An Airborne Onboard Parallel Processing Testbed

Dan Mandl
NASA/GSFC Software Engineering Division
2014 ESTO Science and Technology Forum
Objectives for Intelligent Payload Module Testbed

• Low power/high performance benchmarking
 – Test various typical onboard science processing requirements with parallel processing via multicore processors and field programmable gate array circuits
 – Target processors that can be radiation tolerant or radiation hardened

• Airborne Intelligent Payload Module(IPM) box used as proxy for satellite version of IPM

• Research being conducted under AIST-11 effort, “A High Performance Onboard Multicore Intelligent Payload Module for Orbital and Suborbital Decadal Missions”
Potential Users of IPM

• HyspIRI Smallsat mission
 – Visible ShortWave InfraRed (VSWIR) Imaging Spectrometer
 – Multispectral Thermal InfraRed (TIR) Scanner

• HyspIRI Space Station mission
 – Visible ShortWave InfraRed (VSWIR) Imaging Spectrometer
 – Multispectral Thermal InfraRed (TIR) Scanner

• Geocape
Sample Operational Scenario: Detection of Harmful Algal Blooms with Rapid Map Downlinked to Validation Team on Ground

Realtime map with following processing steps:
- Radiance to reflectance conversion
- Atmospheric Correction
- Geocorrection/Co-registration
- Classification (Web Coverage Processing Service)
- Vectorization and data reduction

Downlink to Ipad

Harmful Algal Bloom
Processors Used in Conjunction With The Testbed
Tilera Tile64 as Proxy for Maesto

Specifications
• Launched on August 20, 2007
• **8 x 8 tile array (64 cores)**
• Each tile on chip is an independent processor capable of running an entire operating system
• 700MHz - 866MHz (No FPU)
• 15 - 22W @ 700MHz all 64 cores running
• Idle tiles can be put into low-power sleep mode
• ANSI standard C / C++ compiler
• Supports SMP Linux with 2.6 kernel

Issues
• Special data homing considerations required when programming/compiling for the TILE64
 – Uses a crude coherence strategy; each shared memory location may only be cached in one tile – its “home” tile. A location’s home tile is fixed at runtime
 – Accessing remotely-cached data is correct, but performance is low
 – Prevents TILE64 from efficiently running existing generic multithreaded code
 – Careful “homing” of data is crucial to good scalability
• TILE64’s compiler does not use the now-standard C++ ABI popularized by GCC 3.2+
 – This compiler is closed-source, based on SGI’s “MIPSPro”
 – Prevents linkage with and preprocessing by other C++ compilers, such as AESOP
Maestro as Proxy for Maestro-lite

- Origin - DARPA Polymorphic Computer Architecture (PCA Program)
- DARPA/DTRA Radiation Hardened By Design (RHBD) 90 nm IBM CMOS process
- Government purchased Tilera Corp’s (commercial 64 core processor) software intellectual property (IP) for government space-based applications
- Program managed by National Reconnaissance Office (NRO)
- Maestro Chip developed by Boeing Solid-State Electronics Development (SSED)
- Government customers: NASA, NRO, Air Force Research Laboratory
- Maestro basic specifications
 - 7 x 7 tile array (49 cores)
 - 300 MHz, 45 GOPs, 22 GFLOPS (FPU on each tile)
 - 18 Watts typical
 - RHBD Total Ionizing Dose (TID) >500krad
Tilera TilePro64 as Proxy for Maestro

Specifications
• Launched on September 22, 2008
• 8 x 8 tile array (64 cores)
• Each tile on chip is an independent processor capable of running an entire operating system
• 700MHz - 866MHz (No FPU)
• 19 - 23W @ 700MHz all 64 cores running
• Idle tiles can be put into low-power sleep mode
• ANSI standard C / C++ compiler
• Supports SMP Linux with 2.6 kernel

Addressed issues exhibit in TILE64
• Uses a better cache coherence protocol allowing many tiles to cache the same data
• The native compiler is now an open-source port of GCC 4.4, using standard C++ ABI
 ▪ Compiler and toolchain is actively supported
 ▪ October 14 2011 - Tilera contributed its port back to the GCC project
• First-class Linux kernel architecture
• Presently in IPM used during recent flights
Tilera Tile-Gx8036 / Tile-Gx8009 as Proxy for Maestro

Specifications

• Launched on January 30, 2012
• 6 x 6 tile array (36 cores) / 3 x 3 tile array (9 cores)
• Each tile on chip is an independent processor
• capable of running an entire operating system
• 1GHz – 1.5GHz (FPU)

• 27 - 30W @ 1.2GHz all 36 cores running
• 9 – 10W @ 1.0GHz all 9 cores running
• Idle tiles can be put into low-power sleep mode
• ANSI standard C / C++ compiler
• Supports SMP Linux with 2.6 kernel
SpaceCube 1.5

<table>
<thead>
<tr>
<th>Unit</th>
<th>Mission</th>
<th>Notes</th>
<th>Specs</th>
<th>Stats</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpaceCube 1.0a</td>
<td>Hubble SM 4</td>
<td>RNS Experiment STS-125 May 2009</td>
<td>4”x4” card (2) Virtex4</td>
<td>Size: 5”x5”x7” Wt: 7.5 lbs Pwr: 16W x 2</td>
<td>2009 Flight</td>
</tr>
<tr>
<td>SpaceCube 1.0b</td>
<td>MISSE-7/8</td>
<td>added RS-485, RHBS, STS-129 Nov 2009</td>
<td>4”x4” card (2) Virtex4</td>
<td>Size: 5”x5”x7” Wt: 7.5 lbs Pwr: 16W x 2</td>
<td>Operating on ISS Since Nov 2009</td>
</tr>
<tr>
<td>SpaceCube 1.5</td>
<td>SMART</td>
<td>added GigE & SATA SubTec-5 Jun 2011</td>
<td>4”x4” card (1) Virtex5</td>
<td>Size: 5”x5”x4” Wt: 4 lbs Pwr: 10W</td>
<td>2011 Flight</td>
</tr>
<tr>
<td>SpaceCube 1.0c</td>
<td>Argon Demo</td>
<td>added 1553 & Ethernet</td>
<td>4”x4” card (2) Virtex4</td>
<td>Size: 5”x5”x7” Wt: 7.5 lbs Pwr: 18W x 2</td>
<td>Demonstration Testbed</td>
</tr>
<tr>
<td>SpaceCube 1.0 d, e, f</td>
<td>STP-H4, future STP-H5 & RRM3</td>
<td>added 1553 & Ethernet</td>
<td>4”x4” card (2) Virtex4</td>
<td>Size: 5”x5”x7” Wt: 7.5 lbs Pwr: 15W</td>
<td>On ISS Since Aug 2013</td>
</tr>
<tr>
<td>SpaceCube 2.0</td>
<td>Earth/Space Science, SSCO, GPS Nav</td>
<td>Std 3U form factor, GigE, SATA, Spacewire, cPCI</td>
<td>4”x7” card (2) Virtex 5 + (1) Aeroflex</td>
<td>Size: 5”x5”x7” Wt: < 10 lbs Pwr: 15-20W</td>
<td>EM On ISS Since Aug 2013 (Flight Unit In Development)</td>
</tr>
<tr>
<td>SpaceCube 2.0 Mini</td>
<td>CubeSats, Sounding Rocket, UAV</td>
<td>“Mini” version of SpaceCube 2.0</td>
<td>3.5”x3.5” card (1) Virtex 5 + (1) Aeroflex</td>
<td>Size: 4”x4”x4” Wt: < 3 lbs Pwr: 8W</td>
<td>Flight Unit in Development (2016 launch)</td>
</tr>
</tbody>
</table>
SpaceCube Family Overview

v1.0
2009 STS-125
2009 MISSE-7
2013 STP-H4
2016 STP-H5

v1.5
2012 SMART

v2.0-EM
2013 STP-H4
2016 STP-H5

v2.0-FLT
2015 GPS Demo
- Robotic Servicing
- Numerous proposals for Earth/Space/Helio
Processor Comparison

<table>
<thead>
<tr>
<th>Processor</th>
<th>MIPS</th>
<th>Power</th>
<th>MIPS/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-STD-1750A</td>
<td>3</td>
<td>15W</td>
<td>0.2</td>
</tr>
<tr>
<td>RAD6000</td>
<td>35</td>
<td>15W</td>
<td>2.33</td>
</tr>
<tr>
<td>RAD750</td>
<td>300</td>
<td>15W</td>
<td>20</td>
</tr>
<tr>
<td>LEON 3FT</td>
<td>75</td>
<td>5W</td>
<td>15</td>
</tr>
<tr>
<td>LEON3FT Dual-Core</td>
<td>250</td>
<td>10W</td>
<td>25</td>
</tr>
<tr>
<td>BRE440 (PPC)</td>
<td>230</td>
<td>5W</td>
<td>46</td>
</tr>
<tr>
<td>Maxwell SCS750</td>
<td>1200</td>
<td>25W</td>
<td>48</td>
</tr>
<tr>
<td>SpaceCube 1.0</td>
<td>3000</td>
<td>7.5W</td>
<td>400</td>
</tr>
<tr>
<td>SpaceCube 2.0</td>
<td>6000</td>
<td>10W</td>
<td>600</td>
</tr>
<tr>
<td>SpaceCube Mini</td>
<td>3000</td>
<td>5W</td>
<td>600</td>
</tr>
</tbody>
</table>
ZC702 – Zynq (ARM/FPGA Processor) Proxy for COTS+RH+FTC CHREC Space Processor (CSP)

COTS
- Zynq-7020 hybrid SoC
 - Dual ARM A9/NEON cores
 - Artix-7 FPGA fabric + hard IP
- DDR3 memory

RadHard
- NAND flash
- Power circuit
- Reset circuit
- Watchdog unit

FTC = Fault-Tolerant Computing
- Variety of mechanisms
 - External watchdog unit to monitor Zynq health and reset as needed
 - RSA-authenticated bootstrap (primary, secondary) on NAND flash
 - ECC memory controller for DDR3 within Zynq
 - ADDAM middleware with message, health, and job services
 - FPGA configuration scrubber with multiple modes
 - Internal watchdogs within Zynq to monitor behavior
 - Optional hardware, information, network, software, and time redundancy
IPM Hardware

- 14 x 14 x 6 inches
- Wide-Input-Range DC voltage (6V-30V)
- Made of strong durable aluminum alloy
- Dual mounting brackets
- Flush design
- Removable side panels
- Mounting racks are electrically isolated from the box
- Appropriate space allocation for interchangeable Tilera and SpaceCube boards
- Electronic components
 - Tilera development board
 - SpaceCube development board
 - Single board computer
 - 600GB SSD
 - Gigabit Ethernet switch
 - Transceiver radio
 - Power board
IPM Hardware
SPECIFICATIONS

<table>
<thead>
<tr>
<th>MECHANICALS</th>
<th>ESTIMATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (with lens)</td>
<td>125 x 101 x 75 mm</td>
</tr>
<tr>
<td>Size (with telescope)</td>
<td>200 x 101 x 75 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>48 kg [.99 lbs]</td>
</tr>
<tr>
<td>Power</td>
<td>20 watts</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-20 to +50 C</td>
</tr>
<tr>
<td>Size does not include NS/GPS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPTICS</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrometer Type</td>
<td>Dyson</td>
</tr>
<tr>
<td>Telescope</td>
<td>All-reflective telescope</td>
</tr>
<tr>
<td>Field of View</td>
<td>40 degrees</td>
</tr>
<tr>
<td>Cross Track Pixels</td>
<td>640</td>
</tr>
<tr>
<td>F-Number</td>
<td>f/2</td>
</tr>
<tr>
<td>Spectral Range</td>
<td>350–1080 nm (Reflective)</td>
</tr>
<tr>
<td></td>
<td>400–1000 nm (Refractive)</td>
</tr>
<tr>
<td>Smile Distortion</td>
<td>< 0.1 pixels</td>
</tr>
<tr>
<td>Keystone Distortion</td>
<td>< 0.1 pixels</td>
</tr>
<tr>
<td>Stray Light</td>
<td>< 1e-4 Point Source Transmission</td>
</tr>
<tr>
<td>Spectral Bands</td>
<td>256</td>
</tr>
<tr>
<td>Spectral Sampling</td>
<td>2.5, 5, 10 nm</td>
</tr>
<tr>
<td>Peak Grating Efficiency</td>
<td>88%</td>
</tr>
<tr>
<td>Slit Size</td>
<td>9.6 x 0.015 mm</td>
</tr>
</tbody>
</table>

IMAGE SENSOR

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Sensor</td>
<td>640 x 512, with 15 μm pixels</td>
</tr>
<tr>
<td>Full Well Capacity</td>
<td>Gain 0: 500,000</td>
</tr>
<tr>
<td></td>
<td>Gain 1: 80,000</td>
</tr>
<tr>
<td></td>
<td>Gain 2: 10,000</td>
</tr>
<tr>
<td>Read Noise</td>
<td>Gain 0: < 83 electrons</td>
</tr>
<tr>
<td></td>
<td>Gain 1: < 42 electrons</td>
</tr>
<tr>
<td></td>
<td>Gain 1: < 10 electrons</td>
</tr>
<tr>
<td>Maximum Frame Rate</td>
<td>1000 frames/second</td>
</tr>
<tr>
<td>Quantum Efficiency</td>
<td>> 50% @ 380 nm</td>
</tr>
<tr>
<td></td>
<td>80% @ 400–900 nm</td>
</tr>
<tr>
<td></td>
<td>> 30% @ 1000 nm</td>
</tr>
<tr>
<td>Camera Interface</td>
<td>USB-3</td>
</tr>
<tr>
<td>Data Acquisition</td>
<td>500 MB Solid State Recorder</td>
</tr>
<tr>
<td></td>
<td>Serial Interface for GPS/INS</td>
</tr>
</tbody>
</table>

CHAI SOFTWARE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger Modes</td>
<td>Pilot, GUI, electronic, and Lat/Long triggered acquisition</td>
</tr>
<tr>
<td>Visualization</td>
<td>3-band RGB waterfall display of real-time and recorded data</td>
</tr>
<tr>
<td>Metadata</td>
<td>Temperature, pressure, and humidity</td>
</tr>
<tr>
<td>Data Format</td>
<td>RAW, ENVI BIL, or Processed</td>
</tr>
<tr>
<td>Processing</td>
<td>EXPRESSO™</td>
</tr>
</tbody>
</table>
ChaiV640 Box and IPM (Tilera Multicore Proxy for Maestro)
Software with Addition of Publisher Node Onboard IPM

- **Publisher**
- **Future**
- **FLAASH Atmospheric Correction**
- **WCPS**
- **TlmOut**
- **Hyperspectral Instrument**
- **ASIST**
- **Ground**

CASPER - Continuous Activity Scheduling Planning Execution and Replanning system

CFDP - CCSDS File Delivery Protocol

ASIST - Advanced Spacecraft Integration and System Testing Software
Data Processing Chain for Benchmarking

Main Data Source

- CHAI v640 on Bussmann Helicopter
 - 170 Mbps

Alternative Data Sources

- AMS on Citation Forest Service
- GLiHT on UC-12 Langley
- CHAI v640 on UC-12 Langley
- EO1 ALI and Hyperion Data

 Processes:

- Ingest/Level 0
- Level 1R FLAASH AC
- Level 1G Geometric Correction
- WCPS

Alternative Data Sources:

- Level 2 SAM
- Level 2 Vectorizer

Classifiers & Other Algorithms

Downlink high level data products to ground at 200 kbps
Publisher/Consumer/GeoSocial API Architecture

Intelligent Payload Module in S/C

Publisher

Mobile Application

API

Regional/Consumer Node

API

Web Application

Ground

Publisher

[Big] Data

Societal Products

Satellites

Social Networks

Concept developed by Pat Cappelaere (Vightel/GSFC) and Stu Frye (SGT/GSFC)

A methodology to rapidly discover, obtain and distribute satellite data products via social network and open source software
Initial Hyperspectral Image Processing Benchmark

<table>
<thead>
<tr>
<th></th>
<th>Radiometric Correction</th>
<th>*Atmospheric Correction (FLAASH)</th>
<th>Geometric Correction (GCAP)</th>
<th>*WCPS (vis_composite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>864 MHz TILEPro64</td>
<td>121.95</td>
<td>2477.74</td>
<td>183.42</td>
<td>72.39</td>
</tr>
<tr>
<td>(1 core)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>864 MHz TILEPro64</td>
<td>23.83</td>
<td>TBD</td>
<td>4.59</td>
<td>21.63</td>
</tr>
<tr>
<td>(49 cores)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 GHz TILE-Gx36</td>
<td>57.22</td>
<td>897.71</td>
<td>28.51</td>
<td>19.93</td>
</tr>
<tr>
<td>(1 core)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 GHz TILE-Gx36</td>
<td>9.21</td>
<td>TBD</td>
<td>1.41</td>
<td>8.72</td>
</tr>
<tr>
<td>(36 cores)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2GHz Intel Core I7</td>
<td>2.09</td>
<td>58.29</td>
<td>0.169</td>
<td>2.26</td>
</tr>
<tr>
<td>Virtex 5 FPGA</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Image data: GLiHT 1004 x 1028 x 402 (829,818,048 bytes)
Hyperion 256 x 6702 x 242 (830,404,608 bytes)
Chai640 696 x 2103 x 283 (828,447,408 bytes)

Notes: Unit is in seconds
TILEPro64 – No floating point support
TILE-GX36 – Partial floating point support
* Indicates time includes file I/O
• Worked with Spectral Sciences to modify FLAASH GLUT version to support airborne atmospheric correction.

• Optimized FLAASH to run on the multicore Tilera processor.

• Processed CHAI v640 data with FLAASH to create reflectance values.

Using this subroutine which takes about 20% of processing time and is a Fast Fourier Transform to benchmark FPGA acceleration.

Detail on Benchmarking of Atmospheric Correction
FFT Benchmark Tests with Various CPU Processors and FPGA

<table>
<thead>
<tr>
<th>Processor</th>
<th>Cores</th>
<th>FFTW 1 band 128 x 256 time (Msec)</th>
<th>Clock rate (Mhz)</th>
<th>Power Consumption (watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TileGX</td>
<td>1</td>
<td>21.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TileGX</td>
<td>4</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maestro</td>
<td>1</td>
<td>187</td>
<td>200</td>
<td>14 watts</td>
</tr>
<tr>
<td>Maestro</td>
<td>8</td>
<td>55</td>
<td>200</td>
<td>14 watts</td>
</tr>
<tr>
<td>ZynqARM</td>
<td>1</td>
<td>8.7</td>
<td>667</td>
<td>3 watts</td>
</tr>
<tr>
<td>ZynqARM</td>
<td>2</td>
<td>6.9</td>
<td>667</td>
<td>3 watts</td>
</tr>
<tr>
<td>XeonPhi</td>
<td>1</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XeonPhi</td>
<td>171</td>
<td>0.221</td>
<td></td>
<td>225 watts</td>
</tr>
<tr>
<td>FPGA</td>
<td>NA</td>
<td>1.5</td>
<td>100</td>
<td><3 watts</td>
</tr>
</tbody>
</table>
Goal

- Experimenting with putting almost all of the data processing chain in FPGA using the Zynq based ZC702 (proxy for CSP) to do the benchmark
- Install ZC702 in IPM and fly on helicopter as part of our flight tests
- Issues
 - Moving data between programmable logic, processor system and memory
 - Design of data processing chain buffering scheme
- Based on DMA access, throughput speed of as much as 10 Gbps might be possible
- Would like to demonstrate producing high level data products while keeping up with an input instrument data rate of between 500 – 1000 Mbps
CHREC Space Processor (CSP) Missions

• CSP Tech Demo ISIM (Space Station)
 – 2 CSP’s
 – Targeted to be on Space Station Summer 2015
 – Gary Crum/587

• Compact Radiation BElt Explorer (CeREs) is part of NASA's Low-Cost Access to Space program
 – 3U Cubesat
 – 1 CSP
 – Launch May 2015
Conclusion

• Working towards IPM and GeoSocial API integrated architecture
• Working towards radiation tolerant IPM
• Prototype how much of the flight software and data processing software can be hosted
• Measure relative throughput performance of representative data processing chain
• Present AIST-11 effort is working mostly in multicore processor environment and only begins to explore FPGA performance