be used to reproduce the data shown in
Fig. 3.
To characterize the long-wavelength portion of the di-

electric function, Fabry–Perot resonators were realized
from one-, two-, and three-layer samples. Representative
data for the three-layer resonator stack are presented in
Fig. 2. A multilayer transfer matrix analysis [13] is used to
extract the dielectric function using the measured SiNx
(2.3 μm) and silicon spacer (998 μm) thicknesses. The cir-
cular symbols at 1.5 and 2.5 THz indicated in Fig. 3 were
computed from a composite analysis of the three Fabry–
Perot measurement sets. The horizontal range indicates
the data used in each fit. The best estimates are ε̂r ≈ 7.6�
i0.08 over the range of 2–3 THz and ε̂r ≈ 7.6� i0.04
over 0.4–2 THz. The real component of the static dielec-
tric function derived from the data is in agreement with
prior reported parameters for this stoichiometry [4]. As
shown in Fig. 3, the measurements are internally consis-
tent and represent roughly a factor-of-three reduction in
uncertainty relative to prior IR SiNx measurements
identified by the authors [5–7]. The dielectric parameters
reported here are representative of low-stress SiNx

membranes encountered in our fabrication and test
efforts.
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Table 1. Fit Parameter Summary

j [–] ε0j [–] ε00j [–] ωTj
∕2π [THz] Γj∕2π [THz] αj [–]

1 7.582 0 13.913 5.810 0.0001
2 6.754 0.3759 15.053 6.436 0.3427
3 6.601 0.0041 24.521 2.751 0.0006
4 5.430 0.1179 26.440 3.482 0.0002
5 4.601 0.2073 31.724 5.948 0.0080
6 4.562 0.0124
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